
ElectricAccelerator
Electric Make User Guide

Version 10.1

Electric Cloud, Inc.
125 South Market Street, Suite 400

San Jose, CA 95113
www.electric-cloud.com

ElectricAccelerator version 10.1

Copyright © 2002–2018 Electric Cloud, Inc. All rights reserved.

Published 12/5/2018

Electric Cloud® believes the information in this publication is accurate as of its publication date. The
information is subject to change without notice and does not represent a commitment from the
vendor.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” ELECTRIC CLOUD, INCORPORATED
MAKES NOREPRESENTATIONS ORWARRANTIES OF ANY KINDWITH RESPECT TO THE INFORMATION
IN THIS PUBLICATION AND SPECIFICALLY DISCLAIMS IMPLIEDWARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any ELECTRIC CLOUD software described in this publication requires
an applicable software license.

Copyright protection includes all forms andmatters of copyrightable material and information now
allowed by statutory or judicial law or hereinafter granted, including without limitation, material
generated from software programs displayed on the screen such as icons and screen display
appearance.

The software and/or databases described in this document are furnished under a license agreement or
nondisclosure agreement. The software and/or databases may be used or copied only in accordance
with terms of the agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement.

Trademarks

Electric Cloud, ElectricAccelerator, ElectricAccelerator Huddle, ElectricCommander, ElectricFlow,
ElectricFlow Deploy, ElectricFlow DevOps Foresight, ElectricFlow DevOps Insight, ElectricFlow Release,
ElectricInsight, and Electric Make are registered trademarks or trademarks of Electric Cloud,
Incorporated.

Most Electric Cloud products—ElectricAccelerator, ElectricAccelerator Huddle, ElectricCommander,
ElectricFlow, ElectricFlow Deploy, ElectricFlow DevOps Foresight, ElectricFlow Release, ElectricInsight,
and Electric Make—are commonly referred to by their “short names”—Accelerator, Huddle,
Commander, Flow, Deploy, Foresight, Release, Insight, and eMake—throughout various types of
Electric Cloud product-specific documentation.

All other trademarks used herein are the property of their respective owners.

ii ElectricAccelerator 10.1 Electric Make User Guide

Chapter 1: eMake Overview 1-1
Understanding Component Interactions 1-2

eMake and EFS 1-2

eMake and Cluster Manager 1-2

ElectricAccelerator Virtualization 1-3

Electric File System (EFS) 1-3

System Registry (Windows Only) 1-3

User Accounts 1-4

Environment Variables 1-4

Understanding Build Parts 1-5

Chapter 2: Setting Up ElectricAccelerator 2-1
Defining Your Build 2-2

Build Sources 2-2

Build Tools 2-2

Build Environment 2-2

Configuring Your Build 2-4

Chapter 3: eMake Basics 3-1
Invoking eMake 3-2

Single Make Invocation 3-2

Setting the eMake Root Directory 3-3

Configuring Tools 3-4

Tools that Access or Modify the System Registry 3-5

Configuring Environment Variables 3-5

Setting the Cluster Manager Host and Port 3-6

Setting eMake Emulation 3-7

eMake Command-Line Options, Environment Variables, and Configuration File 3-8

Editing the eMake Configuration File 3-9

List of Command-Line Options 3-9

ElectricAccelerator Sample Build 3-24

Contents

Chapter 4: Additional eMake Settings and Features 4-1
Using Build Classes 4-2

Using Priority Pools 4-5

Using the Proxy Command 4-8

Using Subbuilds 4-9

Subbuild Database Generation 4-10

Run a Build Using Subbuild 4-10

Subbuild Limitations 4-10

BuildingMultiple Targets Simultaneously 4-12

Using eMake Variables 4-12

Using the Ninja Build System 4-13

Specifying Pragmas in an Addendum File 4-13

Restrictions 4-14

Supported Pragmas 4-14

Examples 4-15

Specifying the File to Use 4-15

Stopping a Build 4-16

Shutting Down Cluster Hosts During Builds 4-17

Chapter 5: Make Compatibility 5-1
Unsupported GNU Make Options and Features 5-2

Unsupported GNU Make Options 5-2

GNU Make 3.81 Support 5-2

GNU Make 3.82 Support 5-2

GNU Make 4.0 and 4.1 Support 5-2

GNU Make 4.2 Support 5-3

Unsupported NMAKE Options 5-3

Commands that Read from the Console 5-3

Transactional CommandOutput 5-4

Stubbed Submake Output 5-5

Submake Stubs 5-6

Submake Stub Compatibility 5-8

Hidden Targets 5-11

Wildcard Sort Order 5-13

Delayed Existence Checks 5-13

Multiple Remakes (GNU Make only) 5-14

NMAKE Inline File Locations (Windows only) 5-15

iv ElectricAccelerator 10.1 Electric Make User Guide

How eMake Processes MAKEFLAGS 5-15

Chapter 6: Performance Optimization 6-1
Optimizing Android Build Performance 6-2

Dependency Optimization 6-2

Enabling Dependency Optimization 6-2

Dependency Optimization File Location and Naming 6-2

Job Caching 6-3

Benefits 6-4

Limitations 6-4

Supported Tools 6-4

Running a “Learning” Build to Populate the Cache 6-4

Extending JobCache to Teams Via a Shared Cache 6-5

Configuring JobCache 6-6

Job Caching for gcc, clang, Jack, and javac 6-6

Job Caching for cl 6-9

Troubleshooting 6-13

Viewing JobCache Metrics 6-15

Moving Your Workspace 6-16

Deleting the Cache 6-16

Job Caching for kati 6-16

Parse Avoidance 6-17

Enabling Parse Avoidance 6-17

Deleting the Cache 6-19

Moving Your Workspace 6-19

Limitations 6-20

Troubleshooting 6-20

Ignored Arguments and Environment Variables 6-21

Javadoc Caching 6-23

Enabling Javadoc Caching 6-23

Limitations 6-24

Schedule Optimization 6-24

How it Works 6-24

Using Schedule Optimization 6-24

Disabling Schedule Optimization 6-25

Running a Local Job on the Make Machine 6-25

Jobs That Are Suited to Running Locally 6-25

ElectricAccelerator 10.1 Electric Make User Guide v

Specifying Jobs to Run Locally 6-25

Making eMake Detect Files Outside the Current Working Directory 6-26

Serializing All Make Instance Jobs 6-26

Splitting PDBs Using hashstr.exe 6-27

Managing Temporary Files 6-28

Configuring the eMake Temporary Directory 6-28

Deleting Temporary Files 6-29

Chapter 7: Dependency Management 7-1
ElectricAccelerator eDepend 7-2

Dependency Generation 7-2

The Problem 7-3

eDepend Benefits 7-3

How Does eDependWork? 7-3

Enabling eDepend 7-4

Using #pragma noautodep 7-5

ElectricAccelerator Ledger File 7-6

The Problem 7-7

The eMake Solution 7-8

Managing the History Data File 7-9

Setting the History File Location 7-10

History File Input Rules 7-10

History File Output Rules 7-10

Guaranteeing Correct History 7-10

Ensuring that Relative EMAKE_ROOT Locations Match 7-11

Running Builds with Multiple Roots 7-11

Using the remaphist Utility to Relocate a History File 7-11

Conflicts and Conflict Detection 7-13

How eMake Guarantees Reliable Parallel Builds 7-13

The Versioned File System 7-13

Detecting Conflicts 7-14

Exceptions to Conflict Detection in eMake 7-15

Chapter 8: Annotation 8-1
Configuring eMake to Generate an Annotation File 8-1

Annotation File Splitting 8-2

Working with Annotation Files 8-3

Creating Tools for Tasks That Use Annotation Output 8-3

vi ElectricAccelerator 10.1 Electric Make User Guide

Annotation XML DTD 8-3

Metrics in Annotation Files 8-6

Timer Annotation 8-6

Other Annotation 8-11

Chapter 9: Third-Party Integrations 9-1
Using ClearCase with ElectricAccelerator 9-2

Configuring ElectricAccelerator for ClearCase 9-2

ecclearcase Executable 9-2

LD_LIBRARY_PATH 9-2

ClearCase Views on Agents 9-2

--emake-clearcase 9-3

eMake’s “Fake” Interface for ClearCase 9-3

Where ClearCase Dynamic Views Affect eMake Behavior 9-5

Performance Considerations 9-7

Using Coverity with ElectricAccelerator 9-7

Using Cygwin with ElectricAccelerator (Windows Only) 9-8

Using Eclipse with ElectricAccelerator 9-8

Chapter 10: Electrify 10-1
Limitations 10-1

Recommendations 10-1

Electrify as Part of the Build Process 10-1

Running Electrify on Windows 10-1

Running Electrify on Linux 10-1

Important Reminders About Electrify 10-2

Electrify Arguments 10-2

UsingWhole Command-Line Matching and efpredict 10-4

Whole Command-Line Matching 10-4

efpredict 10-5

Important Notes 10-6

Additional Electrify Information 10-6

Chapter 11: Troubleshooting 11-1
Agent Errors Establishing the Virtual File System 11-2

Agents Do Not Recognize Changes on Agent Machines 11-2

eMake Debug Log Levels 11-2

Enabling eMake Debug Logging 11-2

eMake Debug Log Level Descriptions 11-2

ElectricAccelerator 10.1 Electric Make User Guide vii

Using the Annotation File to Troubleshoot Builds 11-5

DeterminingWhy a Target Was Rebuilt 11-5

Profiling Metrics 11-6

Per-Job Performance Metrics 11-6

Index 12-1

viii ElectricAccelerator 10.1 Electric Make User Guide

Chapter 1: eMake Overview
Electric Make® (”eMake”) is a new Make version and is the main build application in
ElectricAccelerator®. eMake reads makefiles in several different formats, including GNU Make and
Microsoft NMAKE. eMake distributes commands to the cluster for remote execution and services file
requests. You can invoke eMake interactively or through build scripts.

Topics:

l Understanding Component Interactions on page 1-2

l ElectricAccelerator Virtualization on page 1-3

l Understanding Build Parts on page 1-5

Understanding Component Interactions
To a user, ElectricAccelerator ("Accelerator")might appear identical to other Make versions—reading
makefiles in several different formats and producing identical results. Using a cluster for builds is
transparent to the Accelerator user.

Important differences in Accelerator build processing versus other distributed systems:

l Components work together to achieve faster, more efficient builds. Instead of running a
sequential build on a single processor, Accelerator executes build steps in parallel on a cluster of
hosts.

l For fault tolerance, job results are isolated until the job completes. If an Agent fails during a job,
Accelerator discards any partial results it might have produced and reruns the job on a different
Agent.

l Missing dependencies discovered at runtime are collected in a history file that updates each time
a build is invoked. Accelerator uses this collected data to improve performance of subsequent
builds.

eMake and EFS
High concurrency levels in Accelerator are enabled by the Electric File System (EFS). When a job such
as a compilation runs on a host, it accesses files such as source files and headers through EFS. EFS
records detailed file access data for the build and returns that data to eMake.

eMake acts as a file server for Agents, reading the correct file version from file systems on its machine
and passing that information back to the Agents. Agents retain different file version information and do
not rely on eMake’s file sequencing ability to provide the correct version for a job. The Agent receives file
data, downloads it into the kernel, notifying EFS, which then completes the original request. At the end
of a job, Electric Agent returns any file modifications to eMake so it can apply changes to its local file
systems.

eMake and Cluster Manager
When eMake is invoked on the buildmachine, it communicates with Cluster Manager to acquire a set of
Agents it can use for the build. When eMake finishes, it sends Cluster Manager the build results, and
tells Cluster Manager that Agents are free now to work on other builds. If more than one build is
invoked, Cluster Manager allocates agents using a priority-based algorithm. Builds with the same
priority share Agents evenly, while higher priority builds are allocatedmore Agents than lower priority
builds. By default, agents running on the same host machine are allocated to the same build. In real
time, Cluster Manager dynamically adjusts the number of agents assigned to running builds as each
build’s needs change, which allows Accelerator to make the best use of cluster resources.

1-2 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 1: eMake Overview

ElectricAccelerator 10.1 Electric Make User Guide1-3

ElectricAccelerator Virtualization
ElectricAccelerator is designed to virtualize parts of the build setup so cluster hosts can be configured
correctly for the specific build they are executing. Specifically, ElectricAccelerator dynamically mirrors
the following host system properties on the Agent:

l Electric File System

l System registry (Windows only)

l User ID (UNIX only)

l Environment variables

Electric File System (EFS)
Files are the most important resource to distribute to hosts. When eMake starts, it is given a directory
(or list of directories) called EMAKE_ROOT. All files in eMake root(s) are automatically mirrored on cluster
hosts for the build duration. This powerful feature means you do not need to configure file sharing
between the build system and the cluster—simply specify the EMAKE_ROOT and the hosts can access
files on the host build system.

Almost any file visible to the host build system can be mirrored to the cluster—regardless of how the
host system accesses that file (local disk, network mount, and so on). Both sources and tools can be
mirrored, but there are important flexibility/performance “trade-offs” to consider when you include
tools in the eMake root. See Configuring Your Build on page 2-4.

When the build completes, EFS is unmounted and the files are no longer visible on the hosts—this
ensures builds do not interfere with local host configuration.

Generally, EMAKE_ROOT can be set to include any existing directory on the host buildmachine. Files in
these directories are automatically accessible by commands running on cluster hosts. The exceptions
are detailed in Setting the eMake Root Directory on page 3-3.

System Registry (Windows Only)
A side effect of running builds on Windows:Windowsmight execute tools that modify the system
registry. For example, a build job stepmight install a program that includes registry modifications that
are executed by a subsequent step. If job steps are run on different Agents without registry
virtualization, the buildmight fail because registry modifications on one machine are not visible on
another.

ElectricAccelerator solves this situation by mirroring the Windows registry in addition to the file system.
You can specify a registry root using the command line --emake-reg-roots=<path>. Just as EMAKE_
ROOT specifies a host file system subset to mirror, the registry root specifies which registry keys should
be virtualized to Agents (for example, HKEY_LOCAL_MACHINE\Software\My Product). Access and
modifications to keys and values under the registry root on Agents are then sent back to the host build
system to ensure correct values are propagated to other Agents.

ElectricAccelerator Virtualization

As with the file system, registry mirroring is active during the build only. After the build completes, the
registry returns to its original configuration. Processes not running under an Agent on a host cannot
see mirrored files and registry entries—they will see only the usual view of the machine.

User Accounts
The same user ID is used by the Electric Agent [running on each host, executing processes] and the
eMake process started on the host build system. Using the same user ID ensures processes have the
same permission and obtain the same results from system calls (such as getuid) as they would
running serially on the user machine. On Windows, processes are executed by the Electric Agent
service user. The Agent user can be configured at installation time, see the ElectricAccelerator
Installation Guide at http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html.

Environment Variables
When eMake sends commands for execution to the Agent, it also sends environment variables. In most
cases, this automatic environment virtualization is sufficient. Typically, variables that specify output
locations, target architecture, debug-vs.-optimized, and so on, are propagated to tools on the host and
their remote behavior correctly matches what they do locally. By default, environment variables sent
by eMake override system-wide settings on the host.

For certain variables, override behavior is not desirable. For the build to operate correctly, tools running
on the hosts must see the value from the local Agent, not the host build system. For example, the
Windows SYSTEMROOT variable depends on the directory where Windows was installed on that
machine—values might vary in different Window releases. The SYSTEMROOT value from the host build
system is frequently different than the value from the local Agent.

To accommodate these instances, eMake allows you to exclude specific environment variables from
virtualization. In addition to variables you might explicitly choose to exclude, eMake automatically
excludes the TMP,TEMP, and TMPDIR variables on all platforms; and the COMSPEC and SYSTEMROOT
variables on Windows. For a complete description of environment variables, see eMake Command-Line
Options, Environment Variables, and Configuration File on page 3-8

1-4 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 1: eMake Overview

http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html

ElectricAccelerator 10.1 Electric Make User Guide1-5

Understanding Build Parts
Software builds are often complex systems with many inputs that must be carefully set up and
configured. Correctly distributing system processes over a cluster of computers or hosts requires
efficient replication of relevant parts of the build setup on each host.

ElectricAccelerator software is designed to help virtualize your build environment on each cluster host
so distributed jobs display the same behavior as compared to how those jobs run serially on one
computer.

Because input configurations can vary from one build to the next, ElectricAccelerator virtualization is
active only while the build is running. When the build completes, the host returns to its original state.
Consequently, different builds can share a cluster without danger of conflicting changes corrupting host
configuration.

Understanding Build Parts

Chapter 2: Setting Up ElectricAccelerator
After all components are installed, and before invoking eMake, you need to configure ElectricAccelerator
to ensure accurate, reliable builds.

Topics:

l Defining Your Build on page 2-2

l Configuring Your Build on page 2-4

Defining Your Build
Before using Accelerator, precisely define which components go into your build. Generally, a build has
three input types:

SOURCES + TOOLS + ENVIRONMENT = BUILD

Build Sources
Build sources include all compiled or packaged files to build your product. For example, these sources
include:

l Intermediate files generated during the build (for example, headers or IDL files)

l Makefiles and scripts that control the build

l Third-party source files read during the build

l Any file read by the build in source control

Build Tools
Tools used to create build output include make, compilers, linkers, and anything else operating on the
sources during the build:

l Executable post-process tools (for example, strip)

l Static analyzers (for example, lint) if they run as part of the build

l Packaging tools (for example, tar or zip)

Sometimes the distinction between sources and tools is blurred. Consider these examples:

l A utility executable compiled from your sources during the build, run during later steps, but not
part of final output

l Header source files that are part of the compiler (for example, stdio.h) or a third-party package,
but not under source control

In this context, sources are those files that might change from one build to the next. Thus, a utility
executable compiled from your sources as part of the build is considered a source.

By contrast, tools change infrequently—tools are often configured once and served from a central
location (for example, an NFS share). A standard header such as stdio.h is usually considered part of
the tool suite.

The distinction between inputs that can change between builds (sources) and inputs that can safely be
assumed to be constant (tools) becomes important when configuring Accelerator virtualization.

Build Environment
Your operating system environment is an essential part of your build. The operating system is easy to
overlook because the environment usually is configured once per host and then ignored as long as
builds function normally. But when a build is distributed across a shared cluster, it is important to
identify which parts of the operating system could affect the build. Some inputs to consider include:

2-2 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 2: Setting Up ElectricAccelerator

ElectricAccelerator 10.1 Electric Make User Guide2-3

l User environment variables

l System registry (Windows only)

l Operating system version (including patches or service packs)

l User account and user permissions

l Host-specific attributes (for example, machine name, network configuration)

For each of these inputs, consider what impact (if any) they will have on the build.

Generally, some environment variables require correct settings for a build (for example, PATH or
variables that specify output architecture or source/output file locations).

Another common example of how the operating system can affect the build occurs with the use of tools
that require license management. If a tool license (for example, a compiler) is host-locked or it requires
contacting a license server to operate, ensure the compiler on the host can acquire the license also (for
example, cluster host names could be configured as valid license server clients).

Note: Extended file attributes (xattr) are not supported. Attempting to query or set extended
attributes for a file returns an ENOTSUPP (“Operation not supported”) error.

Defining Your Build

Configuring Your Build
After defining your build environment and identifying all of its inputs, configure the cluster and eMake
so the system correctly virtualizes:

1. Set the eMake root directory.

2. Determine if you need to do additional configuration for tools.

3. Make additional configurations regarding the registry. (Windows only)

4. Configure environment variables if needed.

5. Set the Cluster Manager host and port.

6. Set eMake emulation.

Some cases of virtualization or distribution of specific job steps are not desirable. For these cases you
can configure Accelerator to:

l Run an individual command from the Agent back on the host system, using the “proxy
command” function. See Using the Proxy Command on page 4-8.

l Prevent remote job execution by using the #pragma runlocal function. See Running a Local Job
on the Make Machine on page 6-25.

2-4 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 2: Setting Up ElectricAccelerator

Chapter 3: eMake Basics
The following topics discuss basic eMake information to get you up and running.

Topics:

l Invoking eMake

l Setting the eMake Root Directory

l Configuring Tools

l Tools that Access or Modify the System Registry

l Configuring Environment Variables

l Setting the Cluster Manager Host and Port

l Setting eMake Emulation

l eMake Command-Line Options and Environment Variables

Invoking eMake
The eMake executable is called emake. The most important change to your build process is to ensure
this executable is invoked in place of the existing Make.

For interactive command-line use, ensure the following:

l The ElectricAccelerator bin directory is in your PATH environment variable:

l For Linux: <install_dir>/i686_Linux/bin (/opt/ecloud/i686_Linux/bin by default) or
<install_dir>/i686_Linux/64/bin (/opt/ecloud/i686_Linux/64/bin by default)

l For Solaris: <install_dir>/sun4u_SunOS/bin (/opt/ecloud/sun4u_SunOS/bin by default)

l For Windows: <install_dir>\i686_win32\bin (C:\ecloud\i686_win32\bin by default) or
<install_dir>\i686_win32\64\bin (C:\ecloud\i686_win32\64\bin by default)

l You type emake in place of gmake or nmake.

Note: The 64-bit version of eMake is recommended for builds with very large memory requirements.

You can rename the eMake executable to either gmake or nmake, because eMake checks the
executable to determine which emulation to use. If the name of the submake is hard-coded in many
places within your makefiles, a simple solution would be to rename gmake or nmake to gmake.old or
nmake.old, and rename eMake to either gmake or nmake on cluster hosts only. In this way, you can
maintain access to your existingmake, but all submakes from an Accelerator build will correctly use
eMake.

Note: Electric Cloud does not recommend running builds in /tmp.

To ensure eMake is called for recursive submake invocations in makefiles, use the $(MAKE)macro for
specifying submakes instead of hard-coding references to the tool. For example, instead of using:

libs:
make -C lib

use the following $(MAKE)macro:

libs:
$(MAKE) -C lib

Single Make Invocation
It is important to keep the build in a single Make invocation. At many sites, Make is not directly invoked
to do a build. Instead, a wrapper script or harness is used to invoke Make, and users (or other scripts)
invoke this wrapper. The wrapper script might take its own arguments andmight perform both special
set up or tear down (checking out sources, setting environment variables, post-processing errors, and
so on). Because eMake behaves almost exactly like native Make tools, usually it can directly replace the
existingmakefile in wrapper scripts.

Sometimes, however, the script might invoke more than one Make instance. For example, the script
could iterate over project subdirectories or build different product variants. In this case, each of these

3-2 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 3: eMake Basics

ElectricAccelerator 10.1 Electric Make User Guide3-3

builds becomes a separate Accelerator build, with its own build ID, Cluster Manager entry, history file,
and so on.

It is much more efficient for Make instances that are logically part of one build to be grouped under the
control of a single parent Make invocation. In this way, eMake can track dependencies between
submakes, ensure maximal parallelization and file caching, andmanage the build as a single, cohesive
unit.

If your build script invokes more than one submake, consider reorganizingmakefile targets so a single
Make is invoked that in turn calls Make recursively for submakes.

If a lot of the setup for each instance occurs within the build script, another possible solution is to use a
simple top level makefile to wrap the build script; for example,

all:
my-build-harness ...

In this instance, my-build-harness runs on the Agent much like any other command and sends
commands discovered by submake stubs back to the host buildmachine. This approach works only if
each submake’s output is not directly read by the script between Make invocations. Otherwise, it might
be susceptible to submake stub output problems. See Submake Stubs on page 5-6 for more
information.

Setting the eMake Root Directory
The --emake-root option (or the EMAKE_ROOT environment variable) specifies the EFS root directory [or
directories] location. All files under the eMake root directory are automatically mirrored on each Agent.

eMake uses the current directory as the default if no other root directory is specified. You must specify
the correct root directory (or directories) or the buildmight fail because eMake cannot find the
necessary files to complete the build or resolve dependencies.

For best results and performance, be specific when setting the eMake root location. Be sure to include:

l All files created or modified by the build.

l All source files.

l The location where build output files will go during the build, for example, object files, linker
output, and so on.

l Other files read by the build such as third-party tools and system headers, or other files not
modified if you need to. Be aware, however, that including these files can affect performance.
See Configuring Your Build on page 2-4.

If necessary, specify more than one directory or subdirectory. Separate each location using
standard PATH variable syntax (a colon for UNIX, a semicolon for Windows).

UNIX example:

--emake-root=/src/foo:/src/baz

Setting the eMake Root Directory

In this example, you have streamlined the root path by excluding other /src subdirectories not
necessary to the build.

Windows example:

--emake-root=C:\Build2;C:\Build4_test

Note: Any files used by the build, but not included under an eMake root directory, must be preloaded
onto all hosts and identical to corresponding files on the system running eMake. If these files are not
identical, eMake could find and use the wrong files for the build. This approach is appropriate for system
compilers, libraries, header files, and other files that change infrequently and are used for all builds.

Generally, EMAKE_ROOT can be set to include any existing directory on the host buildmachine. Files in
these directories are automatically accessible by commands running on cluster hosts. However, there
are a few exceptions:

l EMAKE_ROOT cannot be set to the system root directory (for example, “/” on UNIX or C:/ on
Windows). It might be tempting to try this to specify “mirror everything,” but in practice, this is
not desirable because mirroring system directories such as /var or /etc on UNIX or C:/Windows
on Windows can lead to unpredictable behavior. eMake will not allow you to specify the root
directory as EMAKE_ROOT.

l /tmp and the Windows temp directory cannot be included in the eMake root.

l On Windows, another operating system restriction is imposed:
EMAKE_ROOT is not a UNC path specification—it must be a drive letter specification or a path
relative to a drive letter. It must also be aminimum of three characters.

Configuring Tools
Cluster hosts must be able to execute all tools (compilers, linkers, and so on) required during the build.
Three execution setup choices:

1. Tools are available on the cluster in the same locations as on the host build
system—this is the simplest setup and requires no special eMake or build system configuration.

This is the most common setup if tools are provided from a network mount (for example, an NFS
or SMB server). If tools are not supplied from a network share, but are installed on the local disk
on each host, those tools must be updatedwhenever tools on the build system change.

2. Tools are available on the cluster, but not necessarily in the same locations as the
host build system—this configuration is common in environments where users are allowed to
install tools on their host system in non-standard locations.

In this case, care must be taken to ensure build steps executing on the hosts find the tools.
Usually, this meansmaking the PATH environment variable include standard locations used on
the cluster hosts—any other variables referencing tool locations need to be modified similarly.

As in the first case, if tools are installed on the cluster hosts’ local disk, they must be updated
when tools are updated on the host system.

3-4 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 3: eMake Basics

ElectricAccelerator 10.1 Electric Make User Guide3-5

3. Tools are not installed on the cluster—in this case, when no tools are installed on the
cluster, EMAKE_ROOT is configured to include the tools directory so the compiler and linker are
sent to the Agents by eMake [in the samemanner as the source files].

This is the most flexible setup because it eliminates the need to install or update tools on the
hosts. If tools change frequently or vary between branches, this setup can dramatically reduce
setup cost. However, to gain this flexibility, you typically trade performance because network
overhead is increased.

Another factor to consider is the possibility that configuration information for a virtualized tool
might not work on the host. For example, it is not possible to virtualize the Microsoft Visual
Studio IDE because of its tight integration with the local machine’s registry.

In some special cases, it might be necessary to use tools outside of the virtualized file system. To
support running such tools on the local buildmachine during a cluster build, see Using the Proxy
Command on page 4-8.

IMPORTANT: Electric Cloud does not recommend Proxy Command for frequent use; use it with
caution.

Tools that Access or Modify the System Registry
In addition to files, tools on Windowsmight access or modify the system registry. Use the --emake-
reg-roots command-line option to specify a key tomirror. You can specify more than one key by
separatingmultiple entries with semicolons:

--emake-reg-roots=HKEY_LOCAL_MACHINE\Software\Foo;
HKEY_LOCAL_MACHINE\Software\Bar

In addition, you can specify exception keys to not mirror the system registry by prefixing the key with a
“–” character. For example:

--emake-reg-roots=HKEY_LOCAL_MACHINE\Software\Foo;
-HKEY_LOCAL_MACHINE\Software\Foo\Base

which means “mirror all keys and values under Foo except the keys in Foo\Base.

To ensure compatibility with Microsoft Visual Studio, the registry root specification automatically
includes:

HKEY_CLASSES_ROOT;-HKEY_CLASSES_ROOT\Installer;
-HKEY_CLASSES_ROOT\Licenses

Configuring Environment Variables
If your build environment is fairly constant, you might want to use environment variables to avoid
respecifying values for each build. Environment variables function the same way as command-line
options, but command-line options take precedence over environment variables.

Because eMake environment variables are propagated automatically to Agents, most commands
running on an Agent will run with the correct environment without modifications.

Tools that Access or Modify the System Registry

However, two important exceptions exist.

l As described in Configuring Tools on page 3-4, if tools are installed on the cluster host in
different locations from the build system, the PATH variable (and other variables that reference
tool locations) on the build system must be modified to include the locations for the cluster tools.

l Generally, differences between the build system and cluster hosts might indicate it is
undesirable to override environment variables with eMake values. In this case, use the --emake-
exclude-env command-line option or the EMAKE_EXCLUDE_ENV environment variable.

For example, consider a build system environment variable called LICENSE_SERVER that normally
contains the license server name that the system should contact to obtain a tools license. If this
variable is machine-specific, eMake overrides the correct machine-specific value on the cluster
hosts with the value from the build system. To ensure eMake does not override LICENSE_SERVER
with the value from the build system, use the option, --emake-exclude-env, when running
eMake:

--emake-exclude-env=LICENSE_SERVER

You can specify more than one value by separating them with commas:

--emake-exclude-env=LICENSE_SERVER,TOOLS_SERVER

Some variables are almost always used to describe the local machine state, so eMake always
excludes them from mirroring. These variables are:

TMP
TEMP
TMPDIR

For Windows, this list also includes:

COMSPEC
SYSTEMROOT

Configuring ccache

The only configuration required to use ccache with Accelerator is to set the CCACHE_NOSTATS
environment variable. If you do not set this environment variable, the entire build becomes serialized
because ccache continuously writes to a statistics file throughout the build. To learn more about
ccache, refer to http://ccache.samba.org/.

Setting the Cluster Manager Host and Port
The --emake-cm option (or the EMAKE_CM environment variable) sets the Cluster Manager host name
(either IP address or machine name) andmust be specified. If the host name is not specified by either
of those methods, eMake operates in local mode and performs like a traditional make program by
running jobs on the local machine in serial order—without using the cluster hosts.

Cluster Build Example

The Cluster Manager host name is linuxbuilder.

l You can invoke a build against the cluster by running:

3-6 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 3: eMake Basics

ElectricAccelerator 10.1 Electric Make User Guide3-7
% emake --emake-cm=linuxbuilder

l Alternatively, use the EMAKE_CM environment variable:

% setenv EMAKE_CM linuxbuilder
% emake

Local Machine Build Example

l To force a local build (one not run on the cluster), leave the Cluster Manager host name
undefined by running:

% emake --emake-cm=

l Or, leave the EMAKE_CM environment variable is undefined:

% emake

Setting eMake Emulation
eMake can emulate different make variants: GNU Make (gmake), gmake in a Cygwin environment,
Microsoft NMAKE (nmake), and Symbian. It can also emulate Ninja. By default, --emake-
emulation=<mode> is set to gmake, which supports a subset of GNU Make 3.81 (see Unsupported GNU
Make Options and Features on page 5-2).

The followingmodes are available:

Mode Linux support Windows support Solaris support

gmake4.2 Yes Yes Yes

gmake4.1 Yes Yes Yes

gmake4.0 Yes Yes Yes

gmake3.82 Yes Yes Yes

gmake Yes Yes Yes

gmake3.81 Yes Yes Yes

gmake3.80 Yes Yes Yes

gmake3.79.1 Yes Yes Yes

symbian No Yes No

nmake No Yes No

nmake8 No Yes No

nmake7 No Yes No

Setting eMake Emulation

Mode Linux support Windows support Solaris support

cygwin No Yes No

ninja Yes No No

ninja1.7.2 Yes No No

Note: You can rename emake.exe to nmake.exe, gmake.exe, and so on to change the emulation type
for all builds automatically. See the --emake-emulation-table option in the “eMake Command-Line
Options, Environment Variables, and Configuration File on page 3-8

NMAKE Emulation Example

To use NMAKE, use the following option to set the emulation type:

--emake-emulation=nmake

Cygwin Emulation Example

To use Cygwin, use the following option to set the emulation type:

--emake-emulation=cygwin

Ninja Emulation Example

To use Ninja, use the following option to set the emulation type:

--emake-emulation=ninja

eMake Command-Line Options, Environment
Variables, and Configuration File

You can configure eMake options from the command line for a specific build and can also use eMake
environment variables or the emake.conf configuration file to make options persistent.

Following are caveats for using these methods for setting options:

l The environment variable EMAKEFLAGS can be used to set any command-line option. For
example, this emake invocation:

% emake --emake-cm=mycm --emake-root=/home/joe

is equivalent to the following in csh:

% setenv EMAKEFLAGS "--emake-cm=mycm --emake-root=/home/joe"
% emake

The Bash shell equivalent is:

$ export "EMAKEFLAGS=--emake-cm=mycm --emake-root=/home/joe"
$ emake

TheWindows command shell equivalent is:

3-8 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 3: eMake Basics

ElectricAccelerator 10.1 Electric Make User Guide3-9
C:\> set EMAKEFLAGS=--emake-cm=mycm --emake-root=C:\home\joe
C:\> emake

l The hierarchy or precedence for setting an eMake option is:

l Command-line options

l Options set using the EMAKEFLAGS environment variable

l Options set using other Electric Cloud environment variables

Command-line options as well as options in the EMAKEFLAGS environment variable override
options in the emake.conf configuration file.

Editing the eMake Configuration File
The path to the eMake configuration file is <InstallDir>/<arch>/conf/emake.conf (on Linux and
UNIX) or <InstallDir>\<arch>\conf\emake.conf (on Windows), where <InstallDir> is the top
installation directory containing the eMake program, and <arch> is the architecture (such as i686_
Linux or sun4u_SunOS).

If you run an eMake executable that is not within an ElectricAccelerator installation, it will not use the
installed configuration file (but will still use environment variables and options entered from the
command line).

The configuration file has the following formatting rules:

l Only eMake-specific command line arguments are allowed (not those specific to GNU Make,
NMAKE, and so on).

l One option (a switch-argument pair) is allowed per line.

l All allowed switches must be separated from their arguments by = (an equal sign).

l All text between = and the end of the line (including spaces and terminal spaces) is part of the
argument.

l File order determines the option order (for many kinds of options, the final occurrence overrides
all earlier ones).

l NUL characters are not allowed.

l Empty lines are ignored.

l Lines beginning with # are comment lines and are ignored.

Configuration file syntax errors (but not necessarily semantic ones) are warnings and cause the
configuration file to be skipped (as if it was not present, except for the warnings).

List of Command-Line Options
Command-line options are listed in alphabetical order except for platform-specific options that are listed
after platform-independent options. Debug options are listed at the end of the table.

Note: The --emake-volatile command-line option is deprecated and no longer has any effect. If the
option is specified, it is ignored.

eMake Command-Line Options, Environment Variables, and Configuration File

Command-line Options
Environment
Variables

Description

– EMAKE_BUILD_
MODE

Always set to local.

Specifies that an individual emake invocation on the
Agent does not enter stub mode, but instead behaves
like a local (non-cluster) make. eMake automatically
uses local mode when the -n switch is specified.

--emake-android-
root=<path>

– Specifies the location of your Android source files. For
details about Android builds, see the KBEA-00165 -
Best Practices for Android Builds Using
ElectricAccelerator 10.1 KB article.

--emake-android-
version=<version>

– Specifies your Android version. The available values
are 7.0.0, 8.0.0, or 9.0.0. For details about Android
builds, see the KBEA-00165 - Best Practices for Android
Builds Using ElectricAccelerator 10.1 KB article.

--emake-annodetail=
var1[,var2[,...]]

– Specifies the level of detail to include in annotation
output—a comma-separated list for any of the
following values:
basic: Basic annotation (enabled by default in cluster
mode). If the JobCache feature is enabled, basic
annotation includes information about cache hits and
misses.

env: Enhanced environment variables
file: Files read or written
history: Serialization details
lookup: All file names accessed
md5: MD5 checksums for reads/writes
registry: Updates to registry
waiting: Jobs that waited
none: Disables all annotation. Note that this value
disables basic annotation, even when the --emake-
annofile option is used.

This option overrides the build class annotation
settings set on the Cluster Manager.

3-10 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 3: eMake Basics

https://helpcenter.electric-cloud.com/hc/en-us/articles/360004201612-KBEA-00165-Best-Practices-for-Android-Builds-Using-ElectricAccelerator-10-1
https://helpcenter.electric-cloud.com/hc/en-us/articles/360004201612-KBEA-00165-Best-Practices-for-Android-Builds-Using-ElectricAccelerator-10-1
https://helpcenter.electric-cloud.com/hc/en-us/articles/360004201612-KBEA-00165-Best-Practices-for-Android-Builds-Using-ElectricAccelerator-10-1
https://helpcenter.electric-cloud.com/hc/en-us/articles/360004201612-KBEA-00165-Best-Practices-for-Android-Builds-Using-ElectricAccelerator-10-1
https://helpcenter.electric-cloud.com/hc/en-us/articles/360004201612-KBEA-00165-Best-Practices-for-Android-Builds-Using-ElectricAccelerator-10-1

ElectricAccelerator 10.1 Electric Make User Guide3-11

Command-line Options
Environment
Variables

Description

--emake-annofile=
<file>

– Specifies the name of the XML-formatted log output
file. By default, the annotation file, emake.xml, is
created in the directory where eMake is run. If
specified, implies at least “basic” annotation details.

The following macros are available:

@ECLOUD_BUILD_ID@ expands into the unique eMake
build ID.

@ECLOUD_BUILD_TAG@ expands into the build tag
from the Cluster Manager (this is displayed in the
Name column on the Build tab in the Cluster Manager
UI).

@ECLOUD_BUILD_DATE@ expands into an 8-digit code
that represents the local system date where the build
began, in the form YYYYMMDD.

@ECLOUD_BUILD_TIME@ expands into a 6-digit code
that represents the 24-hour local system time where
the build began, in the form HHMMSS.

Example:
--emake-annofile=annofile-@ECLOUD_BUILD_
ID@-@ECLOUD_BUILD_TAG@-@ECLOUD_BUILD_
DATE@-@ECLOUD_BUILD_TIME@.xml

results in:
annofile-4-default_4_20090220184128-
20090220-184128.xml

--emake-annoupload=
<0|1>

– Enables (1) or disables (0=default) annotation file
upload on the Cluster Manager.

This option overrides the build class annotation upload
setting set on the Cluster Manager.

--emake-autodepend=
<0|1>

– Enables (1) or disables (0=default) the eDepend
feature.

--emake-big-file-
size=<N>

– Sets the minimum file size (in bytes) to send through
Agent-to-Agent transfers for direct file sharing
between hosts. Default=10KB.

--emake-build-label=
<label>

ECLOUD_BUILD_
LABEL

Sets a customized build label. These labels are literal
strings and do not use available tags when defining
labels for build classes.

eMake Command-Line Options, Environment Variables, and Configuration File

Command-line Options
Environment
Variables

Description

--emake-class=
<class>

ECLOUD_BUILD_
CLASS

Specifies the build class for the current build. The
class must match an existing Cluster Manager class
previously created by a user. If this option is not used,
or if the class does not match, eMake assigns the
default class to the build.

--emake-clearcase=
var1[,var2[,...]]

EMAKE_
CLEARCASE

Turns on support for specified ClearCase features—a
comma-separated list of any of the following values:
symlink : symbolic links
vobs : per-VOB caching (for speed)
rofs : read-only file system

--emake-cluster-
timeout=<N>

– If no Agents are available when the build starts, this
option specifies the number of seconds to try to
acquire Agents before giving up. The default is -1
(infinite), so the build waits indefinitely for Agents.

--emake-cm=<host>
[:port]

EMAKE_CM Sets the host name (either the IP address or machine
name) and port for Cluster Manager.

Note that you cannot use --emake-cm and --emake-
localagents=y in the same eMake invocation.

--emake-collapse=
<0|1>

– Turns history collapsing on or off. When collapsing is
enabled, dependencies between a single or several
jobs in another make instance are replaced with a
serialization between the job and the other Make
instance. This action typically results in significant
history file size reduction, but might cause some over-
serialization. In most builds, this has little or no impact
on build time. In some builds, disabling collapsing
improves performance at the cost of increased history
file size. Default=1 (on)

--emake-disable-
pragma=var1[,var2
[,...]]

– Comma-separated list of pragma directives to ignore—
can be one or more of: allserial, runlocal,
noautodep, or all to disable all pragmas.

--emake-disable-
variable-pruning=
<0|1>

– Disables variable table pruning. Default=0 (off)

3-12 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 3: eMake Basics

ElectricAccelerator 10.1 Electric Make User Guide3-13

Command-line Options
Environment
Variables

Description

--emake-emulation=
<mode>

EMAKE_
EMULATION

Sets Make-type emulation to a specific mode. Default
emulation type is gmake. You can rename emake.exe
to nmake.exe or gmake.exe to change the emulation
type for all builds automatically.

Available modes: gmake, gmake3.80, gmake3.81,
gmake3.82, symbian, nmake, nmake7, nmake8,
cygwin, ninja (Linux only), or ninja1.7.2 (Linux
only)

If specifying gmake3.82, read the GNUMake 3.82
Support on page 5-2.

--emake-emulation-
table=<table>

– Configures default emulation modes for Make
programs. TABLE is a comma-separated list of
NAME=MODE, where NAME is the name of a Make
executable and MODE is the emulation mode to use if
emake is invoked as NAME.

--emake-exclude-env=
var1[,var2[,...]]

EMAKE_EXCLUDE_
ENV

Specifies which environment variables must not be
replicated to the hosts.

--emake-hide-
warning=<list>

EMAKE_HIDE_
WARNING

Hides one or more Accelerator-generated warning
numbers. list is a comma-separated list of numbers
that you want to hide. The EC prefix of a warning
number is optional and can be omitted.

--emake-history=
<read|create|merge>

– Specifies the history mode creation model.
Default=merge.

--emake-history-
force=<0|1>

– Honors history mode even if the build fails. Default=1
(on)

eMake Command-Line Options, Environment Variables, and Configuration File

Command-line Options
Environment
Variables

Description

--emake-historyfile=
<path/file>

– Specifies which history file to use for a specific build.
Allows you to change the default name and path for
the history file emake.data set automatically by
eMake.

The following macros are available:

@ECLOUD_BUILD_ID@ expands into the unique eMake
build ID.

@ECLOUD_BUILD_TAG@ expands into the build tag
from the Cluster Manager (this is displayed in the
Name column on the Build tab in the Cluster Manager
UI).

@ECLOUD_BUILD_DATE@ expands into an 8-digit code
that represents the local system date where the build
began, in the form YYYYMMDD.

@ECLOUD_BUILD_TIME@ expands into a 6-digit code
that represents the 24-hour local system time where
the build began, in the form HHMMSS.

Example:
--emake-historyfile=historyfile-@ECLOUD_
BUILD_ID@-@ECLOUD_BUILD_TAG@-@ECLOUD_
BUILD_DATE@-@ECLOUD_BUILD_TIME@.xml

results in:
historyfile-4-default_4_20090220184128-
20090220-184128.xml

--emake-idle-time=
<N>

– Sets the number of seconds (N) before idle Agents are
released to the cluster. Default=10

--emake-ignore-all-
intermediate=
<0|1>

– Causes eMake to not treat .SECONDARY targets
having no prerequisites as meaning that all targets are
intermediate. This option might increase performance
on certain large builds with thousands of targets and
reduce eMake runtime memory requirements (but
breaks strict compatibility with GNUMake when
emulating GNUMake 3.81 and later).

--emake-impersonate-
user=<name>

ECLOUD_
IMPERSONATE_
USER

Run the build as this Cluster Manager user.
Note: Impersonate changes the user recorded by the
Cluster Manager and that user’s permissions. This
option does not affect OS user permissions.

For additional information, see the online help topic,
“Permissions.”

--emake-job-limit=
<N>

– Limits the maximum number of uncommitted jobs to N
where 0means unlimited. Default=0

3-14 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 3: eMake Basics

ElectricAccelerator 10.1 Electric Make User Guide3-15

Command-line Options
Environment
Variables

Description

--emake-ledger=
<valuelist>

EMAKE_LEDGER Enables the ledger capability. Valuelist is a comma-
separated list that includes one or more of:
timestamp, size, command, nobackup, nonlocal,
and unknown.

--emake-ledgerfile=
<path/file>

EMAKE_
LEDGERFILE

The name of the ledger file. Default=emake.ledger

--emake-maxagents=
<N>

– Limits the number of Agents used by this build.
N=0uses all available Agents. Default=0

This option overrides the build class Max Agents
setting if --emake-maxagents is set lower than the
build class setting. This option does not override the
build class setting if --emake-maxagents is set higher
than the build class setting.

This behavior prevents a user from overriding the
upper limit for a class that was set up by the build
administrator.

--emake-mem-limit=
<N>

– Controls the amount of memory eMake devotes to
uncommitted jobs. When the limit is exceeded, eMake
stops parsing newMake instances.
Default=1,000,000,000 (1 GB).

--emake-
mergestreams=<0/1>

EMAKE_MERGE_
STREAMS

Indicates whether to merge the stdout/stderr
output streams, yes (1) or no (0). The default is merge
the streams (1). For most situations, this is the correct
value. If you re-direct standard output and standard
error separately, specify no (0) for this option.

--emake-monitor
<hostname/IP>:<port>

– Sets the hostname/IP and port of the system from
where you want to view the live monitor data in the
Electric Cloud ElectricInsight® tool.

To monitor live build data, you must launch the
ElectricInsight live monitor before you start the build.

--emake-pedantic=
<0|1>

– Turns pedantic mode on (1) or off (0=default). When
pedantic mode is on, warnings appear when invalid
switches are used, or potential problems are identified
(for example, rules with no targets or reading from a
variable that was not written). When pedantic mode is
off, eMake ignores irrelevant switches or exits without
warning if it encounters unresolvable errors.

eMake Command-Line Options, Environment Variables, and Configuration File

Command-line Options
Environment
Variables

Description

--emake-
pragmafile=<file>

– Specifies the pragma addendum file to use. This is a
file containing additional pragma declarations to apply
to the build.

eMake with Ninja emulation supports pragmas. Using
pragmas for builds with the eMake Ninja emulation
mode enabled (--emake-emulation=ninja) requires
an addendum file that contains the pragmas for Ninja
targets.

Pragma addendum files are optional with any other
emulation mode. For more information about pragma
addendum files, see the “Specifying Pragmas in an
Addendum File on page 4-13 section in the “Additional
eMake Settings and Features” chapter.

--emake-priority=
<low|normal>

– Sets the priority for the current build’s use of Agents
in the cluster. When set to normal, the build uses at
least the minimum number of Agents set in Cluster
Manager. The default setting is determined by the
Cluster Manager.

This option overrides the priority associated with a
build class but can be used to lower the build priority
only.

--emake-read-only=
<path>

EMAKE_READ_
ONLY

All paths starting at the directories specified in --
emake-read-only will be marked as read-only file
systems when they are accessed on the agent. On
UNIX, any attempt to create new files or write to
existing files under those directories will fail with
EROFS, “Read-only file system”. On Windows, it will fail
with ERROR_ACCESS_DENIED, “Access is denied.”

3-16 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 3: eMake Basics

ElectricAccelerator 10.1 Electric Make User Guide3-17

Command-line Options
Environment
Variables

Description

--emake-readdir-
conflicts=<0|1>

– Explicitly enables conflict detection on directory-read
operations (commonly called “glob conflicts,” which is
only one manifestation of the problem). Allowed
values are 0 (disabled, the default value) and 1
(enabled).

If your build is susceptible to readdir conflict failures,
you can enable these checks and get a correct build
even if you do not conduct a single-agent build. The
resulting history file is identical to a single-agent build
result. Though the initial run with this feature might
be over-serialized (a consequence of readdir
conflicts), a good history file allows builds to run full
speed, without conflicts, the next time.

You do not want to enable this option all the time.
Instead, you should enable it for one run if you
suspect a globbing problem, and then disable it, but
use the history file generated by the previous run.

Another possible strategy to use, if you are not
familiar with your build, is to enable the option until
you get a successful build, and then disable it after
you have a complete, good history file.

Note: As an alternative, you can use the #pragma
readdirconflicts pragma to enable directory-
read conflicts on a per-job basis. You can apply it to
targets or rules in your makefiles. It incurs less
overhead than --emake-readdir-conflicts=1
(which enables directory-read conflicts for an
entire build). You can use this pragma in pragma
addendum files as well as in standard makefiles.

--emake-remake-
limit=<N>

– This option defaults to 10. If set to 0, makefiles are
not added as goals at all and no remaking occurs.
Setting the value to 1 is equivalent to the deprecated
--emake-multiemake=0.

--emake-resource=
<resource>

EMAKE_RESOURCE The resource requirement for this build.

This option overrides the build class resource request
setting set on the Cluster Manager.

eMake Command-Line Options, Environment Variables, and Configuration File

Command-line Options
Environment
Variables

Description

--emake-root=<path> EMAKE_ROOT Specifies the eMake root directory(s) location.

Particularly on Windows, this parameter should not be
used to virtualize your tool chain. Tools should be
installed on each agent host for performance reasons
and to avoid having to virtualize registry parts.

The semi-colon is the delimiter between drives.

Example:

build@winbuild-cm$ emake --emake-
cm=winbuild-cm --emake-emulation=cygwin --
emake-root=/c/cygwin/tmp;/c/tmp

Starting build: 867
make: Nothing to be done for `foo'.
Finished build: 867 Duration: 0:00 (m:s)
Cluster availability: 100%

In this example, the C: drive is mounted on /c.

--emake-showinfo=
<0|1>

– Turns build information reporting on (1=default) or
off (0). Information includes build time to completion
and average cluster utilization.

--emake-sort-roots=
<0|1>

– Enables (1) or disables (0) sorting of the eMake root
directories in a history file, which are sorted
alphabetically by default. This option lets you control
whether the order of the directories in the history file
follows the order specified via the --emake-root
eMake option. The default is 1 (enabled).

If you switch the value of the --emake-sort-roots
option, you must first delete your history file and
remove the entire contents of your eMake asset
directory (the .emake directory by default). This
deletes all data for JobCache, scheduling, and
dependency optimization.

3-18 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 3: eMake Basics

ElectricAccelerator 10.1 Electric Make User Guide3-19

Command-line Options
Environment
Variables

Description

--emake-test-case-
mode=
<0|1>

– Turns test case mode on (1) or off (0). This option
enables an execution mode specifically for test
acceleration. The default is 0 (off).

In test case mode, file system (and registry for
Windows) updates from each job are discarded to
disable conflict detection, history, and file-level
annotation. This mode discards intermediate test
results to restore agents to a pristine file system state
after each test to ensure that each job runs as if no
other tests ran. The results on stdout and stderr as
well as the exit code are preserved.

You must create a makefile specifically for this mode.
You can use this mode with eMake in any emulation
mode.

--emake-tmpdir=
<path>

EMAKE_TMPDIR Sets the eMake file temporary directory.

Caching Commands (Dependency Optimization, JobCache, Parse Avoidance, and Schedule
Optimization)

--emake-assetdir=
<path>

– Use the specified directory for cache locations for
saved dependencies (for dependency optimization),
JobCache, parse avoidance, and schedule optimization.

The default name of this directory is .emake. By
default, this directory is in the working directory in
which eMake is invoked.

--emake-
jobcache=<cache_
types>

– Enables the JobCache feature for all make invocations
in a build. This option works for recursive and
nonrecursive builds.

You can specify any comma-separated list that
includes one or more of the following values: cl,
clang, clang-cl, gcc, jack, or javac. For details
about these compiler options, see the “ Job Caching
on page 6-3” section.

--emake-optimize-
deps=

<0|1>

– Use the saved dependency information file for a
makefile when dependencies are the same and save
new dependency information when appropriate.

--emake-optimize-
schedule=
<0|1>

– Turns the schedule optimization feature on
(1=default) or off (0). This feature uses performance
and dependency information from previous builds to
optimize the runtime order of jobs in subsequent
builds.

eMake Command-Line Options, Environment Variables, and Configuration File

Command-line Options
Environment
Variables

Description

--emake-parse-
avoidance=
<0|1>

– Avoid parsing makefiles when prior parse results
remain up-to-date and cache new parse results when
appropriate.

--emake-parse-
avoidance-ignore-
env=<var>

– Ignore the named environment variable when
searching for applicable cached parse results. To
ignore more than one variable, use this option
multiple times.

--emake-parse-
avoidance-ignore-
path=<path>

– Ignore this file or directory when checking whether
cached parse results are up-to-date. Append % for
prefix matching. To ignore more than one path or
prefix, use this option multiple times.

--emake-suppress-
include=
<pattern>

– Skip matching makefile includes (such as generated
dependencies). Generally, you should not suppress
makefile includes unless they are generated
dependency files, and you have enabled automatic
dependencies as an alternative way of handling
dependencies.

Note: If the pattern does not have a directory
separator, then the pattern is compared to the
include's file name component only. If the pattern has
a directory separator, then the pattern is taken
relative to the same working directory that applies to
the include directive and compared to the included
file's entire path.

UNIX-Specific Commands

--emake-crossmake=
<linux|solaris|
solarisx86>

– Use this option to choose a specific operating system,
so Cluster Manager will use Linux or Solaris hosts,
specifically.

3-20 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 3: eMake Basics

ElectricAccelerator 10.1 Electric Make User Guide3-21

Command-line Options
Environment
Variables

Description

– ECLOUD_ICONV_
LOCALE

Allows you to set the iconv locale. Use iconv -l to
list the available locales.

Usage Note: If you receive an emake assertion failure
that contains information similar to:

emake: ../util/StringUtilities.h:406:
std::string to_utf8(const std::string&):
Assertion `c != iconv_t(-1)' failed.

This could mean that your system is missing an
internationalization package, or the locale package has
a different name for ISO 8859-1. (This issue is because
of the conversion between 8-bit strings and UTF-8.)

For example, your system recognizes “ISO8859-1”,
“ISO_8859-1”, and “ISO-8859-1” only. Set ECLOUD_
ICONV_LOCALE to one of those valid locale names.

Windows-Specific Commands

--emake-case-
sensitive=<0|1>

– Sets case sensitivity for target and pattern name
matching. This is inherited by all submakes in the build.
The option applies when using gmake or cygwin
emulation modes only; nmake and symbian modes are
not affected.

The default for gmake and cygwin is on (1).

--emake-cygwin=
<Y|N|A>

EMAKE_CYGWIN Y=requires cygwin1.dll
N=ignore cygwin1.dll
A=use cygwin1.dll if available
Default=A, if launched from a Cygwin shell, if not, then
N.
Default=Y, if eMake emulation=cygwin was set.

--emake-ignore-
cygwin-mounts=
<mounts>

EMAKE_IGNORE_
CYGWIN_MOUNTS

Comma-separated list of Cygwin mounts to ignore.
Unless listed, Cygwin mount points are replicated on
the Agent.

--emake-reg-limit=
<N>

– Limits the number of registry keys sent automatically
for each key. Default=50.

--emake-reg-roots=
<path>

– Sets the registry virtualization path on Windows
machines. The syntax is --emake-reg-roots=path
[;path].

Do not use this parameter to virtualize your tool
chain. Tools must be installed on each agent host for
performance reasons and to avoid figuring out which
registry parts to virtualize.

eMake Command-Line Options, Environment Variables, and Configuration File

Command-line Options
Environment
Variables

Description

Debug Commands

--emake-debug=
<value>

EMAKE_DEBUG Sets the local debug log level(s). For a list of possible
values, see the emake --help message.

--emake-logfile=
<file>

EMAKE_LOGFILE Sets the debug log file name.
Default is stderr.

The following macros are available:

@ECLOUD_BUILD_ID@ expands into the unique eMake
build ID.

@ECLOUD_BUILD_TAG@ expands into the build tag
from the Cluster Manager (this is displayed in the
Name column on the Build tab in the Cluster Manager
UI).

@ECLOUD_BUILD_DATE@ expands into an 8-digit code
that represents the local system date where the build
began, in the form YYYYMMDD.

@ECLOUD_BUILD_TIME@ expands into a 6-digit code
that represents the 24-hour local system time where
the build began, in the form HHMMSS.

Example:
--emake-logfile=logfile-@ECLOUD_BUILD_ID@-
@ECLOUD_BUILD_TAG@-@ECLOUD_BUILD_DATE@-
@ECLOUD_BUILD_TIME@.xml

results in:
logfile-4-default_4_20090220184128-
20090220-184128.xml

--emake-rdebug=
<value>

EMAKE_RDEBUG Sets the remote debug log level(s). For a list of
possible values, see the emake --help message.

Enabling this option disables parse avoidance.

3-22 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 3: eMake Basics

ElectricAccelerator 10.1 Electric Make User Guide3-23

Command-line Options
Environment
Variables

Description

--emake-rlogdir=
<dir>

EMAKE_RLOGDIR Sets the directory for remote debug logs.

Local Agent Commands

--emake-localagents=
<y|n>

– Instructs eMake to use any available local agents . The
default is:

l y if you specified a Cluster Manager or if agents
appear to be running

l n if you did not request a Cluster Manager and it
appears that local agents are unavailable

If you have installed local agents (and they are
currently running), but you do not want to use them,
then specify --emake-localagents=n (with or
without the --emake-cm option). This lets you use
cluster agents only (without needing to shut down
running local agents).

If neither is specified but eMake detects that agents
are running on the host, eMake uses them as if you
specified --emake-localagents=y. The Cluster
Manager prefers to allocate agents to eMake that are
on the same host as eMake.

You cannot use --emake-cm and --emake-
localagents=y in the same eMake invocation.

Local agents appear on the Cluster Manager with no
special configuration needed. You can enable and
disable local agents from cmtool just like remote
agents.

Note: “Sharing” local agents is only
minimally supported without a Cluster
Manager. You can run multiple eMake
instances and explicitly limit them to a subset
of the total local agents, but more dynamic
sharing does not occur. If you want more
sophisticated sharing, then you should use a
Cluster Manager.

eMake Command-Line Options, Environment Variables, and Configuration File

ElectricAccelerator Sample Build
After all ElectricAccelerator components are installed and you are familiar with the concepts, try a test
build. Using a text editor, create a makefile with the following content:

UNIX

all: aa bb cc
aa:

@echo building aa
@sleep 10

bb:
@echo building bb
@sleep 10

cc:
@echo building cc
@sleep 10

Windows

SLEEP=ping -n 10 -w 1000 localhost>NUL
all: aa bb cc
aa:

@echo building aa
-$(SLEEP)

bb:
@echo building bb
-$(SLEEP)

cc:
@echo building cc
-$(SLEEP)

Note: “ping” is used in the Windows example because Windows does not have a SLEEP utility.

If you were to run this file with GNU Make, you would expect it to finish in approximately 30 seconds—
allowing for each 10-second command to run serially. Running against an ElectricAccelerator cluster
with at least three Agents, the commands run in parallel allowing the build to complete much faster.

To start this sample build:

l Specify the Cluster Manager by using the --emake-cm=<host> option. The Cluster Manager is
responsible for assigning Agents to eMake for processing jobs. The example uses “linuxbuilder” as
the Cluster Manager host.

l Make sure the eMake root directory [or directories] specification includes all directories that contain
source or input files required by the build. In the example, the only source file is the makefile, which
is in the same directory where eMake is invoked. Because the default emake root is the current
directory, --emake-root=<path> is not needed.

% emake --emake-cm=linuxbuilder

Starting build: 1
building aa
building bb
building cc
Finished build: 1 Duration: 0:11(m.s) Cluster availability: 100%

3-24 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 3: eMake Basics

ElectricAccelerator 10.1 Electric Make User Guide3-25

Cluster availability: 100% indicates the cluster was fully available for the build duration. For more
information on cluster sharing and the cluster availability metric, see Annotation on page 8-1.

ElectricAccelerator Sample Build

Chapter 4: Additional eMake Settings and
Features

The following topics discuss additional eMake settings and features.

Topics:

l Using Build Classes

l Using Priority Pools

l Using the Proxy Command

l Using Subbuilds

l BuildingMultiple Targets Simultaneously

l Using eMake Variables

l Using the Ninja Build System

l Specifying Pragmas in an Addendum File

l Terminating a Build

l Shutting Down Cluster Hosts During Builds

Using Build Classes
ElectricAccelerator provides features to organize builds in even the most complex environments. You do
not need to create a build class—by default, a simple organizational structure is set up for you. But, if
you have diverse product lines, or multiple product releases, you should set up and use build classes.

A build class is a flexible, user-defined classification for a designated group of builds. Using build classes
is optional, but if you do not assign a build class, the Cluster Manager assigns the build to a default build
class. Build classes help you organize the buildmanagement process.

Depending on your company requirements, you might use build classes to organize build groups by
version or release, product type, development stage, or platform. You can decide how to use build
classes to organize your builds into sets.

Classes have default priorities and boost values. Boost values have a range of -10 to +10 (default 0),
where a higher value means that builds in that class can use available agents ahead of builds with the
same priority but less boost.

Tag Definitions

Each build in a class is identified by a unique string called a tag. The build tag definition is a template
that expands when a new build starts. The tag is user-defined and generally consists of a generic build
name appendedwith build-specific data constructed from the following variables:

Tag Description

GC Globally unique number (Global Counter)

LC Number unique to the build class (Local Counter; the build serial number within the class)

BUILD_
CLASS User-defined build class name

BUILD_
CLASS_ID System-generated number that the Cluster Manager uses to identify each class

USER_NAME Name of the user who invoked eMake

MACHINE_
NAME Name of the machine where eMake was invoked

USER_
BUILD_
LABEL

Label specified at the eMake command line. For example, --emake-build-label=my_build

BUILD_OS_
ID

Operating system ID under which the build was invoked. (0 = undefined, 1 = Windows, 2 =
Solaris, and 3 = Linux)

4-2 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 4: Additional eMake Settings and Features

ElectricAccelerator 10.1 Electric Make User Guide4-3

Tag Description

DATE Build start date and time using variables Y, y, m d, H, M, S. Ffor example, 2005-01-18
10:14:32 is 20050118101432

.Y Year at build start time (YYYY)

y Year at build start time (YY)

m Sequential month number at build start time (1-12)

d Sequential day of month at build start time (1-31)

H Hour of the day at build start time (0-23)

M Minutes at build start time (0-59)

S Seconds at build start time (0-60)

a Abbreviated day of week at build start time (WED)

A Full name of the day of week at build start time (such as Wednesday)

b Abbreviated month name at build start time (such as AUG)

B Full month name at build start time (such as August)

c Build start date and time using the variables A, B, d, H, M, S, Y. For example, 2005-
01-18 10:14:32 is 18/01/05 10:14:32.

Together, the build name and variables are referred to as the tag definition. Variable names are case-
sensitive.

For example, the tag definition %BUILD_CLASS%_%LC%_%DATE% for a build class named QA_BUILD creates
the following build tag:

QA_BUILD_1234_20060123185958

When assigning build class tag definitions, choose from the list of tag variables above.

Build Class Examples

Suppose your company has twomajor product lines: SuperSoftware andMegaSoftware.
SuperSoftware runs on Windows and Solaris platforms. MegaSoftware runs on Windows only. You could
begin by setting up three classes that include the product name, the platform, and the current version
number for each product:

l You could name the first class SuperSoftware_Win_v.2.1. The tag definition for this class would
be:

%BUILD_CLASS%_%LC%_%a%_%b%_%d%_%H%_%M%_%S%

Using Build Classes

The result would be a series of builds each named, or tagged, with the product name, the
platform, the version number, a serial number (unique to the class), and the date for each build.
For example:

SuperSoftware_Win_v.2.1_12345_WED_AUG_22_14_37_12

l The second class could be named SuperSoftware_Sol_v.1.7. The tag definition can be the same
as in our first example, because it would be distinguished by the second build class name. Build
tags in the second class would look like:

SuperSoftware_Sol_v.1.7_12356_WED_AUG_23_11_14_39

l The third class could be namedMegaSoftware_Win_v.1.3. For this product, the tag definition
would be similar to the previous examples but also could include the name of the user who
started the build, because the MegaSoftware team is spread over several different locations. For
this class, the tag definition might look like:

%BUILD_CLASS%_%LC%_%USER_NAME%_%DATE%

l As in the first two examples, the result would be a sequentially-numbered series of builds with
the product name, platform, version number, name of the user who ran the build, and date of
each build assigned through the build class:

MegaSoftware_Win_v.1.3_12356_JSMITH_20050411100838

Additional classes could be created when the development of SuperSoftware or MegaSoftware entered
a new phase, such as a new platform release or a new version release. In this way, the builds for each
stage of development can be segmented into logical sets for a more manageable and organized
workflow.

Creating a New Build Class Using the Cluster Manager

1. Open a web browser and go to the Cluster Manager host.

2. Click the Build > Build Classes tab.

The Build Classes page displays.

3. Click theNew Build Class link.

A blank class details screen appears.

4. Click the Show Help link on the right side of the screen to see field descriptions ,and then fill in
the fields accordingly.

5. In the Tag Definition text box, enter the build class tag definition.

To avoid errors, follow standard naming conventions for tag definitions by using numbers,
letters, and underscores only without leading or trailing white spaces. Use underscores (_)
instead of spaces. Use a percent sign on either side of any variables used. (For example, %DATE%).

6. Continue filling in the fields.

See the online help for more information if needed.

7. ClickOK.

4-4 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 4: Additional eMake Settings and Features

ElectricAccelerator 10.1 Electric Make User Guide4-5

Note: You can add comments to the build class. To do so, click the Build > Build Class tab, then
select a build class name. For details about on adding or editing build class comments, adding or editing
class properties, or deleting a build class, see the online help.

Using an Existing Build Class

Assign the build’s class name through the --emake-class=<exact build class name> eMake
command-line option when the build is invoked. If you do not assign a build class, the Cluster Manager
assigns the build to the default class. If the class name typed on the eMake command line does not
match a class name already in the Cluster Manager, eMake exits.

Makefile Macros

eMake automatically creates makefile macros (ECLOUD_BUILD_CLASS and ECLOUD_BUILD_TAG) from
Cluster Manager build class data. These macros can be used to place generated values in your
makefiles. For details, see the “Using eMake Variables on page 4-12” section.

Using Priority Pools
Priority Pools allow you to group resources into pools that can be prioritized differently among groups.
Each pool’s resources can potentially be used by any build, but builds originating from a pool’s “owner”
always have first priority to use that pool’s resources. Using Priority Pools allows you tomanage
resource allocation for builds more efficiently.

Follow this procedure:

1. Enable Priority Pools through either the Cluster Manager or cmtool.

l Using the Cluster Manager, go toAdministration > Server Settings and select
Priority Pools.

l Using cmtool, run this command:

cmtool modifyServer --resourceManagerType prioritypool

3. Define your pool using the Agents > Resources page. A pool resource uses this form: __pool_
xxx, for example, __pool_a.

Note: When you define a pool on the Resources page, you must include “__pool_”. When
you include a pool in the --emake-resource option, you can omit __pool_ from the option.

4. Go toAgent > Agent Policies and set agent allocation policy to shared.

5. Launch eMake with the following option:

--emake-resource="<pool resource>:<static resource>"

Information about values for --emake-resource=:

l When adding a pool resource to the option, you can omit __pool_ from __pool_xxx: and
use xxx: only.

l A pool name (before the :) is not required. Not defining the pool namemeans the build
will not use a pool resource.

Using Priority Pools

l A resource name (after the :) is not required. Omitting resource name causes the build to
attempt to use any unused resources that it is allowed to use.

When attempting to use a pool resource as a normal resource, there is a period (default is 60 seconds)
during which, before your build starts, a build from the pool resource’s owner can take back the
resource.

Use Case 1: High Performance Builds

You have two pools of resources, one for high performance builds and one for low performance builds.
You want to ensure that high performance builds can always use the more powerful 8-core machines
and that low performance builds use the 4-core machines. You also want to allow high performance
builds to use the 4-core machines when low performance builds are not running. And you want to allow
low performance builds to use the 8-core machines when high performance builds are not running. You
also have two special software packages, so you define a static resource for each.

Pool makeup:

l Pool a—High performance build resources, five 8-core machines, defined on the Resources page
as __pool_a

The machines are named h_1, h_2, h_3, s_1, and s_2.

l Pool b—Low performance build resources, five 4-core machines, defined on the Resources page
as __pool_b

The machines are named h_4,m_1,m_2, s_3, and s_4.

l Two static resources are also defined on the Resources page:

l s—This resource includes these machines (which have a specific software package): s_1, s_
2, s_3, and s_4 (from using host mask s*)

l m—This resource includes these machines (which have a specific software package):m_1
andm_2 (from using host maskm_1,m_2)

Launching eMake with-
-emake-resource=

means that the build uses

"a:" Pool “a” and any unused resources

"a:s" Static resource “s” (four machines). If a low performance build is
running, only machines “s_1” and “s_2” (two machines) are used.

"b:m" Static resource “m” only

4-6 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 4: Additional eMake Settings and Features

ElectricAccelerator 10.1 Electric Make User Guide4-7

"a:m" Static resource “m” only. If a low performance build is running, no
machines are available and the build must wait.

":s"
or
"s"

Static resource “s” if low and high performance builds are not
running. If a low performance build is running, then only machines “s_
1” and “s_2” are used. If a high performance build is running, then
only machines “s_3” and “s_4” are used. If low and high performance
builds are running, no machines are available and the build must wait.

":"
or
""

Any unused resources (this is considered a common build)

Use Case 2: Multiple Departments

There are two departments and each department has its own pool of machines. They want to
contribute their machines toward a common pool so each department can use the other department’s
machines while still ensuring that their own machines are available for their department’s builds. One
department owns 20 machines and the other department owns 10 machines. Each department also
owns a small number of 64-bit machines. IT contributes an additional four machines that any
department can use.

Pool makeup:

l Pool Depta—Department A’s resources, 20 machines, defined on the Resources page as __pool_
Depta

The machines are named a_01 through a_16 and a_17_64 through a_20_64 (these last four
machines are 64-bit).

l Pool Deptb—Department B’s resources, 10 machines, defined on the Resources page as __pool_
Deptb

The machines are named b_01 through b_08 and b_09_64 and b_10_64 (these last two hosts
are 64-bit).

l Static resource 64bit—This resource includes these machines: a_17_64 through a_20_64 and
b_09_64 and b_10_64 (from using host mask *_64).

l General buildmachines—IT department-supplied general buildmachines, four machines

Launching eMake with-
-emake-resource=

means that the build uses

"Deptb:" Pool “Deptb” and any unused resources, using general build machines
first and then Deptartment A’s machines if that department is not
running a build.

Using Priority Pools

"Depta:" Pool “Depta” and any unused resources, using general build machines
first and then Deptartment B’s machines if that department is not
running a build.

"Depta:64bit" Static resource “64bit” (six machines). If Department B is running a
build, only “a_17_64” through “a_20_64” (four machines) are used.

":"
or
""

Any unused resource, using general build machines first and then
Deptartment A’s and Deptartment B’s machines if those departments
are not running builds (this is considered a common build).

Using the Proxy Command
Normally, eMake sends commands to the agents for execution. In some cases, however, it might not
be desirable or possible to execute a particular command on the agents.

Proxy Command Location

During installation, the proxyCmd binary is installed on every host:

l Linux: <install_dir>/i686_Linux/bin/proxyCmdwhere <install_dir> is /opt/ecloud by
default

l Solaris: <install_dir>/sun4u_SunOS/bin/proxyCmdwhere <install_dir> is /opt/ecloud by
default

l Windows: <install_dir>\i686_win32\bin\proxyCmd.exewhere <install_dir> is C:\ECloud
by default

When invoked by the Agent, it is: proxyCmd <program> <arg1> ...

ElectricAccelerator executes <program> on the host build system and proxies the result back to the
Agent so it can continue remote execution.

Determine If You Can Use the Proxy Command

You can use the “proxy command” feature to run a command locally on the eMake machine if both of
the following are true:

l You have a command that cannot run on the Agent, either because it returns incorrect results
or because it is not available.

l The command in question does not read or write build sources or output—it only makes external
[outside of the build] read-only queries.

The second item is particularly important because the command runs on the host buildmachine,
outside of the virtualized file system. Because ElectricAccelerator cannot track the activity of this
process, the dependency and conflict resolution mechanisms that prevent build output corruption are
circumvented. It is also important that the process is read-only [that the commandmake no changes
to whatever system it is querying] because in parallel builds with conflicts, eMake could rerun the job
producing unintended side effects.

4-8 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 4: Additional eMake Settings and Features

ElectricAccelerator 10.1 Electric Make User Guide4-9

Note: For these reasons, it is important to use the “proxy command” only when necessary. Where
possible, try to ensure cluster hosts have the same tools installed as the build system.

Proxy Command Example 1

The simplest safe use of the proxyCmd is a source control system query. For example, a particular build
step queries the source control system for branch identification using a tool called getbranch that it
embeds in a version string:

foo.o:
gcc -c -DBRANCH=`getbranch` foo.c

It is preferable to avoid installing and configuring a full deployment of the source control system on the
host when only this simple query command is needed.

In the following example, the proxyCmd provides an efficient solution. By replacing getbranchwith
proxyCmd getbranch, you avoid having to install the getbranch tool and its associated components on
the host:

foo.o:
gcc -c -DBRANCH=`proxyCmd getbranch` foo.c

Proxy Command Example 2

A less invasive implementation that does not require makefile modifications and allows compatibility
with non-ElectricAccelerator builds is to create a link on all agent machines using the name of the tool
[for example, 'getbranch'] found on the eMake host to proxyCmd. For Windows operating systems that
do not support symlinks, use the copy command.When invoked under a different name, proxyCmd
knows to treat the linked name as the <program> to execute:

ln -s /opt/ecloud/i686_Linux/bin/proxyCmd /usr/bin/getbranch

Using Subbuilds
The eMake subbuild feature is designed to help speed up component builds through intelligent build
avoidance. Currently, the subbuild feature's scope includes the following use case:

Makefile:

.PHONY: a b
all: a b

@echo all
a b:

$(MAKE) -C $@

a/Makefile

all: a.lib

@echo a

a.lib:
@touch $@

b/Makefile

Using Subbuilds

all: ../a/a.lib
@echo b

Explanation: If something from ‘a’ changes, and you are building from ‘b’, the only way to pick up
the new a.lib is to build from the top level directory. With subbuilds, you know b’s dependencies so
you can build those dependencies directly without having to build everything from the top level
directory.

The subbuild database must be built beforehand tomake the dependency list available without
having to parse any Makefiles that are not in the current directory.

The following sections describe how to use subbuilds. Refer to Subbuild Limitations on page 4-10 for
additional information about subbuild limitations.

Subbuild Database Generation
The following command runs your build as normal and also generates a subbuild database with the
name emake.subbuild.db.

emake --emake-gen-subbuild-db=1 --emake-root=<path> --emake-subbuild-
db=emake.subbuild.db

Where <path> is the eMake root directory setting.

--emake-root is required for cluster builds.

--emake-subbuild-db is optional. If it is missing, the default emake.subbuild.db name is used.

Run a Build Using Subbuild
The following command runs a build with subbuild information:

emake --emake-subbuild-db=emake.subbuild.db

Specify --emake-subbuild-db=<file> to run a build with subbuild information. When you invoke
eMake with the --emake-subbuild-db option, it uses the dependencies extracted from the makefile
and the subbuild database to determine which build components are prerequisites of the desired
current make, then rebuilds those components before proceeding as normal.

When you specify --emake-subbuild-db=<file>, do not specify --emake-gen-subbuild-db,
otherwise eMake regenerates the database.

Subbuild Limitations
l There is no incremental building of the database. Each time you change something in a makefile
in your build, you must rebuild the database by doing a full build.

l The database is not currently optimized for size. This might result in an extremely large database
for very large builds.

l Subbuilds do not provide additional gains in non-recursive make builds.

l Because of the manner in which subbuilds are currently scheduled, there is interleaving output
for the “Entering directory...” and “Leaving directory...” messages.

For example: If a subbuild database was built for the following build:

4-10 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 4: Additional eMake Settings and Features

ElectricAccelerator 10.1 Electric Make User Guide4-11
Makefile:

.PHONY: a b
all: a b
a b:

$(MAKE) -C $@

a/Makefile

all: a.lib
a.lib:

echo aaa > $@

b/Makefile:

all: ../a/a.lib

echo b

When you proceed to build just ‘b’ (maybe with “emake -C b”) and a/a.lib is missing, you receive
“entering directory a” after “entering directory b”, even though ‘a’ is supposed to be built before ‘b’.

make: Entering directory 'b'
make -C a
make[1]: Entering directory 'a'
echo aaa > a.lib
make[1]: Leaving directory 'a'
echo b
b
make: Leaving directory 'b'

Information Applying to Local Builds Only

l Rules to build a sub-directory’s output files must not overlap.
For example: The rule to build sub1/foo.omust appear in sub1/Makefile only and not
sub2/Makefile. Default suffix rules can cause eMake to find a way to build sub1/foo.owhile
trying to build sub2. In this situation, adding “.SUFFIXES:” to sub2/Makefile can resolve the
issue.

l Subbuilds require that the build be componentized to some degree.

l Subbuilds require that you have practiced “good hygiene” in your build tree—there must be
explicit dependencies mentioned in the component makefiles.

For example: If a build has two components, foo and bar, where foo produces a library foo.dll
and bar uses that library, the rule might be written to produce bar.exe such as this in
bar/Makefile:

bar.exe: $(BAR_OBJS)
link $(BAR_OBJS) -l $(OUTDIR)/foo/foo.dll

For subbuilds to work (in local mode), it must be modified as in the following:

bar.exe: $(BAR_OBJS) $(OUTDIR)/foo/foo.dll
link $(BAR_OBJS) -l $(OUTDIR)/foo/foo.dll

Note that it is explicitly stated that bar.exe requires foo.dll. Also note that it is NOT required to
have a rule to build foo.dll in bar/Makefile.

Using Subbuilds

There cannot be ANY rule at all to build $(OUTDIR)/foo/foo.dll in bar/Makefile, explicit or
implicit, otherwise you will get the wrong information for building foo/foo.dll in the subbuilds
database. The subbuilds database currently allows updates to existing entries while building the
database.

Building Multiple Targets Simultaneously
The #pragma multi directive lets you use one rule that creates multiple outputs simultaneously. You
can use this directive when a pattern rule might not be suitable. This directive lets you create non-
pattern rules that have multiple outputs. You can use this directive only with gmake and NMAKE
emulation.

#pragma multi causes the targets of the immediately-following rule or dependency specification to be
treated as updated together if they are updated. For example, the following produces one rule and one
rule job, rather than three of each:

#pragma multi
a b c: ; @echo building a b and c

The #pragma multi directive has the following restrictions:

l If you apply #pragma multi to a target list, then you must apply it to all overlapping target lists.
Those lists must specify the same set of targets (although they might do so in a different order).

l Target- and pattern-specific variable assignments for the targets of a #pragma multi rule must
agree. Otherwise, eMake might choose the assignments for just one target or combine them all.

l You cannot apply #pragma multi to static patterns, double-colon rules, or pattern targets that
follow non-pattern targets on the same line.

l If you apply #pragma multi to a non-static pattern, a warning appears.

l A #pragma multi rule with commandsmight not override (or be overridden by) other
commands for the same targets.

l A #pragma multi dependency specification must correspond to a #pragma multi rule with
commands having the same set of targets. Otherwise, eMake will fail with errors. Implicit rules
are not searched for these missing commands.

l $@ has the samemeaning as it does in multiple-target patterns: the target that first caused the
rule to be needed.

l Setting the --emake-disable-pragma=multi or --emake-disable-pragma=all options disables
#pragma multi.

Using eMake Variables
eMake automatically defines several variables that can be used in makefiles to access Cluster Manager-
specific values during a build. For example, you could insert the build tag into your compilation step by
typing:

main.o:main.cpp
gcc -DBUILD_TAG="$(ECLOUD_BUILD_TAG)" -o main.o main.cpp

4-12 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 4: Additional eMake Settings and Features

ElectricAccelerator 10.1 Electric Make User Guide4-13

The variables eMake automatically creates are described in the following table.

Variable Definition

ECLOUD_BUILD_CLASS The build class as specified on the command line with --
emake-class. For more information, see Using Build
Classes on page 4-2.

ECLOUD_BUILD_ID A globally unique build ID. This value is guaranteed unique
across all builds in all classes for this Cluster Manager.

ECLOUD_BUILD_TAG The tag as configured in Cluster Manager for this build
class. For more information, see Using Build Classes on
page 4-2.

ECLOUD_BUILD_COUNTER A unique ID for this build within the current build class.
This value is guaranteed to be unique across all builds in
the same class, but not across builds in different classes.

ECLOUD_BUILD_TYPE Allows you to discover the build type: local for a local
build; or remote for a cluster build.

Using the Ninja Build System
To allow Android version 8 (“O”) and Chromium builds, eMake supports the Ninja build system. eMake
can emulate Ninja in addition to the standard Accelerator make-based builds such as gmake and
NMAKE. eMake supports Ninja version 1.7.2 and newer.

eMake with Ninja emulation supports schedule optimization, JobCache, parse avoidance, Ledger,
eDepend (autodep), and pragmas. Dependency optimization is not supported. You can use Ninja and
gmake-based builds in a single eMake invocation.

eMake with Ninja emulation supports pragmas. Using pragmas for builds with the eMake Ninja
emulation mode enabled (--emake-emulation=ninja) requires an addendum file that contains the
pragmas for Ninja targets. You specify the file by using the --emake-pragmafile option. Pragma
addendum files are optional with any other emulation mode. For more information about pragma
addendum files, see the “Specifying Pragmas in an Addendum File on page 4-13 section in the
“Additional eMake Settings and Features” chapter.

Ninja emulation works only with builds using Agents. eMake does not support Ninja’s “debug” or “tool”
options.

To enable Ninja emulation, use the following option to set the emulation type:

--emake-emulation=ninja

Specifying Pragmas in an Addendum File
A pragma addendum file is a simple text file that lets you easily add pragmas (using #pragma) to a build
without modifyingmakefiles or other files, such as when you do not “own” those files. A pragma

Using the Ninja Build System

addendum file uses a subset of make syntax to declare pragmas on targets within the build. This syntax
lets you use existingmakefiles or other files unmodified while avoiding inconvenient makefile syntax
such as tabs versus spaces, dollar-sign escapes, and eval.

The pragma addendum file format is similar to the make format. You must specify the pragmas and
then the target to which they apply. All text content is treated as literal strings.

Using pragmas for builds with the eMake Ninja emulation mode enabled (--emake-emulation=ninja)
requires a pragma addendum file. Pragma addendum files are optional with any other emulation mode.

Restrictions
l emake allows only comments, #pragma declarations, and target names to the left of colons.
Commands and prereqs are not allowed.

l You cannot use make-instance-level pragmas such as allserial and #pragma jobcache parse.

l You cannot use variables. Instead, you must use path names that are absolute or relative to the
current working directory (instead of using $(...) variable expansions).

Supported Pragmas
The supported pragmas are:

Pragma Description

jobcache
Enables the JobCache feature, which can substantially reduce compilation time.
jobcache parse is not supported. For details, see the “ Job Caching on page 6-3
section in the “Performance Optimization” chapter.

noautodep Disables the eDepend (autodep) feature. For details, see the “ElectricAccelerator
eDepend on page 7-2 section in the “Dependency Management” chapter.

readdirconflicts

Enables directory-read conflicts on a per-job basis. You can apply it to targets or rules.
This pragma incurs less overhead than the --emake-readdir-conflicts=1 eMake
option (which enables directory-read conflicts for an entire build). For details about
directory-read conflicts, see the “Conflicts and Conflict Detection on page 7-13”
section in the “Dependency Management” chapter.

runlocal
Runs jobs locally on the host build machine instead of on an Agent in the cluster. For
details, see the “Running a Local Job on the Make Machine on page 6-25 section in the
“Performance Optimization” chapter.

runlocal -
repopulate
<dir1> [... -
repopulate
<dirN>]

Tells eMake where to find files created by jobs instead of looking in the current
working directory by default. For details, see the “Running a Local Job on the Make
Machine on page 6-25 section in the “Performance Optimization” chapter.

runlocal sticky
Causes all jobs after a certain point in the build to run locally. For details, see the “
Running a Local Job on the Make Machine on page 6-25 section in the “Performance
Optimization” chapter.

4-14 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 4: Additional eMake Settings and Features

ElectricAccelerator 10.1 Electric Make User Guide4-15

Examples
Following is an example pragma addendum file:

system.img targets are runlocal because they do lots of I/O.
#
#pragma runlocal
out/target/product/generic/system.img:

#pragma runlocal
out/target/product/generic/obj/PACKAGING/systemimage_intermediates/system.img:

#pragma jobcache javadoc
out/target/common/docs/api-stubs-timestamp:

Following is an example pragma addendum file for Android 7.0.0:

#pragma runlocal
out/target/product/generic/obj/PACKAGING/systemimage_intermediates/system.img:

#pragma runlocal
out/target/product/generic/system.img:

#pragma jobcache kati
out/build-aosp_arm.ninja:

#pragma noautodep ./out/build_number.txt
out/target/common/docs/api-stubs-timestamp:

#pragma noautodep ./out/build_number.txt
out/target/common/docs/system-api-stubs-timestamp:

#pragma noautodep ./out/build_number.txt
out/target/common/docs/test-api-stubs-timestamp:

#pragma noautodep ./out/build_number.txt
out/target/product/generic/obj/ETC/system_build_prop_intermediates/build.prop:

#pragma noautodep ./out/build_number.txt
out/target/common/docs/apache-http-stubs-gen-timestamp:

#pragma noautodep ./out/build_number.txt
out/host/common/obj/JAVA_LIBRARIES/cts-tradefed_
intermediates/com/android/compatibility/SuiteInfo.java:

This example sets the runlocal pragma on system.img This pragma lets you avoid the heavy I/O
required to run it on the remote Agent. The jobcache pragma enables kati job caching for build-aosp_
arm.ninja. The noautodep pragmas prevent unnecessary rebuilds just because the build number
changed.

Specifying the File to Use
You use the --emake-pragmafile option to specify the pragma addendum file to use. Following is an
example eMake command line that uses a pragma addendum file:

Specifying Pragmas in an Addendum File

emake --emake-emulation=ninja --emake-pragmafile=my_ninja_settings.pragma -f
mybuild.ninja

Stopping a Build
You can stop an in-progress build by using one of these methods:

l Press Ctrl-C from the terminal where you invoked eMake

l Use ElectricAccelerator’s web interface

l Use cmtool—see the cmtool Reference Guide at http://docs.electric-cloud.com/accelerator_
doc/AcceleratorIndex.html.

Cluster Manager terminates builds that seem to be hung. If the Cluster Manager does not receive a
request from eMake for 60 seconds, it considers the build to be hung and terminates it.

Using the Cluster Manager to Stop a Build

1. Open the web interface by typing the Cluster Manager host name in the location bar of your
browser window.

2. Click Builds.

3. Click Stop Build in the Action column on the row exhibiting your build ID and Name.

Using cmtool to Stop a Build

Note: This is an advanced option, which assumes you are already familiar with using command-line
tools.

1. Request a list of running builds. The syntax is:

% cmtool --cm <clustermanager:port> getBuilds --filter <field name>=<value>

For example, if linuxbuilder is the Cluster Manager host name, type:

% cmtool --cm linuxbuilder getBuilds --filter "result !=-1"

A list of running builds will display accompanied by a number of attributes for each build—for
example: Build ID, machine name, build class, owner, build start time, and so on. The Build ID is
used to identify a build for termination. Also you can obtain additional information and/or include
comments about the build. For example, to sort builds by start time and request only the first
ten builds display, enter:

% cmtool --cm linuxbuilder getBuilds --order Id --filter=”ID<11”

To get failed builds:

% cmtool --cm linuxbuilder getBuilds --order "start_time desc"--filter
"result !=0"

2. After you determine which build you need to terminate, use this syntax to end the build:

% cmtool --cm <clustermanager> stopBuild <buildId>

For example, to end build 4458, you would type:

% cmtool --cm linuxbuilder stopBuild 4458

4-16 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 4: Additional eMake Settings and Features

http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html
http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html

ElectricAccelerator 10.1 Electric Make User Guide4-17

Shutting Down Cluster Hosts During Builds
You can remove agent machines from the cluster during a build without requiring downtime or
disabling Agents in the Cluster Manager, with the following advisories:

l If possible, shut down Agents before rebooting agent machines. Not shutting down Agents
before a reboot might cause commands to fail unexpectedly, which couldmanifest in spurious
build failures.

l After rebooting, agent machines that automatically start Agents will connect to the Cluster
Manager andwill be assigned builds and so on.

Shutting Down Cluster Hosts During Builds

Chapter 5: Make Compatibility
ElectricAccelerator is designed to be completely compatible with existing Make variants it emulates.
There are, however, some differences in behavior that might require changes to makefiles or scripts
included in the build.

Almost all GNU Make and NMAKE options are valid for use with ElectricAccelerator. However,
ElectricAccelerator does not support some GNU Make and NMAKE options.

The following topics documents those differences andwhat actions to take to ensure your build is
compatible with ElectricAccelerator.

Topics:

l Unsupported GNU Make Options and Features

l Unsupported NMAKE Options

l Commands that Read from the Console

l Transactional CommandOutput

l Stubbed Submake Output

l Hidden Targets

l Wildcard Sort Order

l Delayed Existence Checks

l Multiple Remakes (GNU Make only)

l NMAKE Inline File Locations (Windows only)

l How eMake Processes MAKEFLAGS

Unsupported GNU Make Options and Features
Unsupported GNU Make Options

Option eMake response if specified

-d (debug) Error message

-j (run parallel) Ignored

-l (load limit) Ignored

-o (old file) Error message

-p (print database) Error message

-q (question) Error message

-t (touch) Error message

GNU Make 3.81 Support
eMake does not support the following GNU Make 3.81 features:

l Though $(eval) is allowed in rule bodies, any variables created by the $(eval) exist only in the
scope of the rule being processed, not at the global scope as in GNU Make. For example, the
following is not supported:

all:
$(eval foo: bar)

l Using $* for an archive member target

GNU Make 3.82 Support
GNU Make 3.82 emulation supports the following GNU Make 3.82 features:

l Multi-line variable definition types

l Behavior in which pattern rule searches prefer the most-specific matching pattern, rather than
the first matching pattern. For example, for a target {{foo.o}} and patterns {{%.o}} and
{{f%.o}}, in that order, gmake 3.81 uses the {{%.o}} pattern, because it is the first match,
but gmake 3.82 uses the {{f%.o}} pattern, because it is a more specific match

Other GNU Make 3.82 features are not supported.

GNU Make 4.0 and 4.1 Support
GNU Make 4.0 and 4.1 emulation supports the GNU Make 4.0 shell assignment feature, where
VAR!=<command> is equivalent to VAR:=$(<shell command>). Other GNU Make 4.0 features are not
supported.

5-2 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 5: Make Compatibility

ElectricAccelerator 10.1 Electric Make User Guide5-3

GNU Make 4.2 Support
GNU Make 4.2 emulation supports the GNU Make 4.2 $(.SHELLSTATUS) variable. This variable is set to
the exit status of the last != or $(shell ...) function invoked in this instance of Make. The value is 0 if
successful or > 0 if not successful. The value is unset if the != or $(shell ...) function was not
invoked. Other GNU Make 4.2 features are not supported.

Unsupported NMAKE Options
l /C (Suppresses default output, including nonfatal NMAKE errors or warnings, timestamps, and
NMAKE copyright message. Suppresses warnings issued by /K)

l /T (Updates timestamps of command-line targets (or first makefile target) and executes
preprocessing commands, but does not run the build)

l /NOLOGO (Suppresses the NMAKE copyright message)

l /ERRORREPORT (If nmake.exe fails at runtime, sends information to Microsoft about these
internal errors)

Commands that Read from the Console
When GNU Make or NMAKE invokes a makefile target command, that process inherits the standard I/O
streams of the Make process. It is then possible to invoke commands that expect input during a build,
either from the terminal or passed into the Make standard input stream. For example, a makefile such
as:

all:
@cat

could be invoked like this:

% echo hello | gmake
hello

More commonly, a command in a makefile might prompt the user for some input, particularly if the
command encounters an error or warning condition:

all:
@rm -i destroy

% gmake
rm: remove regular file `destroy'? y

Neither of these constructs is generally recommended because systems that require runtime user
input are tedious to invoke and extremely difficult to automate.

Because Accelerator runs commands on cluster hosts where processes do not inherit the I/O streams
and console of the parent eMake, makefiles (such as the examples above) with commands expecting
interactive input are not supported.

In the majority of cases, tools that prompt for console input contain options to disable interactive
prompting and proceed automatically. For example, invoking “rm” without the “i” enables this

Unsupported NMAKE Options

behavior. For those that do not, explicitly feeding expected input (either from a file or directly by shell
redirection or piping) will suffice. For example:

all:
echo y | rm -i destroy

Finally, tools such as Expect (see https://www.nist.gov/services-resources/software/expect) that
automate an interactive session can be used for commands that insist on reading from a console.

Transactional Command Output
eMake simulates a serial GNU Make or NMAKE build. Though eMake runsmany commands in parallel,
the command output (including text written to standard streams and changes to the file system, such
as creating or updating files) appears serially in the original order without overlapping. This feature is
called transactional output (or “serial order execution”) and is unique to Accelerator among parallel
build systems. This feature ensures standard output streams and underlying file systems always reflect
a consistent build execution state, regardless of how many jobs eMake is actually running concurrently
on the cluster.

Transactional output is achieved by buffering the results of every command until the output from all
preceding commands is written. Bufferingmeans that while the output contents on the standard
streamsmatches GNU Make or NMAKE exactly, the timing of its appearance might be a little
unexpected. For example:

l “Bursty” output – One of the first things you notice when running a build with Accelerator is
that it appears to proceed in bursts, with many jobs finishing in quick succession followed by
pauses. This type of output is normal during a highly parallel build because many later jobs might
have completed and output is ready to be written as soon as longer, earlier jobs complete. The
system remains busy, continuously running jobs throughout the build duration, even if the
output appears to have pausedmomentarily.

l Output follows job completion – GNU Make and NMAKE print commands they are executing
before they are invoked. Because eMake is runningmany commands in parallel and buffering
results to ensure transactional output, command-line text appears with the output from the
command after the command has completed. For example, the last command printed on
standard output is the job that just completed, not the one currently running.

l Batch output – As a way to provide feedback to the user during a long-running execution,
some commandsmight write to standard output continuously during their execution. Typically,
these commandsmight print a series of ellipses or hash marks to indicate progress or might
write status messages to standard error as they run. More commonly, a jobmight have several
long-running commands separated with echo statements to report on progress during build
execution:

For example, consider a rule that uses rsync to deploy output:

install:
@echo "Copying output into destination"
rsync -vr $(OUTPUT) $(DESTINATION)
@echo "done"

5-4 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 5: Make Compatibility

https://www.nist.gov/services-resources/software/expect

ElectricAccelerator 10.1 Electric Make User Guide5-5

With GNU Make, users first see the Copying output echo, then the state information from rsync as it
builds the file list, copies files, and finally, they see the done echo as the job completes.

With eMake, all output from this job step appears instantaneously in one burst when the job completes.
By the time any output from echo or rsync is visible, the entire job has completed.

Stubbed Submake Output
Recursive Makes (also called submakes because they are invoked by a parent or top-levelMake
instance) are often used to partition a build into smaller modules. While submakes simplify the build
system by allowing individual components to be built as autonomous units, they can introduce new
problems because they fragment the dependency tree. Because the top-level Make does not coordinate
with the submake—it is just another command—it is unable to track targets across Make instance
boundaries. For a discussion of submake problems, see “Recursive Make Considered Harmful” by Peter
Miller (http://aegis.sourceforge.net/auug97.pdf)

Submakes are particularly problematic for parallel builds because a build composed of separate Make
instances is unable to control target serialization and concurrency between them. For example,
consider a build divided into two phases: a libs submake that creates shared libraries followed by apps
that builds executables that link against those libraries. A typical top-level makefile that controls this
type of buildmight look like this:

all: makelibs makeapps
makelibs:

$(MAKE) -C libs
makeapps:

$(MAKE) -C apps

This type of makefile works fine for a serializedmake, but running in parallel it can quickly become
trouble:

l If makelibs and makeapps run concurrently (as the makefile “all” rule implies), link steps in the
appsMake instance might fail if they prematurely attempt to read libs generated libraries.
Worse, they might link against existing, out-of-date library copies, producing incorrect output
without error. This is a failure to correctly serialize dependent targets.

l Alternatively, if apps is forced to wait until libs completes, even apps targets that do not depend
on libs (for example, all the compilation steps, which are likely the bulk of the build) are
serialized unnecessarily. This is a failure to maximize concurrency.

Also important to note: Submakes are often spawned indirectly from a script instead of by makefile
commands,

makelibs:
'do-libs' is a script that will invoke 'make'
do-libs

which can make it difficult for a Make system to identify submake invocations, let alone attempt to
ensure their correct, concurrent execution.

These problems are exacerbated with distributed (cluster) parallel builds because each make invocation
is running on a remote Agent.

Stubbed Submake Output

http://aegis.sourceforge.net/auug97.pdf

Correct, highly concurrent parallel builds require a single, global dependency tree. Short of re-
architecting a build with submakes into a single Make instance, this is very difficult to achieve with
existing Make tools.

An ideal solution to parallelizing submakes has the following properties:

l maximizes concurrency, even across make instances

l serializes jobs that depend on output from other jobs

l minimizes changes to the existing system (in particular, does not require eliminating submakes
or prohibit their invocation from scripts)

Submake Stubs
The parallel submake problem is solved by introducing submake stubs. eMake dispatches all commands,
regardless of tool (compiler, packager, submake, script, and so on) to cluster Agents. After the Agent
executes a command, it sends the results (output to standard streams and exit status) back to eMake,
which then sends the next job command.

If the command run by the Agent invokes eMake (either directly by the expanded $(MAKE) variable or
indirectly through a script that calls emake), a new top-level build is not started. Instead, an eMake
process started on the Agent enters stubmode and it simply records details of its invocation (current
working directory, command-line, environment, and so on) and immediately exits with status 0
(success) without writing output or reading any makefiles. The Agent then passes invocation details
recorded by the stub back to the main eMake process on the host buildmachine, which starts a new
Make instance and integrates its targets (which run in parallel on the cluster just like any other job)
into the global dependency tree. Commands that follow a submake invocation are logically in a separate
job serialized after the last job in the submake.

The following example illustrates this process:

...

Makelibs:
@echo "start libs"
@$(MAKE) -C libs
@echo "finish libs"

This example is diagrammed in steps as shown in the following illustrations.

5-6 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 5: Make Compatibility

ElectricAccelerator 10.1 Electric Make User Guide5-7

1. eMake determines that Makelibs target needs to be built.

2. eMake connects to Electric Agent.

3. eMake sends the first command, echo "start libs".

4. The Agent invokes the command, echo "start libs", and captures the result.

5. The Agent returns the result, "start libs", to eMake.

6. eMake sends the second command, emake -f libs.mak

7. The Agent runs the second command, emake -f libs.mak

8. emake enters stubmode and records the current working directory, command, and
environment, then exits with no output and status code 0

9. Agent returns the stubmode result and a special message stating a new Make was invokedwith
recorded properties (eMake).

10. eMake starts a new Make instance, reads the makefile, libs.mak, and integrates the file into the
dependency tree.

11. New jobs are created and run against the cluster to build all targets in the libs.mak makefile.

12. eMake splits the last command in the Makelibs target, echo "finish libs", into a
continuation job that is defined to have a serial build order later than the last job in the
submake, but there is no explicit dependency created that requires it to run later than any of the
jobs in the submake. This means that it might run in parallel (or even before) the jobs in the
submake, but if for some reason that is not safe, eMake will be able to detect a conflict and rerun
the continuation job.

Stubbed Submake Output

13. eMake sends the last command, echo "finish libs".

14. Agent runs the command, echo "finish libs", and captures the result.

15. Agent returns the result, "finish libs", to eMake.

The eMake Stub solution addresses three basic parallel submake problems by:

l Running parallel submakes in stub mode – Stubs finish instantaneously and discover jobs
as quickly as possible so the build is as concurrent as possible.

l Creating a single logical Make instance – New Make instances are started by the top-level
eMake process only and their targets are integrated into the global dependency tree. eMake can
then track dependencies across Make instances and use its conflict resolution technology to re-
order jobs that might have run too soon.

l Capturing submake invocations – By capturing submake invocations as they occur, the
submake stubworks with your makefiles and builds scripts for the majority of cases “as-is.”
However, the stub introduces a behavior change that might require somemakefile changes. See
Submake Stub Compatibility on page 5-8.

Submake Stub Compatibility
Submake stubs allow your existing recursive builds to behave like a single logical Make instance to
ensure fast, correct parallel builds. Stubs do introduce new behavior, however, that might appear as
build failures. This section describes what constructs are not supported andwhat must be changed to
make stubs compatible with submake stubs.

At this point, it is useful to revisit the relationship between commands and rules:

all:
echo "this is a command"
echo "another command that includes a copy" ; \
cp aa bb
echo "so does this command" ; \
cp bb cc
cp cc dd

The rule above contains four commands: (1) echo, (2) echo-and-copy, (3) another echo-and-copy, and
(4) a copy. Note how semicolons, backslashes, and new lines delimit (or continue) commands. The rule
becomes a job when Make schedules it because it is needed to build the “all” target.

Submake stubs' most important features:

5-8 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 5: Make Compatibility

ElectricAccelerator 10.1 Electric Make User Guide5-9

l A submake stub never has any output and always exits successfully.

l The Agent sends stub output back (if any) after each command.

l Commands that follow a stub are invoked after the submake in the serial order.

Because a submake stub is really just a way of marking the Make invocation and does not actually do
anything, you cannot rely on its output (stdout/stderr, exit status, or file system changes) in the same
command.

In the following three examples, incompatible Accelerator commands are described and examples for
fixing the incompatibility are provided.

Example 1: A command that reads submake file system changes

makelibs:
$(MAKE) -C libs libcore.aa ; cp libs/libcore.aa /lib

In this example, a single command spawns a submake that builds libcore.a and then copies the new
file into the /lib directory. If you run this rule as-is with Accelerator, the following error might appear:

cp: cannot stat ’libs/libcore.aa’: No such file or directory
make: *** [all] Error 1

The submake stub exited immediately and the cp begins execution right after it in the same command.
eMake was not notified of the new Make instance yet, so no jobs to build libcore.a even exist. The cp
fails because the expected file is not present.

An easy fix for this example is to remove the semicolon andmake the cp a separate command:

makelibs:
$(MAKE) -C libs libcore.aa
cp libs/libcore.aa /lib

Now the cp is in a command after the submake stub sends its results back to the buildmachine. eMake
forces the cp to wait until the submake jobs have completed, thus allowing the copy to succeed
because the file is present. Note that this change has no effect on other Make variants so it will not
prevent building with existing tools.

Note: In general, Accelerator build failures that manifest themselves as apparent re-ordering or
missing executions are usually because of commands reading the output of submake stubs. In most
cases, the fix is simply to split the rule into multiple commands so the submake results are not read
until after the submake completes.

Example 2: A command that reads submake stdout

makelibs:
$(MAKE) -C libs mkinstall > installer.sh

The output is captured in a script that could be replayed later. Running this makefile with Accelerator
always produces an empty installer.sh because submake stubs do not write output. When eMake
does invoke this Make instance, the output goes to standard output, as though no redirection was
specified.

Stubbed Submake Output

Commands that read from a Make stdout are relatively unusual. Those that do often read from a Make
that does very little actual execution either because it is invokedwith -n or because it runs a target that
writes to stdout only. In these cases, it is not necessary to use a submake stub. The Make instance
being spawned is small and fast, and running it directly on the Agent in its entirety (instead of returning
to the host buildmachine and distributing individual jobs back to the cluster) does not significantly
impact performance.

You can specify that an individual emake invocation on the Agent does not enter stubmode, but instead
behaves like a local (non-cluster) Make simply by setting the EMAKE_BUILD_MODE environment variable
for that instance:

makelibs:
EMAKE_BUILD_MODE=local \

$(MAKE) -C libs mkinstall >
installer.sh

For Windows:

makelibs:
set EMAKE_BUILD_MODE=local && $(MAKE) -C libs mkinstall >

installer

eMake automatically uses local mode when the -n switch is specified.

Example 3: A command that reads submake exit status

makelibs:
$(MAKE) -C libs || echo "failure building libs"

This example is a common idiom for reporting errors. The || tells the shell to evaluate the second half of
the expression only if Make exits with non-zero status. Again, because a submake stub always exits
with 0, this clause will never be invokedwith Accelerator, even if it would be invokedwith GNU Make. If
you need this type of fail-over handling, consider post-processing the output log in the event of a build
failure. Also see Annotation on page 8-1 for more information.

Another common idiom in makefiles where exit status is read in loop constructs such as:

all:
for i in dir1 dir2 dir3 ; do \

$(MAKE) -C $$i || exit 1;\
done

This is a single command: a “for” loop that spawns three submakes. The || exit 1 is present to
prevent GNU Make from continuing to start the next submake if the current one fails. Without the exit
1 clause, the command exit status is the exit status from the last submake, regardless of whether the
preceding submakes succeeded or failed, or regardless of which error handling setting (for example, -i,
-k) was used in the Make. The || exit 1 idiom is used to force the submakes to better approximate
the behavior of other Make targets, which stops the build on failure.

On first inspection, this looks like an unsupported construct for submake stubs because exit status is
read from a stub. Accelerator never evaluates the || exit 1 because the stub always exits with
status code 0. However, because the submakes really are reintegrated as targets in the top-level Make,

5-10 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 5: Make Compatibility

ElectricAccelerator 10.1 Electric Make User Guide5-11

a failure in one of them halts the build as intended. Explained another way, a submake loop is already
treated as a series of independent targets, and the presence or absence of the GNU Make || exit 1

hint does not change this behavior. These constructs should be left as-is.

Hidden Targets
eMake differs from other Make variants in the way it searches for files needed by pattern rules (also
called suffix or implicit rules) in a build.

l At the beginning of each Make instance, eMake searches for matching files for all pattern rules
before it runs any commands. After eMake has rules for every target that needs updating, it
schedules the rules (creating jobs) and then runs those jobs in parallel for maximum
concurrency.

l Microsoft NMAKE andGNU Makematch pattern rules as they run commands, interleaving
execution and pattern search.

Because of the difference in the way eMake and NMAKE match pattern rules, NMAKE and eMake can
produce different makefile output with hidden targets. A hidden target (also known as a “hidden
dependency”) is a file that is:

l created as an undeclared side-effect of updating another target

l required by a pattern to build a rule

Consider the followingmakefile example:

all: bar.lib foo.obj

bar.lib:
touch bar.lib foo.c

.c.obj:
touch $@

Notice that foo.c is created as a side effect of updating the bar.lib target. Until bar.lib is updated,
no rule is available to update foo.obj because nothingmatches the .c.obj suffix rule.

NMAKE accepts this construct because it checks for foo.c existence before it attempts to update
foo.obj. NMAKE produces the following result for this makefile:

touch bar.lib foo.c
touch foo.obj

eMake, however, performs the search for files that match the suffix rule once so it can schedule all jobs
immediately andmaximize concurrency. eMake will not notice the existence of foo.c by the time it
attempts to update foo.obj, even if foo.cwas created. eMake fails with:

NMAKE : fatal error U1073: don't know how to make 'foo.obj'
Stop.

The fix is simply to identify foo.c as a product for updating the bar.lib target, so it is no longer a
hidden target. For the example above, adding a line such as foo.c: bar.lib is sufficient for eMake to
understand that .c.obj suffix rule matches the foo.obj target if bar.lib is built first. Adding this line
is more accurate and has no effect on NMAKE.

Hidden Targets

GNU Make is similarly incompatible with eMake, but the incompatibility is sometimesmasked by the
GNU Make directory cache. GNU Make attempts to cache the directory contents on first access to
improve performance. Unfortunately, because the time of first directory access can vary widely
depending on which targets reference the directory andwhen they execute, GNU Make can appear to
fail or succeed randomly in the presence of hidden targets.

For example, in this makefile, the file $(DIR)/foo.yy is a hidden target created as a side-effect of
updating aa and needed by the pattern rule for foo.xx:

all: aa bb
aa:

touch $(DIR)/foo.yy
bb: foo.xx

%.xx: $(DIR)/%.yy

@echo $@

Depending on the value of DIR, this buildmight or might not work with GNU Make:

% mkdir sub; gmake DIR=sub
touch sub/foo.yy
foo.xx

% gmake DIR=.
touch ./foo.yy
gmake: *** No rule to make target ’foo.xx’, needed by ’bb’. Stop.

eMake does not attempt to emulate this behavior. Instead, it consistently refuses to schedule foo.xx
because it depends on a hidden target (just as it did in the NMAKE emulation mode in the earlier
example). In this case, adding a single line declaring the target: $(DIR)/foo.yy: aa is sufficient to
ensure it always matches the %.xx pattern rule.

Note: If a build completes successfully with Microsoft NMAKE or GNU Make, but fails with “don't know
how tomake <x>” with eMake, look for rules that create <x> as a side-effect of updating another target.
If <x> is required by a suffix rule also, it is a hidden target and needs to be declared as explicit output to
be compatible with eMake.

There are many other reasons why hidden targets are problematic for all Make-based systems andwhy
eliminating them is good practice in general. For more information, see:

l “Paul’s Rules of Makefiles” by Paul Smith at http://www.make.paulandlesley.org/rules.html.
Among other useful guidelines for writingmakefiles, the primary author of GNU Make writes,
“Every non-.PHONY rulemust update a file with the exact name of its target. [...] That way you
and GNU Make always agree.”

l “The Trouble with Hidden Targets” by John Graham-Cumming at
http://www.cmcrossroads.com/content/view/6519/120/.

Note: In a limited number of cases, eMake might conclude that a matching pattern rule for an output
target does not exist. This occurs because eMake's strict string equality matching for prerequisites
determines that the prerequisites are different (even though the paths refer to the same file) and that
there is no rule to build it.

5-12 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 5: Make Compatibility

ElectricAccelerator 10.1 Electric Make User Guide5-13

Wildcard Sort Order
A number of differences exist between GNU Make and eMake regarding the use of $(wildcard) and
prerequisite wildcard sort order functions. When using the $(wildcard) function or using a wildcard in
the rule prerequisite list, the resultant wildcard sort order might be different for GNU Make and eMake.

Different GNU Make versions are not consistent and exhibit permuted file lists. Even a GNU Make
version using different system libraries versions will exhibit inconsistencies in the wildcard sort order.

No difference exists in the file list returned, other than the order. If the sort order is important, you
might wrap $(wildcard)with $(sort).

For example:

$(sort $(wildcard *.foo))

Do not rely on the order of rule prerequisites generated with a wildcard. For example, using target:
*.foo.

Relying on the order of *.foo can be dangerous for both GNU Make and eMake. Neither GNU Make nor
eMake guarantees the order in which those prerequisites are executed.

Delayed Existence Checks
All Make variants process makefiles by looking for rules to build targets in the dependency tree. If no
target rule is present, Make looks for a file on disk with the same name as the target. If this existence
check fails, Make notes it has no rule to build the target.

eMake also exhibits this behavior, but for performance reasons it delays the existence check for a target
without a makefile rule until just before that target is needed. The effect of this optimization is that
eMake might run more commands to update targets (than GNU Make or NMAKE) before it discovers it
has no rule to make a target.

For example, consider the followingmakefile:

all: nonexistent aa bb
aa:

@echo $@
bb:

@echo $@

GNU Make begins by looking for a rule for nonexistent and, when it does not find the rule, it does a file
existence check. When that fails, GNU Make terminates immediately with:

make: *** No rule to make target ’nonexistent’, needed by ’all’. Stop.

Similarly, NMAKE fails with:

NMAKE : fatal error U1073: don’t know how to make ’nonexistent’ Stop.

eMake delays the existence check for nonexistent until it is ready to run the all target. First, eMake
finishes running commands to update the aa and bb prerequisites. eMake fails in the same way, but
executes more targets first:

Wildcard Sort Order

aa
bb
make: *** No rule to make target ’nonexistent’, needed by ’all’. Stop.

Of course, when the existence check succeeds (as it does in any successful build), there is no behavioral
difference between eMake and GNU Make or Microsoft NMAKE.

Multiple Remakes (GNU Make only)
GNU Make has an advanced feature called Makefile Remaking, which is documented in the GNU
Manual, “How Makefiles are Remade,” and available at:
http://www.gnu.org/software/make/manual/make.html#Remaking-Makefiles

To quote from the GNU Make description:

“Sometimesmakefiles can be remade from other files, such as RCS or SCCS files. If a makefile can
be remade from other files, you probably want make to get an up-to-date version of the makefile to
read in.

“To this end, after reading in all makefiles, make will consider each as a goal target and attempt to
update it. If a makefile has a rule which says how to update it (found either in that very makefile or
in another one) or if an implicit rule applies to it (see section Using Implicit Rules), it will be updated
if necessary. After all makefiles have been checked, if any have actually been changed, make starts
with a clean slate and reads all the makefiles over again. (It will also attempt to update each of
them over again, but normally this will not change them again, since they are already up to date.)”

This feature can be very useful for writingmakefiles that automatically generate and read dependency
information with each build. However, this feature can cause GNU Make to loop infinitely if the rule to
generate a makefile is always out-of-date:

all:
@echo $@

makefile: force
@echo "# last updated: ’date’" >> $@

force:

In practice, a well-written makefile will not have out-of-date rules that cause it to regenerate. The
same problem, however, can occur when Make detects a clock skew—most commonly due to clock drift
between the system runningMake and the file server hosting the current directory. In this case, Make
continues to loop until the rule to rebuild the makefile is no longer out-of-date.

In the example below, DIR1 and DIR2 are both part of the source tree:

-include $(DIR1)/foo.dd
all:

@echo $@
$(DIR1)/foo.dd: $(DIR2)/bar.dd
%.d:

touch $@

If two directories are served by different file servers and the clock on the system hosting DIR2 is slightly
faster than DIR1, then even though foo.dd is updated after bar.dd, it might appear to be older. On

5-14 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 5: Make Compatibility

http://www.gnu.org/software/make/manual/make.html#Remaking-Makefiles

ElectricAccelerator 10.1 Electric Make User Guide5-15

remaking, GNU Make will again see foo.dd as out-of-date and restart, continuing until the drift is
unnoticeable.

This problem is particularly troublesome on Solaris, where GNU Make timestamp checking has
nanosecond resolution:

% make
touch dir2/bar.dd
touch dir1/foo.dd
gmake: *** Warning: File ’bar.dd’ has modification time in the future (2005-04-
11 13:52:46.811724 > 2005-04-11 13:52:46.799573198)
touch dir1/foo.dd
touch dir1/foo.dd
all

eMake fully supports makefile remaking and can be configured to behave exactly as GNU Make.
However, by default, to ensure builds do not loop unnecessarily while remaking, eMake limits the
number of times it restarts a make instance to 10. If your build is looping unnecessarily, you might
want to lower this value or disable remaking entirely by setting:

--emake-remake-limit=0

NMAKE Inline File Locations (Windows only)
NMAKE contains a feature to create inline fileswith temporary file names. For example, the following
makefile creates a temporary inline file containing the word “pass” and then uses “type” to output it.

all:
type <<

pass
<<

With Microsoft NMAKE, the file is created in the directory where %TMP% points. eMake does not respect
the %TMP% setting and creates the inline file in the rule working directory that needs the file.

How eMake Processes MAKEFLAGS
eMake uses the following process:

1. Similar to GNU Make, eMake condenses no-value options into one block.

2. When eMake encounters an option with a value, it does what GNU Make does, it appends the
value and starts the next option with its own -

3. Certain options are ignored/not created. This changes the layout of the options in MAKEFLAGS (for
example -j, -l).

4. eMake-specific options are not added to MAKEFLAGS, but are handled through EMAKEFLAGS.

5. Passing down environment variables as TEST=test renders the same result as in GNU Make (an
extra - at the end, followed by the variable=value).

6. On Windows, eMake prepends the --unix or --win32 flag explicitly.

NMAKE Inline File Locations (Windows only)

Chapter 6: Performance Optimization
The following topics discuss how to use ElectricAccelerator performance optimization features and
performance tuning techniques.

Topics:

l Optimizing Android Build Performance on page 6-2

l Dependency Optimization on page 6-2

l Job Caching on page 6-3

l Parse Avoidance on page 6-17

l Javadoc Caching on page 6-23

l Schedule Optimization on page 6-24

l Running a Local Job on the Make Machine on page 6-25

l Serializing All Make Instance Jobs on page 6-26

l Managing Temporary Files on page 6-28

Optimizing Android Build Performance
The information in this section is replaced by the KBEA-00165 - Best Practices for Android Builds Using
ElectricAccelerator 10.1 KB article.

Dependency Optimization
ElectricAccelerator includes a dependency optimization feature to improve performance. By learning
which dependencies are actually needed for a build, Accelerator can use that information to improve
performance in subsequent builds.

When dependency optimization is enabled, eMake maintains a dependency information file for each
makefile. If a build's dependencies have not changed from its previous build, eMake can use that stored
dependency information file for subsequent builds.

Enabling Dependency Optimization
You must first run a "learning" build with the dependency optimization feature enabled. To enable
dependency optimization, set the following: --emake-optimize-deps=1

For the learning build, (because there is no stored dependency information file for that specific
makefile) the argument only saves a new result. For subsequent builds, the argument enables the
reuse of stored dependency information and saves a new file as appropriate. If you do not specify --
emake-optimize-deps=1, then dependency information is not saved or accessed.

The following table describes dependency optimization-related options.

eMake Option Description

--emake-assetdir=<path>

Use the specified directory for assets such as saved dependency
information. The default directory is named .emake. (This option also
determines the cache locations for the parse avoidance feature and
for JobCache.)

--emake-optimize-deps=
<0/1>

Use the saved dependency information file for a makefile when
dependencies are the same and save new dependency information
when appropriate.

Dependency Optimization File Location and Naming
Dependency information files are saved in the working directory where eMake was invoked under
<assetdir>/deps. (The default asset directory is .emake.)

The file is named from the MD5 hash of the root-relative path of the "main" makefile for the make
instance that the dependency information file belongs to.

6-2 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 6: Performance Optimization

https://helpcenter.electric-cloud.com/hc/en-us/articles/360004201612-KBEA-00165-Best-Practices-for-Android-Builds-Using-ElectricAccelerator-10-1
https://helpcenter.electric-cloud.com/hc/en-us/articles/360004201612-KBEA-00165-Best-Practices-for-Android-Builds-Using-ElectricAccelerator-10-1

ElectricAccelerator 10.1 Electric Make User Guide6-3

Examples

If your eMake root is /tmp/src, and your makefile is /tmp/src/Makefile, then the dependency
information file is named after the MD5 hash of the string "Makefile".

If your root is /tmp/src and your makefile is /tmp/src/foo/Makefile, the file is named after the MD5
hash of the string "foo/Makefile".

Job Caching
JobCache is a feature that can substantially reduce compilation time. JobCache lets a build avoid
recompiling object files that it previously built, if their inputs have not changed. JobCache works even
after you clean the build output tree (for example, by using “make clean”). By caching and reusing
object files, JobCache can significantly speed up full builds.

JobCache uses cache “slots.” When JobCache is enabled, eMake maintains a slot for each combination
of command line options, relevant environment variable assignments, and current working directory. A
slot can be empty or can hold a previously-cached result. If the appropriate slot holds an up-to-date
result, a cache “hit” occurs, and compilation is avoided.

A cached result becomes obsolete if eMake detects file system changes that might have caused a
different result (with the same command line options, environment variable assignments, and current
working directory). Such file system changes include any files that are read during compilation, which
means all source files, gcc precompiled headers, and compilation tools included in the eMake root.

Electric Cloud recommends that all components (Cluster Manager, Electric Agent/EFS, and eMake) on
all machines in the cluster are upgraded to the latest version. However, you can still use JobCache with
Agents on Electric Agent/EFSmachines running versions as old as 7.2, as long as an appropriate
backward compatibility package (BCP) is installed on those Electric Agent/EFSmachines. For more
information, see the ElectricAccelerator Installation and Configuration Guide at http://docs.electric-
cloud.com/accelerator_doc/AcceleratorIndex.html.

Topics:

l Benefits

l Limitations

l Supported Tools

l Configuring JobCache

l Running a “Learning” Build to Populate the Cache

l Extending JobCache to Teams Via a Shared Cache

l Job Caching for gcc, clang, Jack, and javac

l Job Caching for cl

l Viewing JobCache Metrics

l Moving Your Workspace

l Deleting the Cache

Job Caching

http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html
http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html

Benefits
l Speeds long, full builds (for example, when you do a “make clean” then a “make,” or when you
run a build in a new workspace)

l Builds faster than ccache

l Avoids certain false cache hits that might occur when you use ccache

Limitations
l JobCache does not cache results from compilation jobs that invoke eMake. JobCache stores results
from particular compilation jobs, but if a rule includes an invocation of eMake, (which might spawn
other jobs), then that job is not cached, as in the following example:

gcc -o foo.o foo.c && $(MAKE) -C subdir

l The date and time in an object file will still reflect the original compilation (not the current date or
time) if you use a C preprocessor macro that expands to the date or time when the compiler runs,
and ElectricAccelerator re-uses the resulting object file in a subsequent build.

l Source paths embedded in debugging information in object files will reflect the original compilation
(even if you re-use the object file while building in a different workspace).

Supported Tools
JobCache supports the following tools.

Tool
Supported
Platforms

Notes

gcc and g++ Linux
Windows

l All .o and .lo files are cached

l Should not be used to cache results from linking

clang and
clang++

Linux
Windows

l All .o and .lo files are cached

l Should not be used to cache results from linking

cl (Microsoft
Visual C/C++)

Windows l All .obj files are cached

l The only supported debug option is /Z7

l Should not be used to cache results from linking

Java Android
Compiler Kit
(Jack)

Linux l All .jack and .dex files are cached

javac Linux l All .jar files are cached

Running a “Learning” Build to Populate the Cache
You must first populate the cache by running a “learning” build with JobCache enabled. For the learning
build (because the cache is empty), JobCache saves only a new result to the cache. For subsequent

6-4 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 6: Performance Optimization

ElectricAccelerator 10.1 Electric Make User Guide6-5

builds, JobCache re-uses cached results and saves a new result to the cache as appropriate. If you do
not enable JobCache, then the job cache is not accessed.

Extending JobCache to Teams Via a Shared Cache
The Shared JobCache feature extends JobCache to teams of developers by using a shared cache. As
with non-shared JobCache, Shared JobCache accelerates builds by reusing outputs from a build in the
next build, which avoids costly redundant work across builds. Shared JobCache extends this concept by
giving developers read-only access to a cache that was previously populated by another user or process
(such as a nightly build). With this feature enabled, only one user must actually run the compilations;
other team members simply reuse the output from that “golden” build.

A shared cache gives JobCache two tiers: shared and private (“local”). The shared cache strictly
augments the traditional (“local”) cache but does not replace it.

Shared JobCache tries to findmatching cache entries in the following order:

1. During build execution with Shared JobCache enabled, eMake tries to findmatching cache
entries in the shared asset directory. This directory is specified by the --emake-shared-
assetdir option. For example, --emake-shared-assetdir=/net/nightlybuild/.

Developers can never modify cache entries in the shared asset directory.

2. If there is nomatching slot for a job in the shared asset directory, or if the input files for the job
differ, eMake uses the developer's local cache instead by checking for a hit there. This cache is
specified by the --emake-assetdir=<directory> option. For example, --emake-
assetdir=/net/home/bob/.

3. If there is no local cache match, eMake creates a slot in the developer's local cache if needed. The
developer will get a hit in their local cache during the next compilation.

Prerequisites

Shared JobCache requires all participating developers to have access to a shared file system (such as
NFS) where the shared asset directory will reside.

Populating the Shared Cache

For the builds that populate the shared cache, use the following eMake options:

--emake-jobcache=<types> --emake-assetdir=<assetdir>

Using the Shared Cache

Developer builds use the following eMake options:

--emake-jobcache=<types> --emake-shared-assetdir=<assetdir>

where <assetdir> is the asset directory of the populated cache.

Job Caching

Configuring JobCache

Licensing

JobCache is licensed based on the maximum number of builds that may use it simultaneously. This
number is read from the jobcacheMax property in the Accelerator license file. Simultaneous builds that
exceed this number occur without using this feature.

If the JobCache license entry is invalid, or if the number of simultaneous builds has exceeded the
license limit, a WARNING EC1181: Your license does not permit object cachingmessage appears
when a build tries to use JobCache. eMake will continue to work normally.

Choosing a Disk for the Job Cache

To estimate the disk space required for the job cache, add the sizes of your object files together and
multiply by 0.7. A specific example is that the Android KitKat Open Source Project (AOSP) requires
about 4 GB. For best performance, choose a disk that is local to the eMake client host. For Shared
JobCache, users must have access to a shared file system such as NFS.

You can use the --emake-assetdir= eMake option to specify the directory for your job cache. The
default name of this directory is .emake. By default, this directory is in the working directory in which
eMake is invoked. (This option also determines the cache location for the parse avoidance feature and
the location of the saved dependency information for the dependency optimization feature.)

Building Multiple Branches

Tomaximize your cache hits, use the --emake-assetdir= option to specify a separate asset directory
for each branch of code that you build.

Setting the eMake Root

JobCache does not detect changes to compilation inputs that are not under your eMake root. You must
ensure that your eMake root contains all sources and tools that might change.

Job Caching for gcc, clang, Jack, and javac

Enabling JobCache for All Make Invocations in a Build

To enable JobCache for all make invocations in a build, use the --emake-jobcache=<types> eMake
option, where <types> is a comma-separated list of any combination of gcc, clang, clang-cl, jack, or
javac. The list cannot contain spaces. The --emake-jobcache=<type> option works for recursive and
nonrecursive builds.

Notes:

l --emake-jobcache=clang is an alias for --emake-jobcache=gcc. In the eMake annotation file,
the JobCache type appears as jobcache type="gcc".

l --emake-jobcache=clang-cl is an alias for --emake-jobcache=cl. In the eMake annotation
file, the JobCache type appears as jobcache type="cl".

Following is an example command that enables JobCache for gcc, Jack, and javac:

6-6 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 6: Performance Optimization

ElectricAccelerator 10.1 Electric Make User Guide6-7
% emake --emake-cm=mycm --emake-root=/src/mysource --emake-jobcache=gcc,jack,javac
--emake-annodetail=basic

If some of your makefile targets are built by rules that do not invoke gcc/g++, clang/clang++, Jack, or
javac, and those rules do not behave enough like those tools for job caching to be suitable, then use the
jobcache pragma to be more selective about which jobs are cached, either by enabling JobCache for
fewer jobs or by selectively disabling it for particular jobs with #pragma jobcache none.

For example, the rules that build a particular “.o” file might use an environment variable that is not
used by gcc/g++, and you might want to miss the cache if that environment variable changes its value.

The --emake-annodetail=basic option is not required to invoke eMake, but it is recommended for
troubleshooting. For details, see the Troubleshooting section below.

For information about how to use this functionality with Visual Studio, see the Job Caching for cl When
Using Visual Studio section.

Using the Response File gcc Command Line Option

JobCache supports the response file (@<file>) gcc command line option, which reads gcc command-
line options from a separate file specified by<file>.

Enabling JobCache for All Object File Targets in a Make Invocation

If you do not want to enable JobCache for all make invocations in a build, you can still enable JobCache
for specific object file targets by applying the jobcache pragma inside the makefile. To enable the
feature for all targets with a particular extension, use the following:

#pragma jobcache <type> -exist *
%.<object_file_extension> :

where <type> is gcc, clang, clang-cl, jack, or javac.

Following is an example makefile excerpt with the feature enabled for all targets ending in “.o”:

...
#pragma jobcache gcc -exist *

%.o :
...

(You can apply the pragma to a pattern, but not to a suffix rule.) If cache misses occur because an
insignificant file exists or does not exist, you can delete -exist *, and eMake will check only the
existence of files whose names suggest that they are source files or gcc precompiled headers. You can
augment the set of files that matters to eMake by adding -exist options that specify the desired glob
patterns.

If you do not want to add the pragma to the main makefile, you can add it to an “addendum” makefile.
This is a small makefile that you include in the eMake invocation from the command line. For example,
you could create a makefile named jobcache.mak and then add -f Makefile -f jobcache.mak to
your eMake invocation. An addendum makefile is useful when you do not control the content of your

Job Caching

makefiles (such as when you include open source components that use build tools such as configure,
CMake, or qmake to generate makefiles).

Enabling or Disabling JobCache for Specific Object File Targets

To enable JobCache only for some object file targets, do one of the following:

l If an object file is built by an explicit rule (one without “%” in it), you can enable JobCache for that
rule by inserting a pragma just above it in the makefile. You can also use an addendum makefile in
this case. For example, when using gcc/g++, clang/clang++, Jack, or javac to cache an explicit rule
producing target.o, you can use this addendum:

#pragma jobcache type -exist *
target.object_file_extension :

For example, to enable JobCache using gcc only for some object file targets:

#pragma jobcache gcc -exist *
target.o :

l You can use more narrow target patterns than “%.o” after a jobcache pragma. For example,
“abc%.o” applies the pragma to “abcdef.o” but not to “xyzdef.o”. (This is true even if the rule to
build “abcdef.o” appears elsewhere in the makefile.)

Similarly, you can explicitly disable caching by using the #pragma jobcache none pragma.

If jobcache pragmas with different options apply to a target, then eMake selects one of them as
follows:

l If the target is built by an explicit rule with a jobcache pragma, then eMake chooses that pragma.

l Otherwise, eMake chooses the pragma whose pattern has the most in common with the target
name.

l If eMake still encounters ties, then it chooses the pragma that it encountered last duringmakefile
parsing.

For example, the following gcc makefile applies job caching to hello1.o and hello2.o, but not to hello3.o
or date2.o:

CC=gcc

all : hello
./hello

#pragma jobcache gcc -exist *
hello1.o: hello1.c hello1.h

$(CC) -c -o $@ $< $(CFLAGS)

hello2.o: hello2.c hello2.h
$(CC) -c -o $@ $< $(CFLAGS)

Uses __DATE__ to record when build occurred--do not cache.
#pragma jobcache none
date2.o: date2.c date2.h

$(CC) -c -o $@ $< $(CFLAGS)

hello3.o: hello3.c hello3.h
$(CC) -c -o $@ $< $(CFLAGS)

6-8 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 6: Performance Optimization

ElectricAccelerator 10.1 Electric Make User Guide6-9

hello: hello1.o hello2.o hello3.o
$(CC) -o $@ $^

clean:
rm hello hello1.o hello2.o hello3.o

.PHONY: all clean

#pragma jobcache gcc -exist *
%2.o :

Job Caching for cl

Enabling cl JobCache for All Make Invocations in a Build

On Windows, setting –emake-jobcache=cl enables JobCache for all jobs that produce .obj files. These
are normally created by the Visual C++ compiler (cl.exe). You can set the option on the command
line, in an emake.conf file, or in the EMAKEFLAGS environment variable.

When using the Visual Studio IDE extension, add the –-emake-jobcache=cl option to EMake Options in
the command line settings:

Job Caching

For example, if you create a simple C++ Console Application using Visual Studio, it creates two compile
jobs for Example1.cpp and stdafx.cpp.

6-10 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 6: Performance Optimization

ElectricAccelerator 10.1 Electric Make User Guide6-11

The extension converts this project into a makefile. For example:

".\Example1\Debug\Example1.obj":: ".\Example1\Example1.cpp"
@cl.exe /Od /Oy- /sdl /D WIN32 /D _DEBUG /D _CONSOLE /D _LIB /D _UNICODE /D

UNICODE /EHsc /RTC1 /analyze- /MDd /GS /Zc:wchar_t /Zc:forScope /Yu"stdafx.h"
/Fp".\Example1\Debug\Example1.pch" /Fo".\Example1\Debug\Example1.obj" /W3 /WX-
/nologo /c /Z7 /Gd /errorReport:none /fp:precise /TP ".\Example1\Example1.cpp"

".\Example1\Debug\Example1.pch" :: ".\Example1\Debug\stdafx.obj"

Job Caching

".\Example1\Debug\stdafx.obj" :: ".\Example1\stdafx.cpp"
@cl.exe /Od /Oy- /sdl /D WIN32 /D _DEBUG /D _CONSOLE /D _LIB /D _UNICODE /D

UNICODE /EHsc /RTC1 /analyze- /MDd /GS /Zc:wchar_t /Zc:forScope /Yc"stdafx.h"
/Fp".\Example1\Debug\Example1.pch" /Fo".\Example1\Debug\stdafx.obj" /W3 /WX-
/nologo /c /Z7 /Gd /errorReport:none /fp:precise /TP ".\Example1\stdafx.cpp"

When emake runs with JobCache, it stores Example1.obj and stdafx.obj and reuse them in the next
build if it gets a “hit” (meaning that no relevant changes are detected since the last build).

IMPORTANT: JobCache does not work with the /Zi or /ZI compiler debug options when the same
PDB file is updated between compilations. Each compilation must create a unique PDB file if
debugging is enabled. You should use the /Z7 option with jobcache. When using the Visual Studio
IDE extension, check Set Debug Information Format to C7 Compatible:

6-12 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 6: Performance Optimization

ElectricAccelerator 10.1 Electric Make User Guide6-13

Troubleshooting

Enabling Basic Annotation

Basic annotation helps you to resolve your cache hit/miss problems by providing information about
whether a cache miss occurred and the cause. Annotation that is related to JobCache is included in
basic annotation. Basic annotation is not enabled by default, so you must do so by using the --emake-
annodetail=basic eMake option. By default, the eMake annotation file is created in the working
directory in which eMake is invoked; the file is named emake.xml by default.

Interpreting Job Cache Annotation Information

Examine the relevant job XML element in the annotation file for a subelement named jobcache.

Following is an example of a jobcache subelement for a job with a job cache hit. The status attribute
indicates whether eMake used a cached object file in that job (whether it had a cache hit), and if not,
what else occurred:

...
<job id=...>
...

<jobcache type="gcc" options=" -exist *"
slot="6d00a0d9242610a075a98bc9400f8f11" duration="0.155831" status="hit">
...

</jobcache>
...
</job>
...

The duration attribute is the duration (in seconds) of the job that populated the cache. If the current
build is updating the cache, then the value of duration is the same as the duration of the job
containing that jobcache subelement. If the current build is replaying from the cache, then it is the
duration of the corresponding job from a previous build whose results were saved into the cache. eMake
retrieves the figure from the cache.

Following is an example of a jobcache subelement for a job with a shared job cache hit. Note the
src="shared" tag, which appears when Shared JobCache is used:

...
<job id=...>
...
<jobcache type="gcc" options=" -exist *" slot="86e319e5cd837ad78360145fb3a933f1"

duration="0.244847" status="hit" src="shared">
<triggers>
<trigger type="commandline" option="--emake-jobcache=gcc"/>

</triggers>
</jobcache>

...
</job>
...

The local cache was used unless src="shared" appears.

Following is an example of a jobcache subelement for a job with a cache miss:

Job Caching

...
<job id=...>
...

<jobcache type="gcc" options=" -exist *"
slot="989324a736c583a306630930da80ba1e" duration="0.266177" status="miss">
... <differences>

<diff name="/c/src/mysql-5.6.21/include/mysql.h"
old="md5:d55ae58fd7eec6055a50fcf6b83af99c"
new="md5:071ed8e989b0d0e14d0b0bd96e94cd35"/>

</differences>
</jobcache>

...
</job>
...

Following is an example of a jobcache subelement for a job for which caching was disabled by using
#pragma jobcache none:

...
<job id=...>
...

<jobcache type="none" options="" status="uncacheable">
<triggers>

<trigger type="pragma" file="Makefile" line="11" options="none"/>
</triggers>

</jobcache>
...
</job>
...

Following is a complete list of the possible values of the status attribute:

l hit—eMake had a cache hit for that job.

l miss—eMake had a cache miss for that job. Each diff subelement shows a file system input to
compilation that differs since the object file was cached and shows the difference that was
observed.

l newslot—A new slot was created. This is because the previously-cached object files were from
compilations that used different command-line arguments, environment variables, working
directories, or any combination of these. To see the options used for that compilation, see the
“key” file for the slot identified by the slot attribute. For example, the key file for slot
2b253a890c9745a0b500d888349ec2e2 has the following path name:

.emake/cache.16/i686_Linux/2b/25/3a/890c9745a0b500d888349ec2e2/key

The version number in the cache.<number> directory might vary with your ElectricAccelerator
software version. The key file specifies the relevant environment variables, the working
directory, and the command line. To allow cache hits when building in a new workspace, path
names are specified relative to your eMake roots. If a target repeatedly has newslot status, get
the slot identifiers from two consecutive builds for that same target and compare the key files.

l uncacheable—Caching was disabled by the#pragma jobcache none pragma, or an error
occurred during the update of the relevant cache slot. Examine any ERROR and WARNING
messages in the console output from eMake.

l rootschanged—There is no natural mapping from the old eMake roots to the new eMake roots.

6-14 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 6: Performance Optimization

ElectricAccelerator 10.1 Electric Make User Guide6-15

l unneeded—JobCache was enabled for the job but not needed (because the target was already up
to date according to ordinary GNU Make rules). The cache was not consulted, even though
caching was requested for that target.

If Job Cache Annotation Information Is Missing

If a particular job element in the annotation file has no XML jobcache subelement, this is because any
combination of the following has occurred:

l The target name for that job does not match the pattern following any jobcache pragma, and if
the target is built by an explicit rule, that rule does not follow a jobcache pragma.

l The intended jobcache pragma is misspelled.

l Either the --emake-jobcache= command line option was not used, or none of the targets
matched

l The appropriate licensing is not available to the eMake client.

If eMake Unexpectedly Used a Cached Object File

If eMake should not have used a particular cached object file, then

l If eMake should have detected a change to a particular file, compare its path to your eMake
roots.

l If a relevant environment variable changed, check whether the key file mentions it (see above),
and if it does not, notify Electric Cloud.

Profiling Debug Logging

Annotation files include profilingmetrics to help troubleshoot performance issues. These are the same
metrics that are in the debug log file when the --emake-debug=g option is set. The metrics appear in
annotation whether or not --emake-debug=g is used. The metrics are in the <profile> tag and appear
exactly as they do in the debug log file.

Electric Cloud engineering and support staff use profiling debug logging as well as other information in
the eMake debug logs to help troubleshoot problems. For more information about debug logging and log
levels, see eMake Debug Log Levels on page 11-2in Chapter 11, Troubleshooting on page 11-1.

Viewing JobCache Metrics
The annotation file includes metrics about job cache activity. Following is an example that lists the metrics.
This example shows that Shared JobCache is used:

...
<metrics>
...

<metric name="jobcache.hit.local">382</metric>
<metric name="jobcache.hit.shared">0</metric>
<metric name="jobcache.hit">382</metric>
<metric name="jobcache.miss">666</metric>
<metric name="jobcache.newslot">98</metric>
<metric name="jobcache.sharedmiss">0</metric>
<metric name="jobcache.sharednewslot">0</metric>

Job Caching

<metric name="jobcache.rootschanged">0</metric>
<metric name="jobcache.uncacheable">4</metric>
<metric name="jobcache.unneeded">6</metric>
<metric name="jobcache.na">3150</metric>
<metric name="jobcache.workloadsaved">367.393489</metric>

...
</metrics>
...

For descriptions of these metrics, see the “Metrics in Annotation Files on page 8-6” section in Chapter
8, Annotation on page 8-1.

Moving Your Workspace
If you want to move your workspace, make sure that the new eMake roots correspond to the old eMake
roots. Also, because the asset directory defaults to .emake in the current working directory, you must
either copy that directory to the new workspace or use --emake-assetdir= to specify an asset
directory that you want the two workspaces to share. If you already use --emake-assetdir= to point to
an asset directory within your old workspace and also want to move the asset directory, you must
update its value to point to the new asset directory location.

Deleting the Cache
In general, content in the cache is not deleted automatically (although it might be replaced by newer
content). If the cache grows significantly beyond the size expected for a full build, you can delete the
cache to save disk space.

For example, if you change the value of the C_INCLUDE_PATH environment variable, then the cache will
grow to contain results for both the old and new values of that variable. In this case, you might want to
clear the cache when you permanently change the value of this variable and therefore no longer need
the old cache results.

To delete the cache, you delete the <assetdir>/cache.* directories. For example, if you are using the
default asset directory on Linux, enter

rm -r .emake/cache.*

Job Caching for kati
kati is an experimental GNU make clone that is used to speed up incremental Android builds. kati is
used for Android version 7 (“Nougat”) to convert makefiles to Ninja files. For more information about
kati, see https://github.com/google/kati.) The ElectricAccelerator JobCache feature for kati can improve
build performance by caching and reusing kati target files. JobCache for Kati is supported only on Linux
platforms.

JobCache caches all kati target files (.ninja files if using the Ninja build system). JobCache for kati should
not be used to cache results from linking.

Because kati output target names do not follow a well-known pattern, you cannot automatically enable
JobCache for kati via the --emake-jobcache command-line option. Instead, you must apply the

6-16 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 6: Performance Optimization

https://github.com/google/kati

ElectricAccelerator 10.1 Electric Make User Guide6-17

#pragma jobcache kati pragma inside the makefile. For example, on Android builds using kati, use
the pragma as follows:

#pragma jobcache kati
$(KATI_BUILD_NINJA) :

Parse Avoidance
ElectricAccelerator includes a parse avoidance feature that can almost eliminate makefile parse time.
By caching and reusing parse result files, Accelerator can speed up both full builds and incremental
builds.

Parse avoidance works when emulating GNU Make with clusters or local agents.

Parse avoidance uses the concept of cache "slots." When parse avoidance is enabled, eMake maintains
a slot for each combination of non-ignored command line options, non-ignored environment variable
assignments, and current working directory. (Ignored arguments and environment variables are listed
here.) A slot can be empty or hold a previously cached result. If the appropriate slot holds an up-to-date
result, parsing is avoided.

A cached result becomes obsolete if eMake detects file system changes that might have caused a
different result (with the same command line options, environment variable assignments, and current
working directory). Such file system changes include any file read by the parse job, which means all
makefiles, all programs invoked by $(shell) during the parse (as opposed to during rule execution), the
files they read, and so on.

Console Output

When a cached parse result is reused, eMake replays the file system modifications made during the
parse job and any standard output or standard error that the original parse job produced. For example,
if the makefile includes

VARIABLE1 := $(shell echo Text > myfile)

VARIABLE2 := $(warning Warning: updated myfile)

then when using a cached parse result, eMake creates "myfile" and prints "Warning: updatedmyfile".

Enabling Parse Avoidance
You must first run a "learning" build with the parse avoidance feature enabled. To enable parse
avoidance, set the following: --emake-parse-avoidance=1

For the learning build, (because the parse cache is empty), the argument only saves a new result to the
cache. For subsequent builds, the argument enables the reuse of cached parse results and saves a new
result to the cache as appropriate. If you do not specify --emake-parse-avoidance=1, then the parse
avoidance cache is not accessed at all.

Note: You should also disable generated dependencies (either by modifying your makefiles or by using
--emake-suppress-include; see below)

Parse Avoidance

The following table describes parse avoidance-related options.

eMake Option Description

--emake-assetdir=<path>

Use the specified directory for cached parse results. The default
directory is named .emake. (This option also determines the location
of the saved dependency information for the dependency
optimization feature and the cache location for JobCache.)

--emake-parse-avoidance=
<0/1>

Avoid parsing makefiles when prior parse results remain up-to-date
and cache new parse results when appropriate.

--emake-parse-avoidance-
ignore-env=<var>

Ignore the named environment variable when searching for
applicable cached parse results. To ignore more than one variable,
use this option multiple times.

--emake-parse-avoidance-
ignore-path=<path>

Ignore this file or directory when checking whether cached parse
results are up-to-date. Append% for prefix matching (the %must be
the last character). To ignore more than one path or prefix, use this
option multiple times.

Incorrect placement of % will result in an error.

Correct: --emake-parse-avoidance-ignore-path=.foo%

Incorrect: --emake-parse-avoidance-ignore-path=.%foo

--emake-suppress-include=
<pattern>

Skip matching makefile includes (such as generated dependencies).
Generally, you should not suppress makefile includes unless they are
generated dependency files, and you have enabled automatic
dependencies as an alternative way of handling dependencies.

Note: If the pattern does not have a directory separator, then the
pattern is compared to the include's file name component only. If
the pattern has a directory separator, then the pattern is taken
relative to the same working directory that applies to the include
directive and compared to the included file's entire path.

If a file is read during a parse but changes before eMake attempts to reuse that parse's results, the
cached parse result is normally considered to be obsolete. You can, however, temporarily override this
decision with --emake-parse-avoidance-ignore-path.

eMake permanently ignores the effect on a given parse result of certain special files that might have
existed when it was created, in all cases using the names they would have had at that time:

l Anything in ".emake" or whatever alternative directory you specified using --emake-assetdir

l Client-side eMake debug log (as specified by --emake-logfile)

l Annotation file (as specified by --emake-annofile)

l History file (as specified by --emake-historyfile)

Notes:

6-18 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 6: Performance Optimization

ElectricAccelerator 10.1 Electric Make User Guide6-19

l It is recommend that your makefiles avoid any $(shell) expansion that uses these four special
files and directories in a meaningful way, because parse avoidance will ignore changes to them.

l Enabling remote parse debugging (the --emake-rdebug option) disables parse avoidance.

You can use a pragma to instruct parse avoidance to detect the dependence of a parse result upon path
wildcardmatch results. This pragmamakes the parse cache sensitive to the existence (or
nonexistence) of specific files in directories that it reads as well as in new subdirectories thereof. (eMake
does not detect matching files in just any new subdirectory, but only those that are subdirectories of
directories read in the original job and their subdirectories, recursively.)

You can specify more than one glob pattern, as in the following pragma:

#pragma jobcache parse -readdir *.h -readdir *.c

For Android-specific information about parse avoidance and other Android best practices, see KB article
KBEA-00130 at https://electriccloud.zendesk.com/entries/23213988-KBEA-00130-Best-practices-
for-Android-builds.

Parse Avoidance Example

noautodep.mk is used for this example. The contents are:

#pragma noautodep */.git/*
$(local-intermediates-dir)/libbcc-stamp.c :

#pragma noautodep */out/target/product/generic/system/bin/cat
$(linked_module) :

The following parse avoidance example provides command line arguments for Android 4.1.1.

Note: You might need additional options such as --emake-cm

--emake-parse-avoidance=1 --emake-autodepend=1 --emake-suppress-include=*.d --
emake-suppress-include=*.P --emake-debug=P -f Makefile -f noautodep.mk

Deleting the Cache
To delete the cache, delete <assetdir>/cache.*. (The default asset directory is .emake.)

For example: rm -r .emake/cache.*

Moving Your Workspace
If you want to move your workspace, make sure that the new eMake roots correspond to the old eMake
roots. Also, because the asset directory defaults to .emake in the current working directory, you must
either copy that directory to the new workspace or use --emake-assetdir= to specify an asset
directory that you want the two workspaces to share. If you already use --emake-assetdir= to point to
an asset directory within your old workspace and also want to move the asset directory, you must
update its value to point to the new asset directory location.

Parse Avoidance

https://helpcenter.electric-cloud.com/hc/en-us/articles/202831173-KBEA-00130-Best-practices-for-Android-builds
https://helpcenter.electric-cloud.com/hc/en-us/articles/202831173-KBEA-00130-Best-practices-for-Android-builds

eMake looks for eMake roots in the values of Make variables. When eMake replays a cached parse result
in a new workspace, it replaces the old eMake roots in the values of those variables with the new eMake
roots. This policy works well as long as no confusion exists between eMake roots and other text in those
variable values. For example, if the value of a Make variable is -I/we will look into this, your old
eMake root is /we, and your new eMake root is /wg, then the new value will be -I/wg will look into

this. For best results, choose distinctive directory names for your workspaces.

Limitations
l Windows is currently not supported.

l The parse avoidance feature does not detect the need to reparse in these cases:

l Changes to input files and programs that are used during the parse (such as makefile
includes) but are not virtualized (because they are not located under --emake-root=...).

l Changes to non file system, non-registry aspects of the environment, for example, the
current time of day

l If a parse job checks the existence or timestamp of a file without reading it, parse avoidance
might not invalidate its cached result when the file is created, destroyed, or modified.

l Using --emake-autodepend=1 and --emake-suppress-include=<pattern> in conjunction
with parse avoidance helps to avoid this limitation. If a generated dependency file did not
exist when a parse result was saved into the cache, eMake might reuse that cached parse
result even after that dependency file was created. Of course, you also benefit from
eDepend’s performance and reliability gains.

l This limitation can be mitigated by the use of #pragma jobcache parse -readdir ...,
which reruns the parse job after files are created or deleted that match the pattern and are
located in a directory that was subject to a wildcardmatch or $(shell find ...) when the cache
was populated.

Troubleshooting

Enabling Parse Avoidance Debug Logging

To help troubleshoot performance issues, you should enable parse avoidance debug logging. To do so,
include a capital letter “P” in the argument of the --emake-debug=<arguments> option. Electric Cloud
engineering and support staff use the eMake debug logs to help troubleshoot problems. For more
information about debug logging and log levels, see the “eMake Debug Log Levels on page 11-2”
section in Chapter 11,Troubleshooting on page 11-1.

Debug Log Example

You can look in "P" debug logging for an explanation of why a cached result was found to be obsolete:

WK01: 0.062173 Input changed: job:J08345218 slot:b6189634a793fee2fe1929fbf47cc4e4
path:/home/aeolus/t/Makefile thenSize:175 nowSize:176 ignore:0
WK01: 0.062228 Input changed: job:J08345218 slot:b6189634a793fee2fe1929fbf47cc4e4
path:/home/aeolus/t/fog.mk thenSize:0 nowSize:1 ignore:0
...
WK01: 0.062284 Cache slot is obsolete: job:J08345218
slot:b6189634a793fee2fe1929fbf47cc4e4

6-20 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 6: Performance Optimization

ElectricAccelerator 10.1 Electric Make User Guide6-21

Notice that "Makefile" and "fog.mk" were both bigger; either of those changes would have triggered a
reparse. The "ignore:0" comments indicate that --emake-parse-avoidance-ignore-pathwas not
used to ignore the changes.

Using Key Files for Debugging

To discover why a new cache slot was used, look in "P" debug logging for the name of the "key" file for
that new cache slot; for example:

WK01: 11.853035 Saved slot definition: .emake/cache.11/i686_
Linux/d9/0f/79/4fb975e8ff94dfa2569a303e62.new.2NPR8J/key

Note: The ".new.2NPR8J" portion of the slot directory name should have already been removed
automatically by eMake before you need to access the key file.

Then diff that key file against other key files in sibling directories to see what parameters changed. To
determine which slot directories to compare, grep for the parse job IDs in "P" debug logging. You can
get parse job IDs from annotation using ElectricInsight. Each key file contains an artificial cd command
to express the working directory, all non-ignored environment variables, and the non-ignored
command-line arguments. Ignored command-line arguments and environment variables are omitted
from key files. The key file is stored in a directory whose path name is derived from the md5sum of the
file itself. Also, the command line might have been normalized to one that is equivalent to the original
one. eMake quotes special characters according to UNIX, Linux, and Cygwin sh shell rules.

Ignored Arguments and Environment Variables
The following arguments do not affect which cache slot is chosen:

--emake-annodetail
--emake-annofile
--emake-annoupload
--emake-assetdir
--emake-big-file-size
--emake-build-label
--emake-class
--emake-cluster-timeout
--emake-cm
--emake-debug
--emake-hide-warning
--emake-history
--emake-history-force
--emake-historyfile
--emake-idle-time
--emake-job-limit

--emake-ledger
--emake-ledgerfile
--emake-localagents
--emake-logfile
--emake-logfile-mode
--emake-maxagents
--emake-mem-limit
--emake-parse-avoidance-ignore-path
--emake-pedantic
--emake-priority
--emake-readdir-conflicts
--emake-resource
--emake-showinfo
--emake-tmpdir

The following default set of environment variables do not affect which cache slot is chosen. You can
specify additional environment variables with --emake-parse-avoidance-ignore-env. You must use -
-emake-parse-avoidance-ignore-env once for each variable to ignore.

Parse Avoidance

_
BUILD_DISPLAY_NAME
BUILD_ID
BUILD_NUMBER
BUILD_TAG
CI_JENKINS_BUILD_ID
CI_JENKINS_BUILD_NUMBER
CI_JENKINS_BUILD_TAG
CI_JENKINS_HUDSON_SERVER_COOKIE
CI_JENKINS_JENKINS_SERVER_COOKIE
COLORFGBG
COLUMNS
COMMANDER_JOBID
COMMANDER_JOBSTEPID
COMMANDER_RESOURCENAME
COMMANDER_SESSIONID
COMMANDER_WORKSPACE
COMMANDER_WORKSPACE_UNIX
COMMANDER_WORKSPACE_WINDRIVE
COMMANDER_WORKSPACE_WINUNC
DBUS_SESSION_BUS_ADDRESS
DESKTOP_SESSION
DISPLAY
EMAKE_APP_VERSION
EMAKE_BUILD_MODE
EMAKE_LEDGER_CONTEXT
EMAKE_MAKE_IDEMAKE_PARSEFILE
EMAKE_PARSEFILE
EMAKE_RLOGFILE
ECLOUD_AGENT_NUM
ECLOUD_BUILD_CLASS
ECLOUD_BUILD_COUNTER
ECLOUD_BUILD_ID
ECLOUD_BUILD_TAG
ECLOUD_BUILD_TYPE
ECLOUD_RECURSIVE_COMMAND_FILE
GPG_AGENT_INFO
HOSTNAME
KDE_FULL_SESSION
KDE_MULTIHEAD
KDE_SESSION_UID
KDE_SESSION_VERSION
KONSOLE_DBUS_SERVICE

KONSOLE_DBUS_SESSION
LINES
LS_COLORS
OLDPWD
SESSION_MANAGER
SHELL_SESSION_ID
SHLVL
SSH_AGENT_PID
SSH_AUTH_SOCK
SSH_CLIENT
SSH_CONNECTION
SSH_TTY
TEMP
TERM
TERMCAP
TMP
TMPDIR
WINDOWID
WINDOWPATH
WRAPPER_ARCH
WRAPPER_BIN_DIR
WRAPPER_BITS
WRAPPER_CONF_DIR
WRAPPER_DESCRIPTION
WRAPPER_DISPLAYNAME
WRAPPER_EVENT_NAME
WRAPPER_EVENT_WRAPPER_PID
WRAPPER_FILE_SEPARATOR
WRAPPER_HOSTNAME
WRAPPER_INIT_DIR
WRAPPER_JAVA_HOME
WRAPPER_EVENT_JVM_ID
WRAPPER_EVENT_JVM_PID
WRAPPER_LANG
WRAPPER_NAME
WRAPPER_OS
WRAPPER_PATH_SEPARATOR
WRAPPER_PID
WRAPPER_SYSMEM_PP.P
WRAPPER_WORKING_DIR
XCURSOR_THEME
XDG_SESSION_COOKIE
XDM_MANAGED

6-22 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 6: Performance Optimization

ElectricAccelerator 10.1 Electric Make User Guide6-23

WRAPPER_ARCH
WRAPPER_BIN_DIR
WRAPPER_BITS
WRAPPER_CONF_DIR
WRAPPER_DESCRIPTION
WRAPPER_DISPLAYNAME
WRAPPER_EVENT_NAME
WRAPPER_EVENT_WRAPPER_PID
WRAPPER_FILE_SEPARATOR
WRAPPER_HOSTNAME
WRAPPER_INIT_DIR
WRAPPER_JAVA_HOME
WRAPPER_EVENT_JVM_ID
WRAPPER_EVENT_JVM_PID
WRAPPER_LANG
WRAPPER_NAME
WRAPPER_OS
WRAPPER_PATH_SEPARATOR
WRAPPER_PID
WRAPPER_SYSMEM_PP.P
WRAPPER_WORKING_DIR

Javadoc Caching
The ElectricAccelerator Javadoc caching feature can improve build performance by caching and reusing
Javadoc files.

Enabling Javadoc Caching
To enable Javadoc caching for a specific rule, add the following before that rule:

#pragma jobcache javadoc

Alternatively, you can mention the target again in a separate makefile:

#pragma jobcache javadoc
mytarget :

By default, the cache becomes obsolete when *.java files are added to or removed from directories
that are read by the rule body. You can override this default wildcard pattern by invoking:

#pragma jobcache javadoc -readdir pattern

pattern is the pattern that you want to ignore. You can use multiple wildcard (glob) patterns.

eMake permanently ignores the effect on a given result of certain special files that might have existed
when it was created, in all cases using the names they would have had at that time:

l Anything in ".emake" or whatever alternative directory you specified using --emake-assetdir

l Client-side eMake debug log (as specified by --emake-logfile)

l Annotation file (as specified by --emake-annofile)

l History file (as specified by --emake-historyfile)

Note: -hdf arguments are removed from consideration for which cache slot to use.

Javadoc Caching

If you want to delete the cache, see Deleting the Cache on page 6-19.

For debugging information, see Troubleshooting on page 6-20.

Limitations
l The following Javadoc invocations are not supported:

l Javadoc is invoked indirectly, such as through a wrapper script

l The rule body recursively invokes eMake

l If Javadoc is named something other than "javadoc"

l Javadoc caching is sensitive to changes in *.javawildcard outcomes in directories that are
actually read by the job, and any new subdirectories thereof.

l #pragma jobcache ... cannot be applied to patterns as such, only to explicitly specified targets
(though the commandsmight be provided by a pattern).

l Windows is not supported.

l The Javadoc caching feature does not detect the need to rebuild Javadoc files in these cases:

l Changes to input files and programs that are used by a rule body but that Accelerator does
not virtualize (because they are not located under --emake-root=...).

l Changes to non file system, non-registry aspects of the environment, for example, the
current time of day

l If a rule job checks the existence or timestamp of a file without reading it, Javadoc cachingmight
not invalidate its cached result when the file is created, destroyed, or modified. However,
Javadoc caching will detect when files matching "*.java" (or the pattern specified by "-readdir")
are added or removed from directories read by the rule body, or any new subdirectories thereof.
In that case eMake will rerun Javadoc.

Schedule Optimization
How it Works

Schedule optimization uses performance and dependency information from previous builds to optimize
the runtime order of jobs in subsequent builds.

This approach can improve performance on the same number of agents (compared to v7.0, or
compared to v7.1 when the requisite information is not available), and enables eMake to realize the
"best possible" build performance for a given build with fewer agents.

Using Schedule Optimization
Schedule optimization is enabled by default, but it has no effect if scheduling data files are not available.

Emake automatically generates the scheduling data file in the asset directory (.emake by default) in the
sched subdirectory under a platform-specific directory such as Linux, SunOS, or win32. For example, on
Linux the scheduling data file is found in .emake/sched/Linux/emake.sched. The next eMake build
that uses the scheduling data file will have improved performance.

6-24 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 6: Performance Optimization

ElectricAccelerator 10.1 Electric Make User Guide6-25

You can use the --emake-assetdir eMake option to change the location of the asset directory.

Disabling Schedule Optimization
To disable schedule optimization, add the following to the eMake command line:

--emake-optimize-schedule=0

Running a Local Job on the Make Machine
ElectricAccelerator normally executes all build commands on the cluster hosts. Any file access by
commands is served by the in-memory EFS cache or fetched from eMake andmonitored to ensure that
dependency information is captured to guarantee correct results.

Sometimes running a command on an Agent (which could be in the cluster or local) is not preferred. For
example, a command could exercise heavy file I/O, which would create overhead that degrades
performance significantly. In these instances, you can use the #pragma runlocal directive in a
makefile to run it locally on the host buildmachine (where no EFS exists to virtualize andmonitor file
access) instead of remotely.

IMPORTANT: After a “run-local” job, eMake reloads the file system state for the current working
directory of the Make, not the job.

Local jobs use “forced-serial” mode. This means that eMake executes a run-local job when all previous
commands are complete. Then it does not let other commands run until the run-local job is complete.
In other words, while the run-local job is running, no other build steps are executed.

Jobs That Are Suited to Running Locally
Running locally is intended only for jobs that:

l Perform heavy I/O (these jobs are inefficient to run remotely)

l Execute near the end of the build (for example, forcing the build into serial mode would have
minimal performance impact)

l Logically produce a final output not used by steps later in the build

Therefore, final linking or packaging steps are typically the only commands that you should run locally.

Running locally is not intended for jobs that change the registry in a way that later parts of the build
depend on. This is because these changes would not be visible to later jobs in the build.

Specifying Jobs to Run Locally
Tomark a job run locally, precede its rule in the makefile with #pragma runlocal. For example:

#pragma runlocal
myexecutable:

$(CC) -o $@ $(OBJS) ...

You can specify #pragma runlocal for a pattern rule. In this case, all jobs instantiated from that rule
are marked as run-local:

Running a Local Job on the Make Machine

#pragma runlocal
%.exe: %.obj

$(CC) -o $@ $*

You can run jobs locally after a certain point in the build by using #pragma runlocal sticky. This
variant specifies that all jobs later in the serial order than the job specifically markedwith #pragma
runlocal sticky should be run locally as if #pragma runlocal applied to all of them. This is not the
same as “all jobs declared after this job in the makefile.” The order of job declaration in a makefile is not
related to the serial order of those jobs.

Making eMake Detect Files Outside the Current Working
Directory

By default, eMake cannot detect files that were created by a run-local job. Instead, it attempts to find
any new files in the current working directory after the job has run. This means that by default, the
run-local jobmust not make changes outside of its current working directory. This is because if changes
occur, subsequent jobs will not see the output outside of the current working directory and could fail
because precise interaction depends on the file system state when the job begins.

Sometimes, however, jobs create files outside of the current working directory. If this is the case, you
must use the -repopulate option to #runlocal to tell eMake where to find them instead. This is critical
if later jobs that run on agents must access the output of the run-local job. You can use the -
repopulate option to tell eMake to look in one or more directories.

The -repopulate option works only when #runlocal is specified inside an eMake pragma addendum
file. For details about pragma addendum files, see the “Specifying Pragmas in an Addendum File on
page 4-13” section in the “Additional eMake Settings and Features” chapter.

The syntax for using the -repopulate option is:

#pragma runlocal -repopulate <dir1> [... -repopulate <dirN>]

For example:

#pragma runlocal -repopulate ./out -repopulate ./abc/def sticky

Serializing All Make Instance Jobs
Normally, eMake runs all jobs in a Make instance in parallel on multiple distinct Agents. For most builds,
this process ensures the best possible performance.

In some cases, however, all jobs in a Make instance are interdependent andmust be run serially, for
example, a set of jobs updating a shared file. In particular, Microsoft Visual C/C++ compilers exhibit this
behavior when they create a common program database (PDB) file to store symbol and debug
information to all object files.

Example

The followingmakefile invokes clwith the /Zi flag to specify the program database file be created with
type and symbolic debugging information:

6-26 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 6: Performance Optimization

ElectricAccelerator 10.1 Electric Make User Guide6-27
all:

$(MAKE) my.exe
$(MAKE) other.exe

my.exe: a.obj b.obj c.obj my.obj
cl /nologo /Zi $^ /Fe'my.exe'

%.obj: %.c

cl /nologo /Zi /c /Fo$@ $^

In this build, the a.obj, b.obj, c.obj and my.obj jobs are implicitly serialized because they all write
to the shared PDB file (by default, vc70.pdb). In this case, jobs run in parallel, and running them on
separate Agents only introduces unnecessary network overhead. This job type needs to run serially so
it can correctly update the PDB file.

The eMake special directive, #pragma allserial used in the makefile, allows you to disable a parallel
build in a Make instance and run the job serially on a single Agent. By inserting the #pragma allserial

directive at the beginning of a line anywhere in the makefile, the directive specifies that all jobs in that
make instance be serialized. This process maximizes network and file cache efficiency.

In the example above, by prefixing the %.obj pattern rule with the #pragma allserial directive:

#pragma allserial
%.obj: %.c

cl /nologo /Zi /c /Fo$@ $^

eMake runs compiles and links for the my.exeMake instance in serial on the same Agent.

Splitting PDBs Using hashstr.exe
The hashstr.exe utility creates a hash of the file name given amodulus (maximum number of PDBs
that will be produced). A given file must always produce the same PDB or history would constantly
change. The hash should only include the file name and not its full path. Precompiled headers (PCHs)
must be turned off.

Example

Usage: hashstr "mystring" [modulus]

Where mystring is the string from which to generate the hash value, andmodulus is the number of
hash bins you want to use.

You can add this to a pattern rule for builds that suffer from performance degradation due to PDB
serialization, with something similar to the following:

%.o: %.c
$(CC) /c $(cflags) $(PCH_USE_FLAGS) $(cvars) $(cplus_flags) $(LOCAL_INCLUDE)
$(PCB_INCLUDE) $< /Fo$@ /Fd$(shell ${path-to-hashstr}/hashstr.exe "$@"
${hashstr-modulus}).pdb

Serializing All Make Instance Jobs

Managing Temporary Files
During the build process, temporary files are created, then deleted automatically when a build
completes. Tomaintain optimum efficiency, it is important to identify where these files are created in
relation to the final output files.

Configuring the eMake Temporary Directory
eMake runs commands and collects output in parallel, but the results are written in order, serially. This
feature ensures a build behaves exactly as if it were run locally. See Transactional CommandOutput on
page 5-4.

The eMake temporary directory is used to store output files from commands (for example, object files)
that finished running but are waiting their turn to be relocated to a final destination on disk. By default,
eMake creates a temporary directory in the current working directory. The directory name will have the
form:

ecloud_tmp_<pid>_<n>

where pid is the eMake process identifier.
where n is a counter assigned by eMake to differentiate multiple temporary directories created
during a single build if you specify multiple directories.

eMake removes the temporary directory on exit (including the Ctrl-C user interrupt). If eMake is
terminated unexpectedly (for example, by the operating system), the temporary directory might
persist and need to be removedmanually.

Important temporary directory requirements include:

l Must be writable by the eMake process

l Must not be on an NFS share

l Must have enough space to contain the build output

l Ideally, the temporary directory should have enough space to hold the complete build
output; in practice however, it might need only enough space for output from the largest
commands.

l The exact temporary directory space requirement varies greatly with the build size, the
number of Agents used, and build system speed.

You can use the --emake-tmpdir command-line option or the EMAKE_TMPDIR environment variable to
change the temporary directory default location:

% emake --emake-tmpdir=/var/tmp ...

Files are relocated from the temporary directory to their final location. Keeping the temporary directory
on the same file system as the EMAKE_ROOT helps performance because files can simply be renamed in
place, instead of copied.

eMake and agent machines reset the values for TEMP, TMP, and TMPDIR. This is necessary to avoid
possible conflicts with multiple build agents/jobs running on the samemachine.

6-28 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 6: Performance Optimization

ElectricAccelerator 10.1 Electric Make User Guide6-29

If you have more than one EMAKE_ROOT that spansmultiple file systems, you can specify more than one
temporary directory to ensure eMake can always rename files in place, instead of copying them.

For example, if your EMAKE_ROOT contains three directories:

% setenv EMAKE_ROOT /home/alice:/local/output:/local/libs

that reside on two different file systems

% df /home/alice /local
Filesystem 1K-blocks Used Available Use% Mounted on
filer:/vol/ 76376484 47234436 25262352 66% /home
vol0/space
/dev/hdb1 76896316 51957460 21032656 2% /local

to ensure better performance, specify two temporary directories—write permission at both
locations is required:

% emake --emake-tmpdir=/home/alice:/local ...

When specifyingmultiple temporary directories, note the following:

l If a temporary directory was specified for a particular file system, eMake automatically uses that
directory for any files destined to reside on that file system.

l If a temporary directory was not specified for a particular file system, eMake uses the first
directory specified for files destined to reside on that file system.

Deleting Temporary Files
During a build, eMake creates a temporary directory inside the directory specified by the EMAKE_TMPDIR
environment variable or in the directory specified by the --emake-tmpdir command-line option (or the
current working directory if no eMake temporary directory is specified). If a specified directory does not
exist, eMake creates it. All temporary directories created by eMake are automatically deleted when a
build completes.

For example, if you set your temporary directory to /foo/bar/baz and only /foo/bar exists, eMake
creates /foo/bar/baz and /foo/bar/baz/ecloud_tmp_<pid>_<n>, and then deletes both directories
and all their contents when it exits. If /foo/bar/baz exists at the start of the build, only
/foo/bar/baz/ecloud_tmp_<pid>_<n> is created and deleted.

However, if the build is aborted in-progress, eMake will not have the opportunity to remove the
temporary directory.

Subsequent eMake invocations automatically delete temporary directories if they are more than 24
hours old. You can reclaim disk space more quickly by deleting temporary directories and their contents
by hand. However, do not delete the temporary directory while a build is in-progress—this action causes
the build to fail.

Temporary directory names are in this form:

ecloud_tmp_<pid>_<n>

where pid is the eMake process identifier.

Managing Temporary Files

where n is a counter assigned by eMake to differentiate multiple temporary directories created
during a single build if you specify multiple directories.

6-30 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 6: Performance Optimization

Chapter 7: Dependency Management
The following topics discuss ElectricAccelerator eDepend, the Ledger, and how ElectricAccelerator
handles history data files.

Topics:

l ElectricAccelerator eDepend

l ElectricAccelerator Ledger File

l Managing the History Data File

ElectricAccelerator eDepend
In its default configuration, Accelerator is designed to be a drop-in replacement for your existing Make
tool—GNU Make or Microsoft NMAKE. Accelerator behaves exactly like your existing Make: it will rebuild
(or declare up-to-date) the same targets following the same rules Make uses. The file dependency
tracking technology in the Electric File System (EFS) and the eMake history feature is used to ensure
the system reproduces exactly the same results in a parallel, distributed build as it would serially.

Because the system captures and records such detailed information about the relationships between
build steps, it is uniquely capable of accomplishingmuch more than simply ensuring parallel builds are
serially correct. In particular, by enabling ElectricAccelerator eDepend, you can wholly replace tools and
techniques likemakedepend or gcc -M—commonly used to generate makefiles too difficult to
maintain by hand (for example, C-file header dependencies).

ElectricAccelerator eDepend is easier to configure, faster, more accurate, and applicable to a much
wider range of dependencies than existing dependency generation solutions. If your current build does
not employ dependency generation, you can enable eDepend and benefit from more accurate
incremental builds without the overhead of configuring and integrating an external dependency
generation tool.

The following sections describe the dependency generation challenge in more detail and how eDepend
can improve your build speed and accuracy.

Dependency Generation
Consider a build tree that looks like this:

src/

 Makefile <--- top-level makefile: recurses into mylib and then into main to build
the program

 common/

header1.h

header2.h

 mylib/

Makefile <--- has rules to build mylib.o and create library mylib.a

mylib.h

mylib.c <--- includes common/header1.h and mylib.h

 main/

Makefile <--- has rules to build main.o and then to link main using main.o and
mylib.a

main.c <--- includes common/header1.h, common/header2.h, and lib/mylib.h

7-2 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 7: Dependency Management

ElectricAccelerator 10.1 Electric Make User Guide7-3

The Problem
Even in this simple example, the need for dependency generation is apparent: if you make a change to
a header file, how do you ensure dependent objects are recompiled when you rebuild?

Makefiles could explicitly declare all header dependencies, but that quickly becomes too cumbersome:
each change to an individual source file might or might not require an adjustment in the makefile.
Worse, conditionally compiled code can create somany permutations that the problem becomes
intractable.

Another possibility is to declare all headers as dependencies unilaterally, but then the build system
becomes very inefficient: after a successful build, a modification to header2.h should trigger a rebuild
only of the mainmodule, not mylib.a as well.

Clearly, to get accurate, efficient builds, the system must have calculated dependencies automatically
before it builds.

There are several ways to generate dependencies and update makefiles to reflect these dependencies
(for example,makedepend or gcc -M), but they all have the drawbacks mentioned previously.

eDepend Benefits
ElectricAccelerator eDepend is an eMake feature that directly addresses all problems with existing
dependency generation solutions. Specifically:

l It is part of eMake and requires no external tool to configure, no extra processing time, and it is
faster than other solutions.

l It is easily enabled by setting a command-line parameter to eMake. No tools or changes to
makefiles are required.

l Like ElectricAccelerator itself, it is completely tool and language independent. eDepend
automatically records any and all kinds of dependencies, including implicit relationships such as
executables on libraries during a link step.

l eDepend dependencies are recorded in eMake history files—transparently recorded and used
without manifesting as makefile rules.

l eDepend is accurate because it uses file information discovered by the Electric File System at the
kernel level as a job executes its commands.

How Does eDepend Work?
Internally, eDepend is a simple application of sophisticated file usage information returned by the
Electric File System.

1. As a job runs, the Electric File System records all file names it accesses inside EMAKE_ROOT.

This function has two very important implications:

l eDepend can track dependencies within EMAKE_ROOT only.

l eDepend can track dependencies for a job only after it has run—this is why you must start
with a complete build rather than an incremental build.

ElectricAccelerator eDepend

2. After a job completes, eMake saves the following eDepend information to the eMake history file:

l the working directory for the Make instance

l the target name

l any files actually read (not just checked for existence) and/or explicitly listed as prerequisites
in the makefile

Note: eDepend information is stored in the history file alongwith serialization history
information. Commands operating on the history file (for example, those specifying file location
or that erase it) apply to eDepend information as well.

3. In a subsequent build, whenever eMake schedules a target in a directory for which it has
eDepend information, it evaluates file dependencies recorded in the earlier run as it checks to
see if the target is up-to-date.

In the example above, the rule to update mylib.omight look like this:

mylib.o: mylib.c
$(CC) ...

mylib.c includes common/header1.h, which is not explicitly listed as a prerequisite of mylib.o, so
eDepend records this implicit dependency in the history file.

Directory Object Dependency

src/mylib mylib.o common/header1.h

If a change is then made to common/header1.h, src/mylib/mylib.o it will be rebuilt.

Enabling eDepend
1. Start from a clean (unbuilt) source tree.

2. If your build system already has a dependency generation mechanism, turn it off if possible. If
you cannot turn it off, you will still get eDepend’s additional accuracy, but you will not be able to
improve the performance or shortcomings of your existing system.

3. Build your whole source tree with eDepend enabled.

Use the --emake-autodepend=1 command-line switch:

% emake --emake-autodepend=1 ...

Alternatively, insert --emake-autodepend=1 into the EMAKEFLAGS environment variable.

% setenv EMAKEFLAGS --emake-autodepend=1
% emake ...

4. Make a change to a file consumed by the build, but not listed explicitly in the makefiles.

For example, touch a header file: % touch someheader.h

5. Rebuild, again making sure eDepend is enabled.

% emake --emake-autodepend=1 ...

7-4 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 7: Dependency Management

ElectricAccelerator 10.1 Electric Make User Guide7-5

Notice that without invoking a dependency generator, eMake detected the changed header and
rebuilt accordingly.

Important Notes

l The eDepend list is consulted only if all other prerequisites in the makefile indicate the target is
up-to-date.

Explained another way: If a target is out-of-date because it does not exist or because it is older
than one of the prerequisites listed in the makefile, eDepend costs nothing and has no effect.

If the target is newer than all its listed prerequisites, then eDepend is the “11th hour” check to
ensure it really is up-to-date, and that there is not a newer implicit dependency. This is the only
place eDepend interacts with your build: it forces a target that incorrectly appears to be up-to-
date to be rebuilt.

l eDepend information, unlike traditional Makedepend rules, does not in any way imply anything
about needing to build or update the implicit prerequisite.

In the example above, if header1.h is renamed or moved, eMake just ignores the stale eDepend
information. When eMake next updates the mylib.o target, it will prune stale dependencies
from the eDepend list. This change to the history file occurs regardless of the setting of the --
emake-history-force parameter to eMake.

Unlike Make, eMake does not complain if it does not have a rule to make header1.h because
eDepend dependencies are not used to schedule targets.

l eMake considers a rule to be out of date when an implicit dependency is removed. This causes
eMake to rebuild the target, matching ClearMake.

l eDepend’s information scope is bound by a directory name and the target name. This means you
can build cleanly from the top of a tree, then run accurate incremental builds from individual
subdirectories and eDepend information will be used and updated correctly.

However, it does imply if you have a build that

l performsmultiple passes or variants over the same directories

l with exactly the same target names, but

l runs significantly different commands

For example, a build that produces objects with the same name for a different architecture or
configuration, eDepend information might be over-used unnecessarily. In this case, eMake
might rebuildmore than is necessary, but with no incorrect build results. In this situation, you
can achieve fast, correct builds by using separate history files, or ideally, by changing to unique
target names across build variants.

Using #pragma noautodep
Some build steps contain many implicit dependencies that might not make sense to check for up-to-
dateness. Examples include symbol files consumed by a link step or archive packager input files (for

ElectricAccelerator eDepend

example, tar). In both cases, any makefile explicit prerequisites are sufficient to determine if the target
should be updated: eDepend information would just add overhead or cause unnecessary rebuilds.

You can selectively disable eDepend information for certain files from any step by supplying eMake with
the makefile directive:

#pragma noautodep *.pdb
%.o: %.c

$(CL) ...

The directive #pragma noautodep is applied to the next rule or pattern rule in the makefile. This
directive specifies a class of files for eDepend to ignore. Note the following information about #pragma
autodep:

1. Wildcards allowed for #pragma autodep:

* matches 0 or more characters

? matches 1 character

[] matches a range of characters

2. The noautodep filters are matched against absolute path names. To limit a filter to files in the
current directory for the job, use ‘./’:

#pragma noautodep ./foo.h

To specify “ignore foo.h” in any directory, use:

#pragma noautodep */foo.h

3. If the supplied pattern has no wildcards and does not specify a path, it will never match.

eMake ignores the directive and prints a warning as it parses the makefile:

Makefile:2: ignoring autodep filter ‘foo’,
does not match absolute path(s).

ElectricAccelerator Ledger File
Traditional Make facilities rely exclusively on a comparison of file system timestamps to determine if the
target is up-to-date. More specifically, an existing target is considered out-of-date if its inputs have a
“last-modified” timestamp later than the target output.

For typical interactive development, this scheme is adequate: As a developer makes changes to source
files, their modification timestamps are updated, which signals Make that dependent targets must be
rebuilt. There is, however, a class of workflow styles that cause file timestamps tomove arbitrarily into
the past or future, and therefore circumvent Make's ability to correctly rebuild targets.

Two common examples are:

l Using a version control system that preserves timestamps on checkout (also known as “sync” or
“update”).

7-6 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 7: Dependency Management

ElectricAccelerator 10.1 Electric Make User Guide7-7

The default mode for most source control systems is to set the last-modified timestamp of every
file updated in a checkout or sync operation to the current day and time. If you change this
behavior to preserve timestamps (or if your tool's default mode is preserve), then updating your
source files can result in modified contents but with a timestamp in the past (typically, it is the
time of the checkin).

l Using file or directory synchronization tools (even simple recursive directory copies) to keep files
updated against some other repository.

Here again, while it is easy to modify source file content, the timestamp for modifications might
be any of several possibilities: time of copy, last-modified time of source, last-modified time of
destination, and so on.

The Problem
In all modified source files cases, we would like the Make system to rebuild any dependent objects.
However, because timestamps of modified files are not set reliably, Make might or might not force a
target update. Here is an example Makefile:

foo.o: foo.c
gcc -c foo.c

foo.o: foo.h

And a build is run without an existing foo.o object:

% make
gcc -c foo.c

% ls -lt
total 4
-rw-r--r-- 1 jdoe None 21 May 29 13:50 foo.o
-rw-r--r-- 1 jdoe None 21 May 29 13:50 foo.c
-rw-r--r-- 1 jdoe None 20 Apr 25 17:34 foo.h
-rw-r--r-- 1 jdoe None 41 Jan 19 09:27 Makefile

The foo.o target is updated. Next, suppose we ask our source control system to update the working
directory, and it responds by giving us a newer copy of foo.h, one that is several weeks newer than
what we have, and that timestamp is preserved:

% <sync>
% ls -lt
total 4
-rw-r--r-- 1 jdoe None 21 May 29 13:50 foo.o
-rw-r--r-- 1 jdoe None 21 May 29 13:50 foo.c
-rw-r--r-- 1 jdoe None 29 May 17 11:21 foo.h <-- notice timestamp change
-rw-r--r-- 1 jdoe None 41 Jan 19 09:27 Makefile

Traditional Make programs (here, GNU Make) will not notice the change because the timestamp is still
in the past, andwill incorrectly report that the target is up-to-date.

% make
make: `foo.o' is up to date.

ElectricAccelerator Ledger File

Some Make facilities (notably, Rational 'clearmake' in conjunction with Rational ClearCase) have the
ability to track timestamp information because they are integrated with the source control system.

The eMake Solution
eMake solves this problem at the file level, completely independent of the source control system, by
keeping a separate database of inputs and outputs called a ledger. To use the Ledger, you specify
which file aspects to check for changes when considering a rebuild. To do so, use the --emake-
ledger=<valuelist> command-line switch (or the EMAKE_LEDGER environment variable). <valuelist>
is a comma-separated list that includes one or more of: timestamp, size, command, nobackup,
nonlocal, and unknown. For more information, see Ledger options in eMake Command-Line Options,
Environment Variables, and Configuration File on page 3-8.

l timestamp – Any timestamp changes to either the target or the explicitly declared dependency,
regardless of how it relates to the last modified time of the target input file, triggers a target
rebuild.

l size – Any size change, regardless of the timestamp in the input file, triggers a target rebuild.

l command – Records the text of the command used to create the target. If makefile or its variables
change, using command rebuilds the target. Important caveat: If you initialize a variable using
the $(shell) function, be extremely careful to use the $(shell) function with a ’:=’ assignment to
avoid re-evaluating it every time the variable is referenced. ’:=’ simply expanded variables are
expanded immediately upon reading the line.

l nobackup – Suppresses the automatic backup of the ledger file before its use.

l nonlocal – Instructs eMake to operate on the ledger file in its current location, even if it is on a
network volume. By default, if the file specified by --emake-ledgerfile (emake.ledger in the
current working directory, by default) is not on a local disk, eMake copies that file (if it already
exists) to the system temporary directory and opens the copy, then copies it back to the
specified location when the build is complete.

Using nonlocal removes a safety andmight cause problems if the non-local file system has
issues with memory-mapped I/O (IBM Rational ClearCase MVFS is known to have issues with
memory-mapped I/O). If you are confident that you will get efficient and reliable memory-
mapped I/O performance from the non-local file system, you can remove the safety for improved
efficiency because eMake does not spend time at startup and shutdown copying ledger files.
Electric Cloud strongly recommends against using nonlocalwith ClearCase dynamic views.
Electric Cloud does not support Ledger-related problems that occur when nonlocal is used in
conjunction with the MVFS.

l unknown – Specifies that the Ledger feature consider a target to be out of date, if the Ledger
database contains no entry for the target.

In the example above, the Ledger can detect if a rebuild is necessary as the timestamps change. If the
original build was:

% emake --emake-ledger=timestamp
gcc -c foo.c
% <sync> <-- notice timestamp change

7-8 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 7: Dependency Management

ElectricAccelerator 10.1 Electric Make User Guide7-9
% emake --emake-ledger=timestamp
gcc -c foo.c

eMake consulted the Ledger and concluded the target needed to be rebuilt.

Important Notes for the Ledger Feature

l The Ledger feature works by comparing an earlier input state with the current state: if the
Ledger has no information about a particular input (for example, during the first build after it was
added to a makefile), it will not contribute in the up-to-dateness check.

l Only one Ledger is used per build.

l The default ledger file is called emake.ledger

It can be adjusted by the --emake-ledgerfile=<path> command-line option or EMAKE_
LEDGERFILE=<path> environment variable.

l If you specify --emake-ledgerfile=<path> but not --emake-ledger=<valuelist>, the Ledger
still hashes the file names, so the Ledger is triggeredwhen the file name order changes or a file is
added or removed.

l The Ledger automatically backs up the ledger file before using it. This ensures a non-corrupt file
is available. If the ledger file is large, copying it could take some time on incremental builds. The
ledger option, nobackup, suppresses the backup.

l Ledger works for local builds and those using a cluster, as well as local submakes in a runlocal
job, see Running a Local Job on the Make Machine on page 6-25.

l It is not possible, however, to share a Ledger between top-level make instances and local-mode
submakes running on the cluster. See EMAKE_BUILD_MODE=local in eMake Command-Line
Options, Environment Variables, and Configuration File on page 3-8.

l eMake consults Ledger information to trigger a rebuild only when a target would otherwise be
considered up-to-date. Information in the Ledger never prevents a target from being rebuilt.

l In a GNU Make emulation, the Ledger feature changes the meaning of the '$?' automatic
variable to be synonymous with '$^' (all prerequisites, regardless of up-to-dateness).

l You cannot change Ledger options for a particular ledger file—you must use the same
combination of timestamp, size, and command that was used to create the ledger file.

l If you turn on --emake-ledger and --emake-autodepend at the same time, the Ledger keeps
track of both implicit and explicit dependencies. This feature is comparable to using ClearMake
under ClearCase, but is independent of ClearCase information records.

l Order-only prerequisites, in keeping with their semantic meaning, never affect Ledger behavior.

l Because the Ledger automatically rebuilds a target when there is no existing entry in the ledger
file, a build that is using the Ledger for the first timemight take longer than expected.

Managing the History Data File
When Accelerator runs a build for the first time, it takes aggressive action to run all jobs as fast as
possible in parallel. Jobs that run in the wrong order because of missingmakefile dependencies are
automatically re-run to ensure correct output. (These failed steps are also called conflicts. See Conflicts
and Conflict Detection on page 7-13 for information about conflicts.)

Managing the History Data File

To avoid the cost of re-running jobs on subsequent builds, eMake saves the missing dependency
information in a history data file. The history data file evolves with each new run and enables
Accelerator to run builds at peak efficiency.

You can choose the location of the history file and how it is updated.

Setting the History File Location
By default, eMake creates the history file in the directory you use to invoke the build and names it
emake.data by default. The file location can be explicitly specified using the command-line option:

--emake-historyfile=<pathname>

The history file is used for two operations during an eMake cluster build:

l Input—eMake reads the history file as it starts a build to improve build performance.

l Output—eMake writes to the history file as it completes a build to improve performance of
subsequent builds.

History File Input Rules
If the history file (emake.data or whatever was specified with --emake-historyfile) exists, it is always
read and used to improve performance.

History File Output Rules
Data written to the history file after the build depends on the --emake-history option setting. Three
options are available:

1. Merge—By default, eMake merges new dependencies into the existing history file. In this way,
the history file evolves automatically as your makefiles change by learning dependencies that
accelerate your builds.

2. Create—If --emake-history is set to create, the old history file contents are overwritten by
new dependencies discovered in the run that just completed. Use this setting to start a fresh
history file to eliminate stale information from the file.

3. Read—If --emake-history is set to read, no data is written to the history file at build
completion, and any new dependencies discovered are discarded. Use this setting when
developers share a single, static copy of the history file.

By default, the history file is updated even if the build fails, regardless of the value of --emake-history.
You can override this behavior by setting --emake-history-force=0.

The history file directly impacts the number of conflicts the build can encounter. Ideally, an
ElectricAccelerator cluster build with good history should have almost no conflicts. If conflicts are
increasing, check for a current history file.

Guaranteeing Correct History
Use --emake-readdir-conflicts=1 to guarantee correct history. Some parallel builds do not succeed
without a good history file. In particular, builds that use wildcard or globbing operators to produce build-
generated lists of files and operate on those lists might fail. For example, a makefile might use ld *.o

7-10 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 7: Dependency Management

ElectricAccelerator 10.1 Electric Make User Guide7-11

as shorthand to avoid enumerating all the *.o files in a directory. Running the build with --emake-
readdir-conflicts=1 guarantees that the build succeeds and that a history file is created for use by
subsequent parallel builds.

Do not enable --emake-readdir-conflicts=1 all the time. Instead, enable it for one run if you suspect
a globbing problem, and then disable it, but use the history file generated by the previous run.

You can alternatively use the #pragma readdirconflicts pragma to enable directory-read conflicts on
a per-job basis. You can apply it to targets or rules in your makefiles. This pragma has less overhead
than --emake-readdir-conflicts=1 (which enables directory-read conflicts for an entire build). You
can use this pragma in pragma addendum files as well as in standardmakefiles.

Ensuring that Relative EMAKE_ROOT Locations Match
Relative EMAKE_ROOT locations must match. The history file records target file names relative to the
EMAKE_ROOT specified during that run. For a subsequent build to use the history file correctly, target file
namesmust have the same path name relative to the eMake root.

For example, if your eMake root is /home/alice/builds and your build references a path name in that
root: /home/alice/builds/lib/foo.o, then the history file records it as lib/foo.o. If a subsequent
build sets the eMake root to /home/bob/builds, the history file will match correctly.

If, however, the eMake root is /home/bob, then the file that exists on the disk as
/home/bob/builds/lib/foo.o is assigned the root-relative name of builds/lib/foo.o, which does
not match the name lib/foo.o in the history file generated above. Because the history file does not
match, performance might suffer.

Note: EMAKE_ROOTmust match the same location relative to sources as the EMAKE_ROOT used to create
the history file.

Running Builds with Multiple Roots
For builds with multiple roots, the roots must have the same alphabetical sorting order in each build so
that the history matches.

Using the remaphist Utility to Relocate a History File
The remaphist utility makes it easier for users to share history files. It is located at:

l (Linux) <install_dir>/i686_Linux/unsupported/remaphist, where <install_dir> is
/opt/ecloud by default

l (Windows) <install_dir>\i686_win32\unsupported\remaphist, where <install_dir> is
C:\ECloud by default

Modes of Operation

The remaphist utility has twomodes of operation:

Managing the History Data File

1. Makes a standard eMake history file “relocatable” (and therefore usable in other build
environments).

History files store paths in the form <root_ID><root_relative_path>, so if your root is
/home/stevec and you have a path such as /home/stevec/proj1, the history file records it as 0
proj1. A relocatable history file flattens those references and then replaces the root prefixes
with variables that are easier to “swizzle” later. For example, this step takes 0 foo to
/home/stevec/proj1 to $(ROOT0)/proj1.

2. Converts a relocatable history file back into a standard history file.

This step expands the variables according to the new user’s specification and then converts
them into new root-relative paths. For example, this step takes $(ROOT0)/proj1 to
/home/tmurphy/foo to 0 foo.

Syntax

To remap a standard file to make it relocatable:

remaphist -i <input_file> -o <mapped_file> [-r <emake_root(s)>] <VARIABLE>=<absolute_
path> [<VARIABLE2>=<absolute_path2> ...]

To convert a relocatable file back to a standard file:

remaphist -u -i <mapped_file> -o <output_file> -r <emake_root(s)><VARIABLE>=<absolute_
path> [<VARIABLE2>=<absolute_path2> ...]

Option Description

-u Performs an unmapping. The default is to perform a remapping.

-i <input_file> Path to the unmapped (standard) input file.

-o <mapped_file> Path to the remapped (relocatable) file to create.

-i <mapped_file> Path to the remapped (relocatable) input file.

-o <output_file> Path to the unmapped (standard) file to create.

-r <emake_root(s)> Specifies the eMake root(s).

-s <0|1> (Optional) Specifies whether to sort the root directories. The
default is 1 (sorted).

<VARIABLE>=<absolute_path>
[<VARIABLE2>=<absolute_path2> ...
]

eMake roots. You can specify one or more roots.

<-help|?> (Optional) Prints the help message.

Examples

The following example shows how to remap a standard history file to make it relocatable:

7-12 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 7: Dependency Management

ElectricAccelerator 10.1 Electric Make User Guide7-13
remaphist -i emake.data -o remapped.data PATHVAR=/opt/chrish/work
PATHVAR2=/opt/chrish/work2/q1proj

The following example shows how to convert a remapped history file back to a standard file:

remaphist -u -i remapped.data -o emake.data2 -r /workspace/tools
MYVAR=/opt/kathy/abs/proj MYVAR2=/opt/kathy/modules/

Conflicts and Conflict Detection
This section discusses conflicts and conflict detection in eMake. This content was adapted from the How
Electric Make guarantees reliable parallel builds and Exceptions to conflict detection in ElectricMake blog
posts on http://blog.melski.net/.

How eMake Guarantees Reliable Parallel Builds
The technology that enables eMake to ensure reliable parallel builds is called conflict detection.
Although there are many nuances to its implementation, the concept is simple. First, track every
modification to every file accessed by the build as a distinct version of the file. Then, for each job run
during the build, track the files used and verify that the job accessed the same versions it would have if
the build ran serially. Any mismatch is considered a conflict. The erroneous job is discarded alongwith
any file system modifications that it made, and the job is rerun to obtain the correct result.

The Versioned File System
The main part of the conflict detection system is a data structure called the versioned file system, in
which eMake records every version of every file used over the lifetime of the build. A version is added to
the data structure every time a file is modified, whether that is a change to the content of the file, a
change in the attributes (such as ownership or access permissions), or the deletion of the file. In
addition to recording file state, a version records the job that created it. For example, here’s what the
version chain looks like for a file “foo,” which initially does not exist, then is created by job A with
contents “abc”, deleted by job C, and recreated by job E with contents “123”:

Conflicts and Conflict Detection

http://blog.melski.net/

Detecting Conflicts
With all the data that eMake collects—every version of every file, and the relationship between every
job—the actual conflict check is simple: For each file accessed by a job, compare the actual version to
the serial version. The actual version is the version that was actually usedwhen the job ran; the serial
version is the version that would have been used, if the build had run serially. For example, consider a
job B, which attempts to access a file “foo”. At the time that B runs, the version chain for “foo” looks
like this:

Given that state, B will use the initial version of “foo”—there is no other option. The initial version is
therefore the actual version used by job B. Later, job A creates a new version of foo:

Because job A precedes job B in serial order, the version created by job A is the correct serial version for
job B. Therefore, job B has a conflict.

If a job is found to be free of conflicts, the job is committed, meaning that any file system updates are at
last applied to the real file system. Any job with a conflict is reverted— all versions created by the job
are marked invalid, so subsequent jobs will not use them. The conflict job is then rerun to generate the
correct result. The rerun job is committed immediately upon completion.

7-14 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 7: Dependency Management

ElectricAccelerator 10.1 Electric Make User Guide7-15

Conflict checks are done by a dedicated thread that inspects each job in strict serial order. This
guarantees that a job is not checked for conflicts until after every job that precedes it in serial order is
successfully verified to be free of conflicts. Without this guarantee, the system cannot be sure that it
knows the correct serial version for files accessed by the job. Similarly, this ensures that the rerun job,
if any, uses the correct serial versions for all files, so the rerun job is sure to be conflict free.

Exceptions to Conflict Detection in eMake

Non-Existence Conflicts

An obvious enhancement is to ignore conflicts when the two versions are technically different, but
effectively the same. The simplest example is when there are two versions of a file, which both indicate
non-existence, such as the initial version and the version created by job C in this chain for file “foo”:

Suppose that job D, which falls between C and E in serial order, runs before any other jobs finish. At
runtime, D sees the initial version, but strictly speaking, if it had run in serial order, it would have seen
the version created by job C. But the two versions are functionally identical—both indicate that the file
does not exist. From the perspective of the commands run in job D, there is no detectable difference in
behavior regardless of which of these two versions was used. Therefore, eMake can safely ignore this
conflict.

Directory Creation Conflicts

A common make idiom is mkdir -p $(dir $@)—that is, create the directory that will contain the
output file, if it doesn’t already exist. This idiom is often used as follows:

$(OUTDIR)/foo.o: foo.cpp
@mkdir -p $(dir $@)
@g++ -o $@ $^

Suppose that the directory does not exist when the build starts, and several jobs that employ this idiom
start at the same time. At runtime, they will each see the same file system state—namely, that the
output directory does not exist. Therefore, each job will create the directory. But in reality, had these
jobs run serially, only the first job would have created the directory; the others would have seen the

Conflicts and Conflict Detection

version created by the first job, and done nothing with the directory themselves. According to the
simple definition of a conflict, all but the first (serial order) job would be considered in conflict. For builds
without a history file expressing the dependency between the later jobs and the first, the performance
impact would be substantial.

Appending to Files

Another surprisingly-common idiom is to append error messages to a log file as the build proceeds:

$(OUTDIR)/foo.o: foo.cpp
@g++ -o $@ $^ 2>> err.log

Each append operation implicitly depends on the previous appends to the file—because the system
needs to know which offset the new content should be written to if it does not know how big the file
was to begin with. In terms of file versions, a naive implementation treating each append to the file as
creating a complete new version of the file is possible:

Of course, the is that conflicts will occur if you try to run all of these jobs in parallel. Suppose that all
three jobs, A, B and C start at the same time. They will each see the initial version, an empty file, but if
run serially, only A would have seen that version. B would have seen the version created by A; C would
have seen the version created by B.

This example is particularly interesting, because eMake cannot sort this out on its own: As long as the
usage reported for err.log is the very generic “this file wasmodified, here’s the new content” message
normally used for changes to the content of an existing file, eMake has no choice but to declare conflicts
and serialize these jobs. Fortunately, eMake is not limited to that simple usage record. The EFS can
detect that each modification is strictly appending to the file (with no regard to the prior contents) and
includes that detail in the usage report. Thus informed, eMake can record fragments of the file, rather
than the entire file content:

7-16 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 7: Dependency Management

ElectricAccelerator 10.1 Electric Make User Guide7-17

Because eMake now knows that the jobs do not depend on the prior content of the file, it need not
declare conflicts between the jobs, even if they run in parallel. As eMake commits the modifications
from each job, it stitches the fragments together into a single file with each fragment in the correct
order relative to the other pieces.

Directory-Read Conflicts

Directory-read operations are interesting from the perspective of conflict detection. Consider:What
does it mean to read a directory? The directory has no content of its own, not in the way that a file does.
Instead, the “content” of a directory is the list of files in that directory. To check for conflicts on a
directory read, eMake must check whether the list of files that the reader job actually saw matches the
list that it would have seen had it run in serial order—in essence, doing a simple conflict check on each
of the files in the directory.

That is s conceptually easy to do, but the implications of doing so are significant: It means that eMake
will declare a conflict on the directory read anytime any other job creates or deletes any file in that
directory. Compare that to reads on ordinary files: You only get a conflict if the read happens before a
write operation on the same file. With directories, you can get a conflict for modifications to other files
entirely.

This is particularly problematic, because many tools actually perform directory reads in the background,
and often those tools are not actually concernedwith the complete directory contents. For example, a
job that enumerates files matching *.obj in a directory is only interested in files ending with .obj. The
creation of a file named foo.a in that directory should not affect the job at all.

Another problematic example comes from utilities that implement their own version of the getcwd()
system call. If you want to create your own version, the algorithm looks something like this:

l Let cwd= “”

l Let current= “.”

l Let parent= “./..”

l Stat current to get its inode number.

l Read parent until an entry matching that inode number is found.

Conflicts and Conflict Detection

l Add the name from that entry to cwd.

l Set current= parent.

l Set parent= parent+ “/..”

l Repeat starting with step 4.

By following this algorithm, the program can construct an absolute path for the current working
directory. The problem is that the program has a read operation on every directory between the current
directory and the root of the file system. If eMake strictly adhered to conflict checking on directory
reads, a job that used such a tool would be serialized against every job that created or deleted any file in
any of those directories.

For this reason, eMake deliberately ignores conflicts on directory-read operations by default. Most of the
time, this is safe to do, because often tools do not need a completely accurate list of the files in the
directory. And even if the tool does require a perfectly correct list, the tool follows the directory read
with reads of the files that it finds. This means that you can ensure correct behavior by running the
build one time with a single agent to ensure the directory contents are correct when the job runs. That
run will produce history based on the file reads, so subsequent builds can run with many agents and still
produce correct results.

You can also do one of the following:

l Use –emake-readdir-conflicts=1 to force eMake to honor directory-read conflicts for the build.

l Use the #pragma readdirconflicts pragma to enable directory-read conflicts on a per-job
basis. You can apply it to targets or rules in your makefiles. This pragma has less overhead than -
-emake-readdir-conflicts=1 (which enables directory-read conflicts for an entire build). You
can use this pragma in pragma addendum files as well as in standardmakefiles.

7-18 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 7: Dependency Management

Chapter 8: Annotation
As eMake runs a build, it discovers a large amount of information about the build structure. This
information can be written to an annotation file for use after the build completes. Annotation is
represented as an XML document to make parsing easy.

eMake collects many different types of information about the build depending on various eMake
command-line options. This information includes:

l Makefile structure

l Commands and command output

l List of file accesses by each job

l Dependencies between jobs

l Detailed timingmeasurements

l eMake invocation arguments and environment

l Performance metrics

eMake can also be configured to upload annotation information to the Cluster Manager for centralized
reporting.

Configuring eMake to Generate an Annotation File
By default, eMake collects configuration information and performance metrics only, which it sends to
the Cluster Manager at the end of the build. This data is used to display reports on the Build Details
page.

You can configure eMake to collect additional information. This information is written to an XML file in
the build directory (emake.xml by default). The --emake-annodetail option controls the amount of
information that eMake collects. Default annotation detail is determined by the build class for that build.

Following are the annotation detail arguments:

Argument Description

basic Information about every command run by the build. Detailed information about each “job” in
the build is recorded, including command arguments, output, exit code, timing, and source
location. Also, the build structure is a tree where each recursive make level is represented in
the XML output.

If the JobCache feature is enabled, basic annotation includes annotation about cache hits and
misses. For details, see the “Interpreting Job Cache Annotation Information on page 6-13”
section in the “Performance Optimization on page 6-1” chapter.

env Environment variable modifications

file Files read or written by each job

Argument Description

history Missing serializations discovered by eMake. This includes information about which file caused
two jobs to become serialized by the eMake history mechanism

lookup Files that were looked up by each job. This mode can cause the annotation file to become quite
large.

md5 Computes MD5 checksums for files read and written by the build, and includes that information
as an MD5 attribute on appropriate <op> tags. The operation types that will include the
checksum are read, create, and modify.

No checksum is generated or emitted for operations on directories, symlinks. or append
operations. If a read file was appended to, and the read occurs before the appended update is
committed, a zero checksum appears on that read operation (by design because reading files
that were appended to occurs rarely).

This argument implies “file” level annotation. This mode is configurable through the command
line only; it is not available on the web interface.

registry Registry operations

waiting Complete dependency graph for the build

Any detail argument enables “basic” annotation automatically.

The --emake-annoupload option controls whether eMake sends a copy of the annotation file to the
Cluster Manager as the build runs. By default, eMake sendsminimal information to the Cluster
Manager, even if more detailed annotation is enabled. eMake sends the full annotation file if annotation
uploading is configured by the build class or via the eMake command line.

Note: You cannot disable mergestreams if you enable annotation. Enabling annotation automatically
enables mergestreams, even if it was explicitly disabled on the command line.

Annotation File Splitting
Because of limitations in the 32-bit version of the ElectricInsight tool, eMake as well as Electrify
automatically partition annotation files into 1.6 GB “chunks.” The first chunk is named using the file
name that you specify with the --emake-annofile option or with “emake.xml,” if --emake-annofile is
not specified. The second chunk uses that name as the base but adds the suffix _1, the third chunk
adds the suffix _2, and so on. For example, a four-part annotation file might consist of files named
emake.xml, emake.xml_1, emake.xml_2, and emake.xml_3.

No special action is required to load amultipart annotation file into ElectricInsight. If all parts are in the
same directory, ElectricInsight automatically finds and loads the content of each file—simply specify the
name of the first chunk when opening the file in ElectricInsight.

For loading large annotation files, Electric Cloud recommends the 64-bit version of ElectricInsight.

8-2 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 8: Annotation

ElectricAccelerator 10.1 Electric Make User Guide8-3

Working with Annotation Files
The simplest way to use an eMake annotation file is to load it into ElectricInsight. This tool lets you see a
graphical representation of the build, search the annotation file for interesting patterns, and perform
sophisticated build analysis using its built-in reporting tools.

Creating Tools for Tasks That Use Annotation Output
You can write your own tools to perform simple tasks that use annotation output. For example,
reporting on failures in the build by looking for “failed” elements inside job elements and then reporting
details about the failed job such as the commands, their output, and the line of the makefile that
contains the rule for the command. See the DTD below or the annotation file format.

Annotation XML DTD
<!-- build.dtd -->
<!-- The DTD for Emake's annotated output. -->
<!-- -->
<!-- Copyright (c) 2004-2008 Electric Cloud, Inc. All rights reserved. -->

<!ENTITY % hexnum "CDATA">
<!ENTITY % job "(message*, job)">
<!ENTITY % valueName "name NMTOKEN #REQUIRED">
<!-- Can't use NMTOKEN because Windows has environment variables like

"=D:". -->
<!ENTITY % envValueName "name CDATA #REQUIRED">

<!ELEMENT build
(properties?, environment?, (message* | make)+, fs?, metrics?)

>
<!ATTLIST build

id CDATA #REQUIRED
cm CDATA #IMPLIED
start CDATA #REQUIRED

>
<!-- Out of band build messages -->

<!ELEMENT message (#PCDATA) >
<!ATTLIST message

thread %hexnum; #REQUIRED
time CDATA #REQUIRED
code CDATA #REQUIRED
severity (warning | error) #REQUIRED

>
<!-- Properties list -->

<!ELEMENT properties (property*) >
<!ELEMENT property (#PCDATA) >
<!ATTLIST property

%valueName;
>
<!-- Environment list -->

<!ELEMENT environment (var*) >
<!ELEMENT var (#PCDATA) >
<!ATTLIST var

Working with Annotation Files

%envValueName;
op (add | modify | delete) "add"

>
<!-- File system dump -->

<!ELEMENT fs (roots, symRoots, (content|name)*) >
<!ELEMENT roots (root+) >
<!ELEMENT root (#PCDATA) >
<!ATTLIST root

nameid CDATA #REQUIRED
>
<!ELEMENT symRoots (symRoot*) >
<!ELEMENT symRoot (#PCDATA) >
<!ATTLIST symRoot

symLinkPath CDATA #REQUIRED
>
<!ELEMENT content (contentver+)>
<!ATTLIST content

contentid CDATA #REQUIRED
>
<!ELEMENT contentver EMPTY>
<!ATTLIST contentver

job CDATA #REQUIRED
>
<!ELEMENT name (namever*) >
<!ATTLIST name

nameid CDATA #REQUIRED
dir CDATA #REQUIRED
name CDATA #REQUIRED

>
<!ELEMENT namever EMPTY>
<!ATTLIST namever

job CDATA #REQUIRED
contentid CDATA #REQUIRED

>
<!-- Metrics list -->

<!ELEMENT metrics (metric*) >
<!ELEMENT metric (#PCDATA) >
<!ATTLIST metric

%valueName;
>
<!-- Make subtree -->

<!ELEMENT make
(environment?, (message | job | make)*)

>
<!ATTLIST make

level CDATA #REQUIRED
cmd CDATA #REQUIRED
cwd CDATA #REQUIRED
mode (gmake | nmake | symbian) #REQUIRED

>
<!-- Job -->

<!ELEMENT job
(environment?,(output | command | conflict)*,depList?,opList?,

registryOpList?,timing+,failed?,waitingJobs?)

8-4 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 8: Annotation

ElectricAccelerator 10.1 Electric Make User Guide8-5
>
<!ATTLIST job

thread %hexnum; #REQUIRED
id ID #REQUIRED
status (normal | rerun | conflict | reverted | skipped) "normal"
type (continuation | end | exist |

follow | parse | remake | rule) #REQUIRED
name CDATA #IMPLIED
file CDATA #IMPLIED
line CDATA #IMPLIED
neededby IDREF #IMPLIED
partof IDREF #IMPLIED
node CDATA #IMPLIED

>
<!-- Command and related output, output blocks can contain nested -->
<!-- make subtrees in local mode. -->

<!ELEMENT command
(argv,inline*,(output | make)*)

>
<!ATTLIST command

line CDATA #IMPLIED
>
<!ELEMENT argv (#PCDATA)>
<!ELEMENT inline (#PCDATA)>
<!ATTLIST inline

file CDATA #REQUIRED
>
‘<!ELEMENT output (#PCDATA)>
<!ATTLIST output

src (prog | make) "make"
>
<!-- Conflict description -->

<!ELEMENT conflict EMPTY>
<!ATTLIST conflict

type (file | cascade | name | key | value) "cascade"
writejob IDREF #IMPLIED
file CDATA #IMPLIED
rerunby IDREF #IMPLIED
hkey CDATA #IMPLIED
path CDATA #IMPLIED
value CDATA #IMPLIED

>
<!-- Job failure code -->

<!ELEMENT failed EMPTY>
<!ATTLIST failed

code CDATA #REQUIRED
>
<!-- List of jobs waiting for this job, local mode only -->

<!ELEMENT waitingJobs EMPTY>
<!ATTLIST waitingJobs

idList IDREFS #IMPLIED
>
<!-- Start and stop times of this job -->

Working with Annotation Files

<!ELEMENT timing EMPTY>
<!ATTLIST timing

invoked CDATA #REQUIRED
completed CDATA #REQUIRED
node CDATA #IMPLIED

>
<!-- Dependency list, only used when annoDetail includes 'history' -->

<!ELEMENT depList (dep*)>
<!ELEMENT dep EMPTY>
<!ATTLIST dep

writejob IDREF #REQUIRED
file CDATA #REQUIRED

>
<!-- Operation list, only present when annoDetail includes -->
<!-- 'file' or 'lookup' -->

<!ELEMENT opList (op*)>
<!ELEMENT op EMPTY>
<!ATTLIST op

type (lookup | read | create | modify | unlink | rename |
link | modifyAttrs | append | blindcreate) #REQUIRED

file CDATA #REQUIRED
other CDATA #IMPLIED
found (1 | 0) "1"
isdir (1 | 0) "0"
filetype (file | symlink | dir) "file"
atts CDATA #IMPLIED

>
<!-- Registry operation list, only present when annoDetail includes -->
<!-- 'registry' -->

<!ELEMENT registryOpList (regop*)>
<!ELEMENT regop (#PCDATA)>
<!ATTLIST regop

type (createkey | deletekey | setvalue | deletevalue |
lookupkey | readkey) #REQUIRED

hkey CDATA #REQUIRED
path CDATA #REQUIRED
name CDATA #IMPLIED
datatype (none | sz | expandsz | binary | dword | dwordbe |

link | multisz | resourcelist | resourcedesc |
resourcereqs | qword) "none"

>

Metrics in Annotation Files
The following values are available when you select the Metrics option from the drop-down menu on
the Build Details page in the web interface. Some performance metrics are available only with --
emake-debug=g.

Timer Annotation
Most timers are be available unless you use --emake-debug=g (for profiling). These timers correspond
to the amount of time that eMake spent in certain areas of the code or in a certain state.

8-6 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 8: Annotation

ElectricAccelerator 10.1 Electric Make User Guide8-7

Metric Description

timer:agentManager.should
RequestAgents

Time spent checking to see if eMake should be requesting agents,
which involves talking to the Cluster Manager

timer:agentManager.startup Time spent for the Agent Manager to start up

timer:agentManager.stop Time spent for the Agent Manager to shut down

timer:agentManager.work Time spent with the Agent Manager actively doing work outside
shouldRequestAgents

timer:annoUpload.startup Time spent starting up the thread to upload annotation

timer:annoUpload.work Time spent uploading annotation

timer:bench Benchmark showing the cost of 100 invocations of the timer code
(start/stop)

timer:directory.populate Time spent making sure that eMake’s model of the directory
contents is fully populated

timer:history.parsePrune Time spent in parse jobs signaling stale history entries to prune stale
events

timer:history.pruneFollowers Time spent signaling stale submakes (for jobs that have followers) to
be pruned

timer:history.pruneNo
Follower

Time spent signaling stale submakes (for jobs that have no followers)
to be pruned in job

timer:idle.agentManager Time spent in the Agent Manager sleeping between
shouldRequestAgents checks

timer:idle.agent
ManagerRequest

Time spent in the Agent Manager waiting for the Cluster Manager to
respond to a request for agents

timer:idle.agentRun Time spent by worker threads waiting for requests from the agent

timer:idle.annoUpload Time spent by the annotation upload thread waiting for data

timer:idle.noJobs Time spent by worker threads waiting for a new runnable job to
enter the job queue

timer:idle.untilCompleted Time spent by the Terminator thread waiting for jobs to be
completed

timer:idle.waitForAgent Time spent by worker threads waiting for an agent to become
available

Metrics in Annotation Files

Metric Description

timer:jobCache.sharedMiss (Shared JobCache only) Sum of seconds spent trying to find a match
in the shared cache but ultimately failing to do so

timer:jobqueue Time spent within the lock guarding the job queue

timer:Ledger.close Time spent closing the Ledger and flushing data to disk

timer:Ledger.commit Time spent committing Ledger data to the database

timer:Ledger.isUpToDate Time spent querying the Ledger to find if a file is up to date

timer:Ledger.staleAttributes Time spent by the Ledger code statting files to ensure recorded
attributes match the actual attributes on disk

timer:Ledger.update Time spent updating the Ledger

timer:main.commit Time spent by the Terminator thread committing jobs, less time
spent flushing deferred writes to disk

timer:main.history Time spent reading and writing history files.

timer:main.
lockedWriteToDisk

Time spent by the Terminator thread flushing deferred writes to
disk

timer:main.terminate Time spent by the Terminator thread terminating jobs

timer:main.writeToDisk Time spent by the Terminator thread writing operations to disk, less
the time covered by any of the other main.writeToDisk timers

timer:main.writeTodisk
append

Time spent appending to existing files on disk

timer:main.writeTodisk
createdir

Time spent creating directories on disk

timer:main.writeTodisk
createdir.attrs

Time spent changing directory attributes on disk for new directories

timer:main.writeTodisk
createdir.chown

Time spent changing file ownership on disk for new files

timer:main.writeTodisk
createdir.chown

Time spent changing directory ownership on disk for new directories

timer:main.writeTodisk
createdir.times

Time spent changing directory times on disk for new directories

8-8 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 8: Annotation

ElectricAccelerator 10.1 Electric Make User Guide8-9

Metric Description

timer:main.writeTodisk
createfile

Time spent writing file data to disk for new files

timer:main.writeTodisk
createfile.attrs

Time spent changing file attributes on disk for new files

timer:main.writeTodisk
createfile.times

Time spent changing file times on disk for new files

timer:main.writeTodisklink Time spent creating links on disk

timer:main.writeTodisk
modify

Time spent modifying existing files on disk

timer:main.writeTodisk
modifyAttrs

Other time spent in writing attribute changes to disk (mostly
notifying the file system that attributes have gone “stale”)

timer:main.writeTodisk
modifyAttrs.attrs

Time spent modifying attributes of existing files on disk

timer:main.writeTodisk
modifyAttrs.chown

Time spent modifying ownership of existing files on disk

timer:main.writeTodisk
modifyAttrs.times

Time spent modifying times of existing files on disk

timer:main.writeTodisk
unlink

Time spent unlinking existing files on disk

timer:main.writeTodisk
unlink.data

Time spent recording the fact that a file was removed

timer:main.writeTodisk
unlink.tree

Time spent removing entire trees on disk

timer:mergeArchiveRefs Time spent modifying word lists for multi-word archive references
such as lib(member1 member2 ...)

timer:mutex.DirCache Time spent waiting for a directory cache

timer:mutex.filedata.nodelist Time spent within the lock guarding the list of agents allocated to
the build

timer:mutex.jobcreate Time spent within the lock used to synchronize the terminator and
worker threads when creating jobs

timer:mutex.joblist Time spent within the lock used to protect the job list

Metrics in Annotation Files

Metric Description

timer:mutex.jobrunstate Time spent within the lock used to coordinate starting and canceling
jobs

timer:mutex.nodeinit Time spent within the lock used to protect the list of hosts while
initializing agents

timer:mutex.target Time spent within the lock protecting failure tracking on a target

timer:node.putAllVersions.
getShortName

Time spent getting file short names on Windows when doing an E2A_
PUT_ALL_VERSIONS

timer:node.setup Time spent connecting to hosts and initializing them

timer:node.svc.getData Time spent handling A2E_GET_FILE_DATA and A2E_RESEND_FILE_
DATA, not including the time spent sending data in response

timer:node.svc.getData.
acquireLock

Time spent waiting for the ChainLock when handling A2E_GET_FILE_
DATA and A2E_RESEND_FILE_DATA

timer:node.svc.getData.copy Time spent copying file data for E2A_LOAD_LOCAL_FILE. This is the
local agent version of timer:node.svc.getData.send

timer:node.svc.getData.
insideLock

Time spent holding the ChainLock when handling A2E_GET_FILE_
DATA and A2E_RESEND_FILE_DATA

timer:node.svc.getData.send Time spent sending file data during E2A_PUT_FILE_DATA and E2A_
PUT_BIG_FILE_DATA.

timer:node.svc.getDir Time spent sending directory entry data to the agent

timer:node.svc.getVersions Time spent handling A2E_GET_ALL_VERSIONS requests

timer:node.svc.getVersions.
acquireLock

Time spent waiting for the ChainLock when handling A2E_GET_ALL_
VERSIONS

timer:node.svc.getVersions.
insideLock

Time spent holding the ChainLock when handling A2E_GET_ALL_
VERSIONS

timer:node.svc.runCommand Time spent handling A2E_RUN_COMMAND requests

timer:usage.io Time spent reading and responding to usage data

timer:usage.io.makedata Time spent creating file data from usage

timer:usage.io.
makedata.local

Time spent copying file data from usage reported by local agents; a
subset of timer:usage.io.makedata

timer:usage.latency Time spent dispatching incoming usage data and saving output files

8-10 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 8: Annotation

ElectricAccelerator 10.1 Electric Make User Guide8-11

Metric Description

timer:usage.record Time spent recording usage data, including resolving new name IDs,
removing duplicate lookup records, and so on

timer:worker.continuationjob Time spent by worker threads running continuationJobs

timer:worker.endjob Time spent by worker threads running endJobs.

timer:worker.existencejob Time spent by worker threads running existenceJobs

timer:worker.followjob Time spent by worker threads running followJobs

timer:worker.invoke Time spent invoking remote jobs

timer:worker.invokelocal Time spent invoking local jobs

timer:worker.other Otherwise unaccounted time spent by worker threads

timer:worker.parsejob Time spent by worker threads running parseJobs.

timer:worker.remakejob Time spent by worker threads running remakeJobs

timer:worker.rulejob Time spent by worker threads running ruleJobs, less the time spent
actually running commands and figuring out if it needs to run

timer:worker.rulejob.
needtorun

Time spent by ruleJobs figuring out if they need to run

timer:worker.
runcommands

Time spent by worker threads running commands in commandJobs

timer:worker.
shouldRequestAgents

Time spent by worker threads checking to see if they should request
agents

timer:worker.startup Time spent by worker threads initializing

timer:worker.stop Time spent shutting down worker threads

timerThreadCount Number of threads in eMake

Other Annotation

Metric Description

chainLatestReads Number of times the latest version of an FSChain was requested

chainSerialReads Number of times an FSChain was requested to match a particular
spot in the serial order

Metrics in Annotation Files

Metric Description

chainWrites Number of new versions created, which occurs any time a new
name is created, or the content of a file changes

clusterAvailability Cluster availability percentage

compressBytesIn Number of bytes passed in for compression

compressBytesOut Number of bytes returned from compression

compressTime Time spent compressing data

conflicts Number of jobs that ran into conflicts and had to be rerun

decompressBytesIn Number of bytes passed in for decompression

decompressBytesOut Number of bytes returned from decompression

decompressTime Time spent decompressing data

diskReadBytes Number of bytes read from the local disk

diskReadTime Time spent reading data from the local disk

diskReadWaitTime Time spent waiting for data to be read from the local disk

diskWriteBytes Number of bytes written to the local disk

diskWriteTime Time spent writing data to the local disk

diskWriteWaitTime Time spent waiting for data to be written to the local disk

duration Duration of build (in seconds)

elapsed The total elapsed time for the build

emptyNameVersions Total number of Name versions with no associated Content.
Available with --emake-debug=g

fitness Indicates the "fitness" of the history, which is how closely the
history used for a given build "matched" that build. The range of
values is 0 (history did not match at all) to 1 (history already had
information about all implicit dependencies)

Available with --emake-debug=g

freezeTime Time the job queue was frozen, which means only high priority
items are taken of the queue

8-12 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 8: Annotation

ElectricAccelerator 10.1 Electric Make User Guide8-13

Metric Description

hiddenWarningCount Number of warning messages hidden by the eMake client and all
remote parse jobs, with one count for every message number for
which at least one message was hidden. The count does not
include messages hidden by eMake stubs or rlocal-mode eMakes

jobcache.hit Number of jobs for which eMake obtained job cache hits. A hit
means that the job was replayed from the cache. This is the sum of
the jobcache.hit.local and jobcache.hit.shared hits

jobcache.hit.local (Shared JobCache only) Number of jobs for which eMake obtained
job cache hits from the developer's local cache (instead of the
shared cache). A hit means that the job was replayed from the
local cache

jobcache.hit.shared (Shared JobCache only) Number of jobs for which eMake obtained
job cache hits from the shared cache (instead of the developer's
local cache). A hit means that the job was replayed from the
shared cache

jobcache.miss Number of jobs for which a file system input changed since the
last time the job was saved into the cache

jobcache.na Number of jobs for which job caching was not applicable. For
example, jobs for which the output files are not object files

jobcache.newslot Number of jobs for which eMake created a new cache slot. This
occurs when the previously-cached jobs differed from these jobs
in their command-line arguments, relevant environment variables,
or working directories. Together, these parameters of a job
choose the slot for that job, which is where eMake stores the
results of that job

jobcache.rootschanged Number of jobs for which there is no natural mapping from the
old eMake roots to the new eMake roots

jobcache.sharedmiss (Shared JobCache only) Number times that eMake found a
matching slot in the shared cache but determined it was a
mismatch because a file system input changed

jobcache.sharednewslot (Shared JobCache only) Number of times that eMake failed to find
a matching slot in the shared cache

jobcache.uncacheable Number of jobs for which eMake encountered an issue updating
the job's relevant cache slot. Look for ERROR and WARNING
messages in the console output from eMake. Jobs that failed, jobs
for which caching was disabled by the #pragma jobcache none
pragma, and jobs that did not access files inside the eMake root
are included in this metric

Metrics in Annotation Files

Metric Description

jobcache.unneeded Number of jobs for which JobCache was enabled but not needed
(because the target was already up to date according to ordinary
GNUMake rules). The cache was not consulted, even though
caching was requested for that target

jobcache.workloadsaved Difference between agent usage (in seconds) with and without
the JobCache feature. This represents an estimate of the agent
usage saved by the JobCache feature

localAgentReadBytes Bytes copied from local agents

localAgentReadTime Time spent copying data from local agents

localAgentWriteBytes Bytes copied to local agents

localAgentWriteTime Time spent copying data to local agents

maxArenaCount Peak active arenas during the build

maxMakeCount Peak active make instances during the build

noAgentsWaitTime Time spent waiting with no agents allocated to the build because
the number of running agents has reached the license limit

noLicenseWaitTime Time spent waiting for a build license because the number of
concurrent builds has reached the license limit.

nodeReadBytes Number of bytes read from agents

nodeReadTime Time spent reading data from agents

nodeReadWaitTime Time spent waiting for data to be read from agents

nodeWriteBytes Number of bytes written to agents

nodeWriteTime Time spent writing data to agents

nodeWriteWaitTime Time spent waiting for data to be written to agents

OutputHistoryMD5 MD5 checksum of the history file that was generated by a build

runjobs Number of jobs that did work

symlinkReads Number of times the application read symlinks from the local disk

termDiskCopiedBytes Number of bytes committed by copying. This should be a small
number if possible. If you are using ClearCase and this number is
nonzero, look into the --emake-clearcase=vobs option

8-14 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 8: Annotation

ElectricAccelerator 10.1 Electric Make User Guide8-15

Metric Description

termDiskCopiedFiles Number of files committed by copying. This number should be
small if possible

termDiskMovedBytes Number of bytes committed by moving. You want this to be big
number if possible

termDiskMovedFiles Number of files committed by moving. You want this to be a big
number if possible

termDiskRemovedBytes Number of bytes committed by remove (original file)

termDiskRemovedFiles Number of files committed by remove (original file)

termDiskRemoved
TmpBytes

Number of bytes committed by remove (temporary file)

termDiskRemoved
TmpFiles

Number of files committed by remove (temporary file)

terminated Number of jobs that ran to completion. These jobs might not
necessarily have done anything

totalAgentCount Total number of agents in cluster

totalChains Total number of FSChains in the build—anything in the file system
tracked by eMake for versioning is an FSChain, for example, file
names, file contents. Because both names and contents are
tracked, this should be at least twice the number of files accessed
in the build

totalNameVersions Total number of Name versions. Available with --emake-debug=g

totalVersions Total number of FSChain versions. Available with --emake-
debug=g

timer:jobcache.sharedMiss (Shared JobCache only) Sum of seconds spent trying to find a
match in the shared cache but ultimately failing to do so

usageBytes Number of bytes received for usage data

workload Sum of agent usage over all agents (in seconds). This value is also
reported to the Cluster Manager

writeThrottleWaitTime Time spent waiting for the write throttle (which is in place to
avoid slowing the build by seeking the disk head back and forth
too often)

Metrics in Annotation Files

Chapter 9: Third-Party Integrations
The following topics provide information about how ElectricAccelerator integrates with the following
environments:

l ClearCase

l Coverity

l Cygwin

l Eclipse

Using ClearCase with ElectricAccelerator
If your build environment relies on the ClearCase source control system, there are some special
considerations for running eMake. ClearCase views can be either “snapshot” or “dynamic.”

l ClearCase snapshot views behave like a normal file system, so no special support is required.

l ClearCase dynamic views have non-standard file system behavior that requires explicit handling
by eMake.

Note: ElectricAccelerator does not currently support ClearCase integration on Solaris x86. If you have
need of this support, please contact your Electric Cloud sales representative. You can make use of
ecclearcase_fake.so to provide information about your ClearCase setup through an ini file. Refer to
eMake’s “Fake” Interface for ClearCase on page 9-3.

Configuring ElectricAccelerator for ClearCase

ecclearcase Executable
Set the EMAKE_CLEARCASE_SERVER environment variable to the path of the ecclearcase executable.
This ensures eMake can locate the correct version of ecclearcase if, for example, you are using 64-bit
eMake.

LD_LIBRARY_PATH
Using ElectricAccelerator in a ClearCase environment requires your LD_LIBRARY_PATH (on UNIX) or
PATH (on Windows) to contain a directory that includes libraries required to run “cleartool.” Library file
names for Windows or UNIX begin with “libatria” (Windows - libatria.dll, UNIX - libatria.so).

If you plan to use ClearCase with eMake, you must add the ClearCase shared libraries to the LD_
LIBRARY_PATH on your system.

For sh:

LD_LIBRARY_PATH=/usr/atria/linux_x86/shlib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

For csh:

setenv LD_LIBRARY_PATH /usr/atria/linux_x86/shlib:${LD_LIBRARY_PATH}

(/usr/atria/linux_x86/shlib is an example andmight differ on your system depending on what OS
you use andwhere ClearCase is installed.)

To ensure ElectricAccelerator knows where ClearCase is installed, edit /etc/ld.so.conf to include the
ClearCase installation location. As a second option, you can include the ClearCase installation location in
LD_LIBRARY_PATH.

ClearCase Views on Agents
When ElectricAccelerator replicates a ClearCase view on an agent, it appears as a generic file system—
ClearCase commands that run as part of a build will not work on the host, even if ClearCase is installed

9-2 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 9: Third-Party Integrations

ElectricAccelerator 10.1 Electric Make User Guide9-3

on that machine. The Electric File System masks ClearCase’s VOBmounts. If your build runs ClearCase
commands, these commandsmust be runlocal steps. For additional information, see Running a Local
Job on the Make Machine on page 6-25.

When replicates a ClearCase view on an agent, it appears as a generic file system—ClearCase
commands that run as part of a build will not work on the host, even if ClearCase is installed on that
machine. The Electric File System masks ClearCase’s VOBmounts. If your build runs ClearCase
commands, these commandsmust be runlocal steps. For additional information, see Running a Local
Job on the Make Machine on page 6-25.

Note: Because of the potential adverse interaction between two different file systems (ClearCase and
ElectricAccelerator), Electric Cloud recommends that you do not install ClearCase on ElectricAccelerator
Agent machines. If you must run ClearCase on an ElectricAccelerator Agent machine, ensure that
whichever one you need to start and stop frequently is configured to start “second” at system startup
time.

--emake-clearcase
The eMake command-line option --emake-clearcase controls which ClearCase features are supported
for a build. By default, ClearCase integration for rofs, symlink, and vobs is disabled. To turn on support
for these specific ClearCase features, if your build relies on these options, use --emake-
clearcase=LIST, where LIST is a comma-separated list of one or more of the following values:

l rofs : detect read-only file systems

eMake queries ClearCase for each file it accesses to determine whether the file should be
considered 'read-only'.

l symlink : detect symbolic links (Windows only)

eMake queries ClearCase for each file it accesses to determine whether the file is a ClearCase
symbolic link.

l vobs : configure separate temporary directories for each vob

Normally, eMake uses the --emake-tmpdir setting to determine where to place temporary
directories for each device. With the 'vobs' option enabled, eMake automatically configures one
directory per VOB. On Windows, eMake also communicates with ClearCase to determine which
VOB a file belongs to so it can select the correct temporary directory.

Note: If --emake-clearcase is not specified on the command line and the environment variable
EMAKE_CLEARCASE is present, eMake takes the options from the environment.

eMake’s “Fake” Interface for ClearCase
In addition to a direct interface to ClearCase, eMake also provides a “fake” interface that allows the end
user to pass information manually to eMake about the ClearCase environment. Normally, you invoke
ClearCase functionality by specifying --emake-clearcase=LIST to eMake, at which point eMake
attempts to load ecclearcase6.so and ecclearcase7.so (.dll on Windows). Whichever library successfully

Using ClearCase with ElectricAccelerator

initializes in the ClearCase environment is used to talk to ClearCase through a provided API that is no
longer maintained or supported. You can specify the precise library to load by setting the environment
variable EMAKE_CLEARCASE_LIBRARY to the path to the desired library.

Under some conditions, the ClearCase API does not function properly. For this circumstance, eMake
provides ecclearcase_fake.so (.dll on Windows). If you point EMAKE_CLEARCASE_LIBRARY to the fake
interface, eMake loads that instead. The fake interface then loads the file specified in the environment
by ECCLEARCASE_FAKE_INI, defaulting to ecclearcase_fake.ini. The ini file has two sections: [vobs]
and [attrs].

The [vobs] section maps a VOB path to a comma-separated set of attributes. Currently, public should
be present for a public VOB and ro for read-only.

The [attrs] section maps a file name to symlink*type, where symlinkmight be empty if the file is not
a symbolic link and type can be null, version, directory_version, symbolic_link, view_

private, view_derived, derived_object, checked_out_file, checked_out_dir. If symlink is not
empty, symbolic_link is assumed. If type is version or directory_version and --emake-
clearcase=rofs is active, the EFS returns EROFS (or STATUS_ACCESS_DENIED on Windows) when
an attempt is made to write the file.

If CLEARCASE_ROOT is set in the environment (as by cleartool setview), all [attrs] entries are
tracked under their exact path as well as one with the CLEARCASE_ROOT prepended. If CLEARCASE_
ROOT is set to /view/testview, setting /vobs/test/symlink2 in [attrs] is the same as setting both
/vobs/test/symlink2 and /view/testview/vobs/test/symlink2.

Sample ini files for UNIX:

[vobs]
/vobs/test=public
/vobs/readonly=public,ro

[attrs]
/vobs/test/symlink2=symlink
/vobs/test/symlink/alpha=*directory_version
/vobs/test/symlink/beta=alpha

andWindows:

[vobs]
\test=public
\readonly=public,ro

[attrs]
S:/test/symlink2=symlink
S:/test/symlink/alpha=*directory_version
S:/test/symlink/beta=alpha

9-4 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 9: Third-Party Integrations

ElectricAccelerator 10.1 Electric Make User Guide9-5

Where ClearCase Dynamic Views Affect eMake Behavior

Read-Only Mounts

ClearCase can mount files in a read-only mode, which means they appear to be writable, but any
attempts to modify these files fail with a “read-only file system” (UNIX) or “access denied” (Windows)
error message. Because eMake cannot tell whether a file is modifiable using normal file system
interfaces, it does not know to disallow modifications performed by commands running on the agents.
This activity leads to failures when eMake attempts to commit changes (incorrectly) allowed on the
agent.
A simple test case:

unix% cleartool ls
Makefile
clock@@/main/2 Rule: /main/LATEST

unix% cat Makefile
all:
mv clock clock.old

The file “clock” is checked in to ClearCase. Makefile attempts to rename it. If you just run “make”, it
fails immediately, but can be instructed to ignore the error:

unix% make -i
mv clock clock.old
mv: cannot move `clock' to `clock.old': Read-only file system
make: [all] Error 1 (ignored)

Note that this file system is notmounted read-only, so a Makefile can be created. Because “clock” is
checked-in, it cannot be renamedwithout checking it out first, and ROFS is the error ClearCase gives.

Now try this with eMake:

unix% emake --emake-root=/vobs -i
Starting build: 114626
mv clock clock.old
ERROR EC1124: Unable to rename file
/vobs/test/drivel/clock to /vobs/test/drivel/clock.old: Read-only
file system (error code 0x1e): Read-only file system
Interrupted build: 114626 Duration: 0:00 (m:s) Cluster
availability: 100%

Without activating ClearCase support, eMake does not know “clock” cannot be moved, so the operation
succeeds on the agent, then fails when eMake attempts to commit it to disk. Specifying the “-i” flag to
ignore errors will not work here.

unix% /home/user/Projects/4.2/i686_Linux/ecloud/emake
/emake --emake-clearcase=rofs --emake-root=/vobs -i
Starting build: 114630
mv clock clock.old
mv: cannot move `clock' to `clock.old': Read-only file system
make: [all] Error 1 (ignored)
Finished build: 114630 Duration: 0:00 (m:s)
Cluster availability: 100%

Using ClearCase with ElectricAccelerator

When eMake knows to replicate ClearCase’s behavior, the error occurs on the host and can be handled
normally.

Multiple VOBs

eMake writes uncommitted files into temporary directories, andmoves them into their correct location
after resolving any conflicts. eMake automatically places a temporary directory in the current working
directory where it is invoked, and also creates a temporary directory in each location specified by the --
emake-tmpdir option or the EMAKE_TMPDIR environment variable. When possible, eMake writes
uncommitted files to the same physical device where the file will be savedwhen it is committed, which
makes the commit operation a lightweight “rename” instead of a heavyweight “copy” operation.

Under ClearCase, each VOB functions as a separate physical disk, so to achieve optimal performance, a
temporary directory must be specified for each VOB where the build writes files. --emake-
clearcase=vobs sets up this directory for you automatically.

l On UNIX, each VOB has a distinct physical device ID, and this option is nothingmore than a
“shorthand” for specifying EMAKE_TMPDIR=/vobs/foo:/vobs/bar:.... in the environment.

l On Windows, you must interface with ClearCase directly to make this distinction, so using --
emake-clearcase=vobs is important to get the most speed for a build that writes to multiple
VOBs.

Symbolic Links on Windows Platforms

On Windows, ClearCase conceals the nature of its symbolic links from other programs, so what is
actually a single file appears to be two files to other programs. This situation hinders eMake’s versioning
mechanism as it tracks two separate chains of revisions for one underlying entity. A job’s view of the file
can get out of sync and cause build failures.

--emake-clearcase=symlink interfaces directly with ClearCase to determine whether a particular
ClearCase file is a symbolic link and represents it on the agent as a reparse point, which is the native
Windows equivalent of a symbolic link. All file operations are redirected to the target of the symbolic link
to avoid synchronization problems. T

This issue does not occur on UNIX platforms, because ClearCase uses native file system support for
symbolic links.

Following is a simple test case.

Beginning with a directory, “alpha”, and a symlink to that directory, “beta”:

windows% cleartool ls -d alpha beta
alpha@@/main/1 Rule: \main\LATEST
beta --> alpha

And amakefile:

all:
@echo "Furshlugginer" > alpha/foo
@echo "Potrzebie" > beta/foo
@cat alpha/foo

9-6 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 9: Third-Party Integrations

ElectricAccelerator 10.1 Electric Make User Guide9-7
windows% emake --emake-root=. -f symlink.mk
Starting build: 50070 Furshlugginer
Finished build: 50070 Duration: 0:02 (m:s) Cluster availability: 100%

windows% emake --emake-root=. -f symlink.mk --emake-clearcase=symlink
Starting build: 50071 Potrzebie
Finished build: 50071 Duration: 0:01 (m:s) Cluster availability: 100%

Explanation: ClearCase cannot tell the Windows file system that the symlink is a symlink, so alpha/foo
and beta/foo appear to be distinct files. (On UNIX, this is not an issue, because symlinks are a standard
operating system feature, which means that ClearCase can show them as such.) If a build does not
contain ClearCase symbolic links, there is no reason to turn on the integration; if it does, eMake might
assume that two different files exist when there is actually just one underlying file, in which case you
must turn on the “symlink” part of the ElectricAccelerator ClearCase integration.

Performance Considerations
Running builds from ClearCase dynamic views can impose a considerable performance cost depending
on the ClearCase configuration and your build. The best performance is achieved by using ClearCase
snapshot views. If using snapshots is not possible, there are a few things to consider when setting up
an eMake build.

Enabling the “symlink” or “rofs” options incurs a performance cost because of the need to
communicate with the ClearCase server when accessing a file for the first time. Many builds do not
need these features, even if they are running inside a ClearCase dynamic view, so consider leaving
them turned off unless you encounter unexpected build failures.

Enabling the “vobs” option should have minimal performance cost, andmight significantly speed up
your build if build output is written back to your dynamic view.

Because of improved caching, eMake might provide a significant performance boost beyond that
provided by running build steps in parallel. eMake caches much of the file system state, reducing the
total number of requests to the ClearCase server during the build. Depending on how heavily loaded
your ClearCase server is, this can significantly improve build performance. If you notice build speedups
higher than you would expect given the number of agents in your cluster, improved cachingmight be
the reason.

Using the “fake” interface for ClearCase (see eMake’s “Fake” Interface for ClearCase on page 9-3
section), which lets you specify the details of VOBs and files in a static file, is much faster than
communicating with ClearCase. This might suffice for many users.

Using Coverity with ElectricAccelerator
You can integrate Coverity Analysis for C/C++ into a makefile-based ElectricAccelerator build on Linux
or Windows. For information about integrating Coverity with ElectricAccelerator and using Coverity
with ElectricAccelerator, see the KB article KBEA-00162 Integrating Coverity Analysis for C/C++ into
an ElectricAccelerator Build.

Using Coverity with ElectricAccelerator

https://helpcenter.electric-cloud.com/hc/en-us/articles/209615006-KBEA-00162-Integrating-Coverity-Analysis-for-C-C-into-an-ElectricAccelerator-Build
https://helpcenter.electric-cloud.com/hc/en-us/articles/209615006-KBEA-00162-Integrating-Coverity-Analysis-for-C-C-into-an-ElectricAccelerator-Build

Using Cygwin with ElectricAccelerator (Windows
Only)

Cygwin is a Linux-like environment for Windows that consists of two parts:

l A DLL (cygwin1.dll) that acts as a Linux API emulation layer, providing substantial Linux API
functionality.

l A collection of tools that provide a Linux look and feel.

If your builds used gmake in a Cygwin environment, you might need to use eMake’s
--emake-emulation=cygwin option.

For more information about other Cygwin-specific eMake command-line options and corresponding
environment variables, see Windows-Specific Commands on page 3-21. Specifically, the following
command-line options:

--emake-cygwin=<Y|N|A>

and

--emake-ignore-cygwin-mounts=<mounts>

Using Eclipse with ElectricAccelerator
To configure Eclipse to run eMake, follow this procedure:

1. Open your C++ project.

2. Go to the project’s Properties > Builders and clickNew.

3. Select Program and clickOK.

4. Fill in the following information for the new builder under the Main tab:

l Name

l Location (the full path to emake, which is OS dependent)

l Working Directory

l Arguments (arguments are specific to your configuration)

The following screenshot illustrates the Edit Configuration dialog.

9-8 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 9: Third-Party Integrations

ElectricAccelerator 10.1 Electric Make User Guide9-9

5. Click the Build Options tab. Enable Run the builder for the following only:

l After a “Clean”

l Duringmanual builds

l During auto builds

6. ClickOK. Your new builder is displayed in the Builders pane.

7. Create another builder for “cleans” only. On its Main tab, ensure clean is included for
Arguments. On its Build Options tab, enable Run the builder for the following only:

l During a “Clean”

8. ClickOK. Your second builder is displayed in the Builders pane.

9. Deselect CDT Builder in the Builders pane and then clickOK.

Now you can build your project. Click Project > Build all.

The following screenshot illustrates a build in progress.

Using Eclipse with ElectricAccelerator

The following screenshot illustrates a successfully completed build.

9-10 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 9: Third-Party Integrations

ElectricAccelerator 10.1 Electric Make User Guide9-11

Using Eclipse with ElectricAccelerator

Chapter 10: Electrify
Electrify accelerates builds by parallelizing the build process and distributing build steps across clustered
resources.

Limitations
l The tool that you want to monitor must provide parallel support, such as SCons.

l Electrify does not provide any of eMake’s dependency detection or correction features. The build
tools you use with Electrify must be capable of accurate parallel execution on their own.

l The information written into annotation is more limited with Electrify than what is provided by
eMake. Electrify annotation provides information only on the commands executed on the
cluster, including command lines, file usage, and raw command output. Electrify does not
provide information about dependencies, job relationships, targets, or other logical build
structure data.

Recommendations
Electric Cloud has evaluated the following build tools for use with Electrify.

l SCons—Electric Cloud recommends using SCons with Electrify. Using SCons does not have any
known limitations.

l Ant—Electric Cloud does not currently recommend using Ant with Electrify.

Electrify as Part of the Build Process
The following sections describe how to run builds using Electrify.

Running Electrify on Windows
Example

electrify [args] other tools’ command line

Running Electrify on Linux
Example

electrify [arguments] other tools’ command line

SCons Example

electrify --emake-cm=<CM name> --electrify-remote=g++:gcc:ranlib:ar scons -j 4

GNU Make C++ Example

electrify --emake-cm=<CM name> --electrify-remote=g++:gcc:<any other tools used
in the build> make -j 4 -f makefile

Important Reminders About Electrify
l Ensure cl.exe, link.exe, and so on, are those of Microsoft Visual Studio. The wrapper
application might have changed them to its version.

l Though all of the usual eMake arguments are available, Electrify uses only a subset of them.

l On 64-bit Windows platforms, if you did not install ElectricAccelerator in its default install
location, you must specify the complete location of electrifymon.exe (including the
executable name) for the EMAKE_ELECTRIFYMON environment variable.
For example, if your custom install location is C:\programs\ECloud, then set the EMAKE_
ELECTRIFYMON environment variable using:
set EMAKE_ELECTRIFYMON = C:\programs\ECloud \i686_win32\64\bin\electrifymon.exe.

l On UNIX platforms, electrifymon must locate electrifymon.so so it can tell monitored
programs to load the monitoring library that reports back to electrifymon. By default,
electrifymon looks in the following locations:

Platform 32-bit 64-bit

Linux /opt/ecloud/i686_Linux/32/lib /opt/ecloud/i686_Linux/64/lib

Solaris (SPARC) /opt/ecloud/sun4u_SunOS/lib /opt/ecloud/sun4u_SunOS/64/lib

Solaris (x86) /opt/ecloud/i686_SunOS.5.10/lib /opt/ecloud/i686_SunOS.5.10/64/lib

You can override these locations using the following environment variables: ELECTRIFYMON32DIR
and ELECTRIFYMON64DIR.

l On Linux, you can change the mode that Electrify uses for monitoring. Use --emake-
electrify=<mode>, where mode can be: preload for LD_PRELOAD intercept, or trace for
ptrace.

Electrify Arguments
All arguments are optional.

10-2 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 10: Electrify

ElectricAccelerator 10.1 Electric Make User Guide10-3

--electrify-remote=<x;y> x and y are commands that are distributed to the
cluster. Use the command’s full name, such as cl.exe,
link.exe, gcc.exe, without the path. The name is
case insensitive. In a Cygwin environment, you can use
':' (colon) instead of ';' (semicolon).

Limited to 2048 characters

Environment variable: ELECTRIFY_REMOTE

--electrify-not-remote=<x;y;> x and y are commands that are not distributed to the
cluster. Use the command's full name, such as cl.exe,
link.exe, gcc.exe, without the path. The name is
case insensitive. In a Cygwin environment, you can use
':' (colon) instead of ';' (semicolon).

--electrify-not-remote and --electrify-
remote are mutually exclusive.

If you use --electrify-not-remote, all other tools’
command lines are executed remotely, by default.
Generally, this is not what you want, so to do this, you
must add a command to this list.

--electrify-not-intercept=<x;y;> xxx and yyy are commands that you do not want to be
monitored, meaning the monitor process does not
inject a dll to them and their child processes, so they
will not be distributed.

Environment variable: ELECTRIFY_NOT_INTERCEPT

--electrify-log=<fullpath> fullpath is the path of the file you want to log. This
logs all process creation and interception information.

Environment variable: ELECTRIFY_LOG

Electrify as Part of the Build Process

--electrify-localfile=<x> (Windows only) Integrates local file access (create,
rename, and so on) by locally running tools with the
remote file system.

You can set x to two different flags: NT or y.

Set nt if you want to monitor undocumented low-
level file access Nt functions. This monitors the
following functions: NtCreateFile, NtDeleteFile,
NtClose, NtWriteFile, and NtSetInformationFile.
Though this includes only five functions, their
functionality is rich, so this selection includes nearly
all scenarios where the local file system changes.

Set y to monitor documented Win32 APIs for file
access. This monitors the following Win32 APIs:
CreateFileW, CreateDirectoryA, CreateDirectoryExA,
CreateDirectoryExW, CreateDirectoryW, DeleteFileA,
DeleteFileW, MoveFileA, MoveFileExA, MoveFileExW,
MoveFileW, RemoveDirectoryA, RemoveDirectoryW,
SetFileAttributesA, and SetFileAttributesW. Though
there are many functions, their functionality is less
than Nt functions, particularly because some tools
such as Cygwin cp.exe use NtCreateFile and so on. In
general, use the y flag for testing purposes only.

--electrify-allow-regexp=
<perl-regular-expression>

(Linux only) Sends all processes to the cluster whose
full command-line matches the regular expression.

--electrify-deny-regexp=
<perl-regular-expression>

(Linux only) The processes whose command-line
match the expression will be executed locally. You can
use this after the --electrify-allow-regexp
option to tune the selection of processes that are
sent to the cluster more precisely.

Using Whole Command-Line Matching and efpredict
Whole Command-Line Matching

On Linux, you can use a process’s entire command-line to determine if it should be sent to the cluster
for execution. Prior to Accelerator v7.0, the only way to discriminate was by the process name.
Unfortunately, this did not work well for scripting languages or for languages that run in a VM, such as
Java, because the process name is always 'java' nomatter which particular program is being executed.
This means that in previous versions you could send all Java programs to the cluster or none, and that
was the limit of your discretion.

Additional Electrify command-line options:

--electrify-allow-regexp=<perl-regular-expression>

--electrify-deny-regexp=<perl-regular-expression>

10-4 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 10: Electrify

ElectricAccelerator 10.1 Electric Make User Guide10-5

These options allow you to specify which sub-processes to execute in the cluster. You use a Perl-style
regular expression that is matched against both the process name and all of its arguments, such as the
name of the script or JAR file that is being executed. When Electrify detects that a process is started, it
constructs the command line for that process by joining all of the components of its "argv" array
together with spaces and then applying the list of "allow" and "deny" regular expressions in the
sequence that they were supplied on the command line.

Whole Command-Line Matching Example:

You have three processes:

java -jar runstep.jar -x86

java -jar otherjar.jar

java -jar runstep.jar -armv7

The following options send the first process to the cluster but not the second or third:

--electrify-regexp-allow="[^]+java\s.*runstep.jar.*" --electrify-regexp-
deny=".*\-armv7.*"

Prior to Accelerator v7.0, you were only able to send all or none.

Initially, a process is considered to be for local execution only, but successive 'allow-regexp' options can
change this state if any of them match. Any "deny-regexp" in the sequence will, if it matches, short-
circuit the decision immediately and cause that process to be executed locally.

efpredict
efpredict helps you verify that the expressions you entered actually select the correct processes.
Without efpredict, you would need to perform a full build and then examine the annotation file to see if
the correct decisions were made. You would have to repeat this process each time there were any
mistakes, and it could result in a long process. Instead, you can test settings with efpredict. Provide the
same options as you would for Electrify and then enter command-lines into efpredict's standard input
to see if it selects them for local or cluster execution. One easy way to do this is to pipe an old build log
into efpredict. Check the resulting output visually to see if the desired processes were executed
remotely.

Using Whole Command-Line Matching and efpredict

efpredict Example:
cat oldlog | efpredict --electrify-regexp-allow="[^]+java\s.*runstep.jar.*" --
electrify-regexp-deny=".*\-armv7.*"

gives this output:

remote_allow: java -jar runstep.jar -x86

remote_deny: java -jar otherjar.jar

remote_deny: java -jar runstep.jar -armv7

Important Notes
l Whole command-line matching is Linux only

l efpredict is Linux only

l If a process was executed by a shell, variables will be expanded, quotes will be removed, and
white-space between tokens will be replacedwith single spaces before Electrify matches the
process. This means that if you look at a process invocation in a shell script or makefile, that
might not be the exact text that Electrify sees when it attempts to intercept the invocation of
that process.

For example, in a script you might see:

'gcc "$SOURCE/myfile.c" -o "$OUTPUT/myfile.o" -c '

but when Electrify intercepts this and tries to reconstruct the command line, it will see:

"gcc src/myfile.c -o out/myfile.o -c".

Regular expressions must be written to match what Electrify will be able to see.

l One regexp can match many commands. For example, to send both the gcc and ld commands to
the cluster you can use:

--electrify-regexp-allow='[^]*((gcc)|(ld))(\s.*)?'

Additional Electrify Information
Selecting Commands to Parallelize

A large portion of the build process acceleration will be achieved through parallelizing a small number of
specific commands, such as compiling and linking. Expending additional effort to select and parallelize
many different additional commandsmight not result in a significant amount of further acceleration.

Note: If a file is created or modified by one or more parallelized commands, then you should
parallelize all commands that use that file.

Using Electrify with GNU Make

If you intend to use Electrify with GNU Make, Electric Cloud recommends using eMake instead. eMake
provides superior performance and correctness and full annotation information.

10-6 ElectricAccelerator 10.1 Electric Make User Guide

Chapter 10: Electrify

ElectricAccelerator 10.1 Electric Make User Guide10-7

How an Electrify Build Differs from an eMake Build

An important difference between an eMake build and an Electrify build is what portion of the build
activity occurs remotely versus locally. In an eMake build, effectively all build activity (except “#pragma
runlocal” jobs) takes place on the cluster, where the EFS is used tomonitor file system accesses and
propagate changesmade by one job to other jobs in the build.

In an Electrify build, a greater portion of the build activity takes place on the local system—at the very
least, the build process itself (such as SCons) runs locally. Typically, file system modifications made by
processes running locally are “invisible” to Electrify, and therefore to processes running on the cluster—
just as “#pragma runlocal” jobs might make changes that are invisible to eMake. Electrifymon provides
a means to update the virtual file system state in Electrify in response to file system modifications
made by local processes.

If you know that a build will not run any processes locally that modify the file system, you need not use
electrifymon when invoking Electrify. However, some build tools will themselves make changes to the
file system (for example, when SCons employs its build-avoidance mechanism by copying a previously
built object in lieu of invoking the compiler), so the safest choice is to use electrifymon to start.

In addition to file system monitoring, electrifymon on Windows provides a sophisticatedmechanism for
intercepting processes invocations and determining which processes to distribute to the cluster. On
Linux, process interception is handled by the explicit use of proxy commands.

Additional Electrify Information

Chapter 11: Troubleshooting
The following topics discuss information to assist you with troubleshooting.

Topics:

l Agent Issues

l eMake Debug Log Levels

l Using the Annotation File to Troubleshoot Builds

(Undefined variable: Variables.ProductName)

11-2

Agent Errors Establishing the Virtual File System
Agent errors regarding the establishment of the virtual file system for a particular build will be displayed
if there are at least three errors. These errors would occur during the initial setup of the agent's build-
specific environment but before any particular build step is run on that agent. The most common type
of error involves eMake roots or Cygwin mounts, where the virtual file system setup is specific to the
build but not to any particular build step.

Agents Do Not Recognize Changes on Agent
Machines

If you manually mount a file system or change automounter settings on agent machines after they are
started, you must restart the Agents for them to recognize your changes.

eMake Debug Log Levels
This section discusses eMake debug log levels. Content was adapted from the “Electric Make debug log
levels” blog post on http://blog.melski.net/ andwas the most recent information available when the
article was posted.

Disclaimer: eMake debug logs are intended for use by Electric Cloud engineering and support staff.
Debug logging contents and availability are subject to change in any release, for any or no reason.

Often when analyzing builds executed with eMake, all of the information you need is in the annotation
file—an easily digested XML file containing data such as the relationships between the jobs, the
commands run, and the timing of each job. But sometimes you needmore detail, and that is where the
eMake debug log is useful.

Enabling eMake Debug Logging
To enable eMake debug logging, specify this pair of command-line arguments:

--emake-debug=<value> specifies the types of debug logging to enable. Provide a set of single-
letter values, such as “jng”.

--emake-logfile=<path> specifies the location of the debug log.

eMake Debug Log Level Descriptions
Available log levels:

a: agent allocation l: ledger

c: cache m: memory

e: environment n: node

f: file system o: parse output

g: profiling p: parse

h: history P: parse avoidance

http://blog.melski.net/

Chapter 11: Troubleshooting

11-3

j: job r: parse relocation

L: nmake lexer s: subbuild

Y: security

a: agent allocation

Agent allocation logging provides detailed information about eMake’s attempts to procure agents from
the Cluster Manager during the build. If you think eMake might be stalled trying to acquire agents,
allocation logging will help to understandwhat is happening.

c: cache

Cache logging records details about the file system cache used by eMake to accelerate parse jobs in
cluster builds. For example, it logs when a directory’s contents are added to the cache, and the result of
lookups in the cache. Because it is only used during remote parse jobs, you must use it with the --

emake-rdebug=value option. Use cache logging if you suspect a problem with the cached local file
system.

e: environment

Environment logging augments node logging with a dump of the entire environment block for every job
as it is sent to an agent. Normally this is omitted because it is quite verbose (could be as much as 32 KB
per job). Generally, it is better to use env-level annotation, which is more compact and easier to parse.

f: file system

File system logging records numerous details about eMake’s interaction with its versioned file system
data structure. In particular, it logs every time that eMake looks up a file (when doing up-to-date
checks, for example), and it logs every update to the versioned file system caused by file usage during
the build’s execution. This level of logging is very verbose, so it is not usually enabled. It is most often
usedwhen diagnosing issues related to the versioned file system and conflicts.

g: profiling

Profiling debug logging is one of the easiest-to-interpret andmost useful types of debug logging. When
enabled, eMake emits hundreds of performance metrics at the end of the build. This is a very
lightweight logging level and is safe (and advisable) to enable for all builds.

h: history

History logging prints messages related to the data tracked in the eMake history file—both file system
dependencies and autodep information. When history logging is enabled, eMake will print a message
every time a dependency is added to the history file, and it will print information about the files checked
during up-to-date checks based on autodep data. Enable history logging if you suspect a problem with
autodep behavior.

(Undefined variable: Variables.ProductName)

11-4

j: job

Job logging prints minimal messages related to the creation and execution of jobs. For each job you will
see a message when it starts running, when it finishes running, andwhen eMake checks the job for
conflicts. If there is a conflict in the job, you will see a message about that, too. If you just want a
general overview of how the build is progressing, j-level logging is a good choice.

L: nmake lexer

eMake uses a generated parser to process portions of NMAKE makefiles. Lexer debug logging enables
the debug logging in that generated code. This is generally not useful to end users because it is too low-
level.

l: ledger

Ledger debug logging prints information about build decisions based on data in the ledger file, as well as
updates made to the ledger file. Enable it if you believe the ledger is not functioning correctly.

m: memory

When memory logging is enabled, eMake prints memory usage metrics to the debug log once per
second. This includes the total process memory usage as well as current and peak memory usage
grouped into several “buckets” that correspond to various types of data in eMake. For example, the
“Operation” bucket indicates the amount of memory used to store file operations; the “Variable”
bucket is the amount of memory used for makefile variables. This is most useful when you are
experiencing an out-of-memory failure in eMake because it can provide guidance about how memory is
being utilized during the build, and how quickly it is growing.

n:node

Node logging prints detailed information about all messages between eMake and the agents, including
file system data and commands executed. Together with job logging, this can give a very
comprehensive picture of the behavior of a build. However, node logging is extremely verbose, so
enable it only when you are chasing a specific problem.

o: parse output

Parse output logging instructs eMake to preserve the raw result of parsing amakefile. The result is a
binary file containing information about all targets, rules, dependencies, and variables extracted from
makefiles read during a parse job. This can be useful when investigating parser incompatibility issues
and scheduling issues (for example, if a rule is not being scheduled for execution when you expect).
Note that this debug level only makes sense when parsing, which means you must specify it in the --

emake-rdebug option. The parse results will be saved in the --emake-rlogdir directory, named as
parse_jobid.out. Note that the directory might be on the local disk of the remote nodes, depending on
the value you specify.

Chapter 11: Troubleshooting

11-5

p: parse

Parse debug logging prints extremely detailed information about the reading and interpretation of
makefiles during a parse job. This is most useful when investigating parser compatibility issues. This
output is very verbose, so enable it only when you are pursuing a specific problem. Like parse output
logging, this debug level only makes sense during parsing, which means you must specify it in the --

emake-rdebug option. The parse log files will be saved in the --emake-rlogdir directory, named as
parse_jobid.dlog. Note that the directory might be on the local disk of the remote nodes, depending
on the value you specify.

P: parse avoidance

Parse avoidance logging indicates when a new parse is required, and if so, why it was required.

r: parse relocation

Parse relocation logging prints low-level information about the process of transmitting parse result data
to eMake at the end of a parse job. It is used only internally when we the parse result format is being
extended, so is unlikely to be of interest to end-users.

s: subbuild

Subbuild logging prints details about decisions made while using the eMake subbuild feature. Enable it if
you believe that the subbuild feature is not working correctly.

Y: authentication

Authentication logging is a subset of node logging that prints only those messages related to
authenticating eMake to agents and vice-versa. Enable this debug level, if you are having problems
using the authentication feature.

Using the Annotation File to Troubleshoot Builds
Annotation helps you debug build problems by identifying performance issues and determining the
reasons for rebuilding a “no-touch” build.

Determining Why a Target Was Rebuilt
The <job> tag includes a <why> tag with a reason as well as a prereq attribute if applicable. The <why>
tag reports why a job ran, which lets you differentiate between eMake-only reasons (for example,
reasons related to eDepend or Ledger) andmake-related reasons (for example, the job target is absent
or out of data).

Following is an example where the target did not exist before the job ran:

<job ...>
...
<why reason="target-absent"/>

...
</job>

(Undefined variable: Variables.ProductName)

11-6

During an incremental build, a job probably ran because a dependency was newer than the target. The
<why> tag includes a prereq attribute. For example:

<job ...>
...
<why reason="prereq-newer" prereq="/path/to/hello.c"/>

...
</job>

The following example demonstrates the eDepend (--emake-autodepend=1) feature. The job was run
because of this dependency:

<job ...>
...
<why reason="autodep-prereq" prereq="/path/to/conf-obj-dir"/>

...
</job>

Following are the possible values for the reason attribute. These indicate the reasons that a job can be
run:

always-make
autodep-prereq
double-colon-no-prereq
dryrun-prereq
intermediate-newer
invalid-charset
ledger
not-run
phony
prereq-absent
prereq-did-work
prereq-newer
target-absent

double-colon-no-prereq is gmake-only. invalid-charset and prereq-did-work are NMAKE-only.
autodep-prereq, intermediate-newer, prereq-absent, prereq-did-work, and prereq-newer can
have a prereq attribute. For details about the complete list of possible values, see the
ElectricAccelerator Annotation Guide at http://docs.electric-cloud.com/accelerator_
doc/AcceleratorIndex.html.

Profiling Metrics
Annotation includes profilingmetrics. These are the samemetrics that are in the debug log file when
the --emake-debug=g option is set. (The metrics appear in annotation whether or not --emake-
debug=g is used.) These metrics are intended for use by Electric Cloud technical support and
engineering staff.

Profilingmetrics are within the <profile> tag and appear exactly as they do in the debug log file.

Per-Job Performance Metrics
Annotation includes per-job performance metrics. These metrics track a variety of details about the
performance of each job in the build. For example, metrics with the A2E_ prefix reflect low-level details

http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html
http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html

Chapter 11: Troubleshooting

11-7

of the eMake/agent protocol, such as file data andmetadata requests made by the agent on behalf of
the commands run during the job. Not all metrics are for use by end users, but Electric Cloud technical
support and engineering staff might use them for certain performance analyses.

Per-job performance metrics are within the <jobMetrics> tag as in the following example.

<job... >

...

<jobMetrics>

A2E_GET_ALL_VERSIONS 11

A2E_GET_FILE_DATA 2

</jobMetrics>

...

</job>

12-1

Index

#

#pragma

allserial 6-26

cache javadoc 6-16, 6-23

multi 4-12

noautodep 7-5

runlocal 6-25

A

Accelerator

component interactions 1-2

agent

errors 11-2

Android 6-2

annotation 8-1

metrics 8-6

timers 8-6

B

build

configuration 2-4

defining 2-2

environment 2-2

performance optimization 6-2

sample 3-24

sources 2-2

stopping 4-16

tools 2-2

with Electrify 10-1

build class 4-2

examples 4-3

build parts 1-5

buildingmultiple classes simultaneously 4-12

C

ccache 3-6

ClearCase 9-2

Cluster Manager

host 3-6

command line options 3-8

commands that read from console 5-3

configuration

ccache 3-6

ClearCase 9-2

Cluster Manager 3-6

eMake temporary directory 6-28, 6-28

environment variables 3-5

tools 3-4

Index

(Undefined variable: Variables.ProductName)

12-2

Coverity 9-7

Cygwin 9-8

D

delayed existence checks 5-13

dependency optimization 6-2

E

Eclipse 9-8

eDepend 7-2

benefits 7-3

enabling 7-4

how it works 7-3

efpredict 10-5

Electrify 10-1

arguments 10-2

eMake

annotation 8-1

command line options 3-8

debug logging 11-2

emulation 3-7

fake interface for ClearCase 9-3

invoking 3-2

MAKEFLAG processing 5-15

root directory 3-3

variables 4-12

eMake root 3-3

emulation modes 3-7

environment variables

configuring 3-5

G

gcc job caching 6-3

GNU Make

unsupported options 5-2

H

hidden targets 5-11

history file 7-9

I

integration

ClearCase 9-2

Coverity 9-7

Cygwin 9-8

Eclipse 9-8

invoking eMake 3-2

J

Javadoc caching 6-16, 6-23

job caching, gcc 6-3

JobCache feature 6-3

L

ledger 7-6

local job 6-25

M

MAKEFLAG processing 5-15

multiple remakes 5-14

N

NMAKE

inline file locations 5-15

unsupported options 5-3

P

parse avoidance 6-17

Index

12-3

performance optimization 6-2, 6-2, 6-3, 6-17

priority pools 4-5

proxy command 4-8

R

registry

tools that access 3-5

S

sample build 3-24

serializingmake instance jobs 6-26

shut down cluster host during builds 4-17

single make invocation 3-2

subbuilds 4-9

submake

stub compatibility 5-8

stubbed output 5-5

stubs 5-6

T

temporary file

deleting 6-29

management 6-28

tools 3-4

that access the registry 3-5

transactional command output 5-4

U

unsupported

GNU Make options 5-2

NMAKE options 5-3

V

virtualization 1-3

environment variables 1-4

registry 1-3

user accounts 1-4

W

whole command-line matching 10-4

wildcard sort order 5-13

	Chapter 1: eMake Overview
	Understanding Component Interactions
	eMake and EFS
	eMake and Cluster Manager

	ElectricAccelerator Virtualization
	Electric File System (EFS)
	System Registry (Windows Only)
	User Accounts
	Environment Variables

	Understanding Build Parts

	Chapter 2: Setting Up ElectricAccelerator
	Defining Your Build
	Build Sources
	Build Tools
	Build Environment

	Configuring Your Build

	Chapter 3: eMake Basics
	Invoking eMake
	Single Make Invocation

	Setting the eMake Root Directory
	Configuring Tools
	Tools that Access or Modify the System Registry
	Configuring Environment Variables
	Setting the Cluster Manager Host and Port
	Setting eMake Emulation
	eMake Command-Line Options, Environment Variables, and Configuration File
	Editing the eMake Configuration File
	List of Command-Line Options

	ElectricAccelerator Sample Build

	Chapter 4: Additional eMake Settings and Features
	Using Build Classes
	Using Priority Pools
	Using the Proxy Command
	Using Subbuilds
	Subbuild Database Generation
	Run a Build Using Subbuild
	Subbuild Limitations

	Building Multiple Targets Simultaneously
	Using eMake Variables
	Using the Ninja Build System
	Specifying Pragmas in an Addendum File
	Restrictions
	Supported Pragmas
	Examples
	Specifying the File to Use

	Stopping a Build
	Shutting Down Cluster Hosts During Builds

	Chapter 5: Make Compatibility
	Unsupported GNU Make Options and Features
	Unsupported GNU Make Options
	GNU Make 3.81 Support
	GNU Make 3.82 Support
	GNU Make 4.0 and 4.1 Support
	GNU Make 4.2 Support

	Unsupported NMAKE Options
	Commands that Read from the Console
	Transactional Command Output
	Stubbed Submake Output
	Submake Stubs
	Submake Stub Compatibility

	Hidden Targets
	Wildcard Sort Order
	Delayed Existence Checks
	Multiple Remakes (GNU Make only)
	NMAKE Inline File Locations (Windows only)
	How eMake Processes MAKEFLAGS

	Chapter 6: Performance Optimization
	Optimizing Android Build Performance
	Dependency Optimization
	Enabling Dependency Optimization
	Dependency Optimization File Location and Naming

	Job Caching
	Benefits
	Limitations
	Supported Tools
	Running a “Learning” Build to Populate the Cache
	Extending JobCache to Teams Via a Shared Cache
	Configuring JobCache
	Job Caching for gcc, clang, Jack, and javac
	Job Caching for cl
	Troubleshooting
	Viewing JobCache Metrics
	Moving Your Workspace
	Deleting the Cache

	Job Caching for kati
	Parse Avoidance
	Enabling Parse Avoidance
	Deleting the Cache
	Moving Your Workspace
	Limitations
	Troubleshooting
	Ignored Arguments and Environment Variables

	Javadoc Caching
	Enabling Javadoc Caching
	Limitations

	Schedule Optimization
	How it Works
	Using Schedule Optimization
	Disabling Schedule Optimization

	Running a Local Job on the Make Machine
	Jobs That Are Suited to Running Locally
	Specifying Jobs to Run Locally
	Making eMake Detect Files Outside the Current Working Directory

	Serializing All Make Instance Jobs
	Splitting PDBs Using hashstr.exe

	Managing Temporary Files
	Configuring the eMake Temporary Directory
	Deleting Temporary Files

	Chapter 7: Dependency Management
	ElectricAccelerator eDepend
	Dependency Generation
	The Problem
	eDepend Benefits
	How Does eDepend Work?
	Enabling eDepend
	Using #pragma noautodep

	ElectricAccelerator Ledger File
	The Problem
	The eMake Solution

	Managing the History Data File
	Setting the History File Location
	History File Input Rules
	History File Output Rules
	Guaranteeing Correct History
	Ensuring that Relative EMAKE_ROOT Locations Match
	Running Builds with Multiple Roots
	Using the remaphist Utility to Relocate a History File

	Conflicts and Conflict Detection
	How eMake Guarantees Reliable Parallel Builds
	The Versioned File System
	Detecting Conflicts
	Exceptions to Conflict Detection in eMake

	Chapter 8: Annotation
	Configuring eMake to Generate an Annotation File
	Annotation File Splitting
	Working with Annotation Files
	Creating Tools for Tasks That Use Annotation Output
	Annotation XML DTD

	Metrics in Annotation Files
	Timer Annotation
	Other Annotation

	Chapter 9: Third-Party Integrations
	Using ClearCase with ElectricAccelerator
	Configuring ElectricAccelerator for ClearCase
	ecclearcase Executable
	LD_LIBRARY_PATH
	ClearCase Views on Agents
	--emake-clearcase
	eMake’s “Fake” Interface for ClearCase
	Where ClearCase Dynamic Views Affect eMake Behavior
	Performance Considerations

	Using Coverity with ElectricAccelerator
	Using Cygwin with ElectricAccelerator (Windows Only)
	Using Eclipse with ElectricAccelerator

	Chapter 10: Electrify
	Limitations
	Recommendations
	Electrify as Part of the Build Process
	Running Electrify on Windows
	Running Electrify on Linux
	Important Reminders About Electrify
	Electrify Arguments

	Using Whole Command-Line Matching and efpredict
	Whole Command-Line Matching
	efpredict
	Important Notes

	Additional Electrify Information

	Chapter 11: Troubleshooting
	Agent Errors Establishing the Virtual File System
	Agents Do Not Recognize Changes on Agent Machines
	eMake Debug Log Levels
	Enabling eMake Debug Logging
	eMake Debug Log Level Descriptions

	Using the Annotation File to Troubleshoot Builds
	Determining Why a Target Was Rebuilt
	Profiling Metrics
	Per-Job Performance Metrics

	 Index

