
1

ElectricCommander 5.1
API Guide

Electric Cloud, Inc.
www.electric-cloud.com

Document Rev. 1

ElectricCommander

2

Copyright © 2002 – 2014 Electric Cloud, Inc. All rights reserved.

Published 7/28/2014

Electric Cloud® believes the information in this publication is accurate as of its publication date. The information
is subject to change without notice and does not represent a commitment from the vendor.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” ELECTRIC CLOUD, INCORPORATED
MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION
IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any ELECTRIC CLOUD software described in this publication requires an
applicable software license.

Copyright protection includes all forms and matters of copyrightable material and information now allowed by
statutory or judicial law or hereinafter granted, including without limitation, material generated from software
programs displayed on the screen such as icons, screen display appearance, and so on.

The software and/or databases described in this document are furnished under a license agreement or
nondisclosure agreement. The software and/or databases may be used or copied only in accordance with terms
of the agreement. It is against the law to copy the software on any medium except as specifically allowed in the
license or nondisclosure agreement.

Trademarks

Electric Cloud, ElectricAccelerator, ElectricCommander, ElectricInsight, and Electric Make are registered
trademarks or trademarks of Electric Cloud, Incorporated.

Electric Cloud products—ElectricAccelerator, ElectricCommander, ElectricInsight, and Electric Make—are
commonly referred to by their “short names”—Accelerator, Commander, Insight, and eMake—throughout
various types of Electric Cloud product-specific documentation.

Other product names mentioned in this guide may be trademarks or registered trademarks of their respective
owners and are hereby acknowledged.

3

ElectricFlow in the Electric Cloud Environment 6

How to Use the ElectricFlow API 7
Using ectool 7

Logging in 7
Global Arguments (optional) 8
Passing Lists as Arguments 8

Using Perl 8
Perl API structure 9

Common Global Options 11
The Batch API 13

Using the Batch API 13
Installing Commander Perl modules into Your Perl Distribution 14
Installing Perl Modules into the Commander Perl Distribution 15

When Upgrading Commander 16

API commands - ACL Management 17

API commands - Applications 39

API commands - Application Tier 43

API commands - Artifact Management 49

API commands - Component 76

API Commands - Credential Management 84

API Commands - Database Configuration 92

API Commands - Directory Provider Management 95

API Commands - Email Configuration Management 107

API Commands - Email Notifier Management 112

API Commands - Environment Requests 124
createEnvironment 124
createEnvironmentInventoryItem 125
deleteEnvironment 127
deleteEnvironmentInventoryItem 127
getEnvironment 128
getEnvironments 129
getEnvironmentApplications 130
getEnvironmentInventory 130
getEnvironmentInventoryItem 131
getEnvironmentInventoryItems 132
modifyEnvironment 133
modifyEnvironmentInventoryItem 134

API Commands - Environment Tier 136
createEnvironmentTier 136
deleteEnvironmentTier 137

ElectricCommander

4

getEnvironmentTier 138
getEnvironmentTiers 138
modifyEnvironmentTier 139

API Commands - Gateways/Zones Management 141

API Commands - Job Management 150
External Job APIs 166

API Commands - Parameter Management 181

API Commands - Plugin Management 199

API Commands - Procedure Management 205

API Commands - Process 224
createProcess 224
deleteProcess 225
getProcess 226
getProcesses 227
modifyProcess 228
runProcess 230

API Commands - Process Dependency 232
createProcessDependency 232
deleteProcessDependency 233
getProcessDependencies 235
modifyProcessDependency 236

API Commands - Process Step 238
createProcessStep 238
deleteProcessStep 240
getProcessStep 241
getProcessSteps 243
modifyProcessStep 244

API Commands - Project Management 247

API Commands - Property Management 252

API Commands - Resource Management 283

API Commands - Schedule Management 302

API Commands - Server Management 309

API Commands - Tier Map 317
createTierMap 317
deleteTierMap 318
deleteTierMapping 319
getTierMaps 320
modifyTierMap 321

API Commands - User/Group Management 323

API Commands - Workflow Management 335

5

API Commands - Workflow Definition Management 343

API Commands - Workspace Management 360

API Commands - Miscellaneous Management 366

API Response and Element Glossary 390
Element Glossary 412

ElectricFlow Glossary 441

ElectricCommander

6

ElectricFlow in the Electric Cloud Environment
ElectricFlow is a complete end-to-end web-based software deployment solution. ElectricFlow automates
standard build, test, deploy, and release processes across your enterprise. You can select the components of
the working applications in your software environment.

You use the ElectricCommander platform tools and operations to access the API commands created for
ElectricFlow. For example, ectool getApplications returns summary information for a list of applications in
a project. It does not matter if you are using the application objects in ElectricFlow or ElectricCommander.

IMPORTANT: Currently all the API commands created for ElectricFlow are executed in a "Default"
ElectricCommander project.

How to Use the ElectricFlow API

7

How to Use the ElectricFlow API

ElectricFlow features can be accessed in two ways:

l The most common access is through the web interface, which displays screens to create projects,
procedures, and steps; launch jobs; and manage all administration tasks.

l The second access method is the Commander API. The API can be used from a command-line,
including a shell script, or a batch file. Any operation you can perform on the web interface, you can
perform using the API because they both rely on the same interface to the ElectricCommander server.

The Commander API supports ectool and ec-perl (or Perl) commands:
o ectool is a command-line tool developed to script ElectricFlow operations.

o ec-perl is delivered as a Perl package during ElectricFlow installation, or you can use any Perl of
your choice.

Because ectool and ec-perl can work together, this section describes Perl and ectool usage and differences.

l Using ectool

l Using ec-perl

l Common global options

l The Batch API

l Installing Commander Perl modules into your Perl distribution

l Installing Perl modules into the Commander Perl distribution

Using ectool
ectool is a command-line application that provides operational control over the ElectricFlow system.

ectool supports a large collection of commands, each of which translates to a message sent to the
ElectricCommander server.
For example, ectool getProjects returns information about all projects defined in the server.

l ectool --help displays a summary of all commands and other command-line options.

l For information about a particular command, use --help followed by the command name. For example,
ectool --help modifyStep returns information about the modifyStep command.

Logging in
If you use ectool outside of a job, you must invoke the ectool login command to login to the server. After logging
in, ectool saves information about the login session for use in future ectool invocations. If you run ectool as part
of a ElectricFlow job, you do not need to log in—ectool uses the login session (and credentials) for that job.

To log in to a specific server, see the example below, which includes the server name, user name, and
password.

Login example:

ectool --server bldg1server login "Ellen Ernst" "ee123"

General syntax for ectool command usage:

ElectricCommander

8

ectool [global argument] <command> <positional arguments> [named arguments]

Global Arguments (optional)
See the Common global options section for more information.

Passing Lists as Arguments
Some API commands include arguments that expect a list of values. Two list forms: value lists and name/value
pairs. The syntax to specify a list depends on whether you are using ectool or ec-perl.

For ectool
l value list - each value is specified as a separate argument on the command line

Example:

ectool addUsersToGroup group1 --userNames user1 user2 user3

l name/value pairs - each pair is specified as a separate argument in the form name=value
Example:

ectool runProcedure proj1 --procedureName proc1 --actualParameter parm1=value1 p
arm2=value2

For ec-perl
l value list - the argument value is a reference to an array of values

Example:

$cmdr->addUsersToGroup({ groupName => group1,
 userName => ['user1', 'user2']});

l name/value pairs - the argument value is a reference to an array of hash references. Each hash
contains a pair of entries, one for the name and one for the value. The hash keys depend on the specific
API.
Example:

$cmdr->runProcedure({ projectName => 'proj1',
 procedureName => 'proc1',
 actualParameter => [{ actualParameterName => 'parm1',
 value => 'value1'},

{ actualParameterName => 'parm2',
 value => 'value2'}]});

Using Perl
When ElectricFlow is installed—Server, Agent, or Tools (using the express or advanced installation type)—a
copy of Perl is installed. This Perl is pre-configured with all the packages you need to run the Commander Perl
API. Commander does not, however, automatically add this version of Perl to your path because:

l We did not want the ElectricFlow installation to interfere with existing scripts you may run, which are
dependent on finding another copy of Perl you already use.

l Some special environment variables need to be set before calling Perl.

Both of these issues are addressed with a small wrapper program called ec-perl. The wrapper is installed as
part of ElectricFlow, and it is in a directory that is added to your path. When the ec-perl wrapper runs, it sets up
the environment, finds, and calls the Commander copy of Perl, passing all of its parameters to Perl.
To run ec-perl from a command line (or in a ElectricFlow step) simply enter:

ec-perl yourPerlOptions yourPerlScript.pl

How to Use the ElectricFlow API

9

The Perl script can include API calls to ElectricFlow with no other special handling required.

Another way to write Perl scripts: For an ElectricFlow step, enter the Perl script directly into the "Command" field,
and set the "Shell" field to ec-perl. The Commander-installed Perl is used to process the Perl script.

You can develop Perl scripts to access the Perl API directly. Because ectool uses the Perl API to execute its
commands, any ectool command you can execute can be executed using the Perl API. If you are writing (or
currently using) a script that makes tens or hundreds of calls, the Perl API provides a significant performance
improvement over ectool.

The Perl API is delivered as a collection of Perl packages pre-installed in a Perl 5.8 distribution. The main API
package is called ElectricCommander.

Perl API structure
The Perl API has the same four elements as ectool, but the way these elements are specified is quite different.

Specifying global options

To use the Commander Perl API, you must first create an object. Global arguments are specified at the time the
object is created. These arguments are passed as members of an anonymous hash reference, as shown in the
following example:

use ElectricCommander;
$cmdr = ElectricCommander->new({
server => "vm-xpsp2",
port => "8000",
securePort => "8443",
debug => "1",
});

In the example above, port options are not really necessary because they specify default values. When you
want to specify the server name only, you can use the “shorthand” form:

use ElectricCommander;
$cmdr = ElectricCommander->new("vm-xpsp2");

An even simpler form can be used if you call the Perl API from a script running as part of an ElectricFlow job
step. In this case, the Commander package sets the server name based on the environment variable,
COMMANDER_SERVER, set by the Commander agent.

use ElectricCommander;
$cmdr = ElectricCommander->new();

To see a complete list of global commands you can use with Perl, click here.

Note: If your script uses International characters (non-ascii), add the following block to the top of your ec-perl
command block:

use utf8;
ElectricCommander::initEncodings();

Specifying subcommands

For each subcommand, there is a corresponding Commander object function.

For example, to retrieve a list of jobs, use

$cmdr->getJobs();

Specifying arguments

ElectricCommander

10

Most subcommands expect one or more arguments. Arguments are specified as key value pairs in a hash ref
passed as the final argument to the subcommand. Additionally, as a convenience, some arguments may be
specified as positional arguments prior to the options hash ref.

For example, setProperty has two positional arguments, propertyName and value, as well as an optional
jobId argument that can be specified in either of the following forms:

$cmdr->setProperty("/projects/test/buildNumber", "22",
{jobId => $jobId});

or

$cmdr->setProperty({
 propertyName => "/projects/test/buildNumber",
 value => "22",
 jobId => $jobId });

Handling return values

Every function to the object returns an object of type XML::XPath. This is an object that returns a parsed
representation of the ElectricFlowreturned XML block. See documentation on CPAN for more information.

$xPath = $cmdr->setProperty("filename", "temp.xml");
print "Return data from Commander:\n".

$xPath->findnodes_as_string ("/") . "\n";

Error handling

If a function call to the ElectricCommander object encounters an error, by default, it "dies" inside Perl and prints
an error message. If you want to handle errors yourself and continue processing, you must set a flag to disable
internal error handling and handle the error in your code.
For example:

$cmdr->abortOnError(0);
$xPath = $cmdr->getResource("NonExistent Resource");
if ($xPath) {

my $code = $xPath->findvalue('//code')->value();
if ($code ne "") {

my $mesg = $xPath->findvalue('//message');
print "Returned code is '$code'\n$mesg\n";
exit 1;

}
}

An alternative to using the abortOnError flag:

eval {$cmdr->get...};
if ($@) {
print "bad stuff: $@";
exit 1;
}

Specifying a named object

Any API argument that refers to a named object (for example, projectName, procedureName) performs
property reference expansion before looking in the database for the object. This process allows constructs like
the following to work without making two separate server requests:

$cmdr->getProject ('$[/server/defaultProject]')

Property reference expansion for names occurs in the global context, so context-relative shortcuts like
"myProject" are not available.

How to Use the ElectricFlow API

11

Common Global Options
Global arguments can be used alone or in conjunction with other commands. These arguments are used to
control communication with the server and can be used with the ectool or ec-perl API.

Global Arguments Description

--help Display an online version of ectool commands with a short description.
Displays command information if followed by a command name.

--version Display the ectool version number.

--server <hostname> ElectricCommander server address. Defaults to the COMMANDER_
SERVER environment variable. If this variable does not exist, the default is
to the last server contacted through the API. However, if there is no record
for which server was contacted, the default is to localhost.
Note: If you are using multiple servers, Electric Cloud recommends using
the server option to ensure the correct server is specified for your task. For
example, if you are using the import API, the server option may be
particularly important.

Do not use in a step context: Electric Cloud recommends that steps
running ectool or Perl scripts should never provide the server option if the
intention is to communicate with the server that launched the step. If the
intention is to communicate with a different server, this agent must be a
registered, enabled resource in the second server. Thus, that server will
ping the agent, and the agent will learn how to communicate with that
server.

In a step context, ectool and the Perl API proxy server requests through the
step's agent. If the agent does not recognize the provided server-name, it
rejects the request. ectool / Perl API retry the operation because at some
point the server should ping the agent, and then the agent will have learned
how to communicate with the server.

Generally, the issue is that the server publicizes its name as a fully-qualified
domain name and ectool / Perl API issue requests with a simple-name for
the server. This can happen if the step explicitly states which server it is
connecting to. Fix your steps that invoke ectool so they no longer include the
server-name, and ectool will default to the server-name that the server
provided.

--port <port> HTTP listener port on the ElectricCommander server. Defaults to port 8000.

--securePort
<secureport>

HTTPS listener port on the ElectricCommander server. Defaults to port 8443.

--secure <0|1> Use HTTPS to communicate with the Commander server.
Note: Certain requests (for example, login, createUser, and
modifyUser) automatically use HTTPS because passwords are being sent,
which means it is not necessary to specify secure for those APIs. Defaults to
1.

ElectricCommander

12

Global Arguments Description

--timeout <s> An API call waits for a response from the server for a specified amount of
time. Timeout for server communication defaults to 180 seconds (3 minutes)
if no other time is specified. After the timeout, the API call stops waiting for a
response, but the server continues to process the command.

--retryTimeout <s> This is a separate timer, independent of the retry flag, and used to control
Commander’s automatic error recovery. When the API is unable to contact
the Commander server, it will keep trying to contact the server for this length
of time. When the API is called from inside a step, it defaults to 24 hours.

--retry <0|1> Retry the request if it times out based on the "timeout" value. Default is "0"
and should rarely be changed.

--user <username> Use the session associated with the user. Defaults to the user who last
logged in.

--service <spn> Specify the service principal name to use for Kerberos. Defaults to
HTTP@host.domain.

--setDefault <0|1> Use the current session as the default for subsequent invocations. Defaults
to 1.

encoding
<charEncoding>

Use the specified encoding for input/output. For example, for
charEncoding, supply UTF-8, cp 437, and so on. Default is autodetected.

--dryrun Displays session information and the request that would be sent, without
communicating with the server. If a subcommand is specified, the server
request that would be sent is displayed. This option can also be used to
change the default user/server value by specifying the --user or --server
options.

--silent Suppresses printing the result.
For example:
ectool --silent createResource foo will not print the resource
name, agent state, any modify information, create time, owner, port, or any
other information otherwise displayed when you create a resource.

--valueOf This option can return the value of a unique element. Because many ectool
APIs return an XML result, it is inconvenient to use ectool in shell scripts and
makefiles where you might want a piece of the ectool result to incorporate
into some other logic. Using the --valueOf <path> option evaluates the
XML result and emits the value of that node to satisfy such use cases.
For example:
$ ectool --valueOf '//version' getServerStatus
returns only "4.1.0.48418".

--format <format> Specifies the response format. Must be one of 'xml' or 'json'. Defaults to 'xml'.
For example, you might specify:
ectool --format json setProperty summary hello

--ignoreEnvironment Force ectool to ignore COMMANDER_ENV variables.

How to Use the ElectricFlow API

13

The Batch API
The Perl API supports a batch operation mode that allows you to send multiple API requests in a single
"envelope", which has several advantages over standard, individual API calls in some situations. For example,
you could use the batch API when you need to set 10 or even 100 property values.

The batch API reduces "round-trip" transmissions. All setProperty requests can be sent in a single envelope.
You can choose an option that changes all properties in a single database transaction in the server. This means
changes are made using an "all or none" approach. If one change fails, they all fail, which allows you to keep
your data in a consistent state. When you make a large number of requests in one envelope, the single
database transaction option provides much better performance.

Using the Batch API
To use the batch API, first create a object as you would for a standard API. From your newly created object,
create a batch object using the newBatchmethod. The newBatch method takes a single argument, which is
the "request processor mode". This argument tells the server how to process multiple requests. There are three
"request processor modes":

1. serial - each request in the envelope is processed serially, each in its own transaction.

2. parallel - each request in the envelope is processed in parallel, each in its own transaction.

3. single - each request in the envelope is processed serially, all in the same transaction.

Specifying serial, parallel, or single is optional. If you do not specify an option, the server determines the best
mode to use, based on the requests in the envelope.

Example - creating a batch object:

use ElectricCommander;
my $cmdr = ElectricCommander;
Create the batch API object
my $batch = $cmdr->newBatch("parallel");

The batch object supports all the same calls as the standard API. The result of each call is a numeric
requestId that can be used to locate a response from an individual request within the batch.

Example - creating multiple requests in a batch:

Create multiple requests
my @reqIds = (
 $batch->setProperty("/myJob/p1", 99),
 $batch->incrementProperty("/myJob/p2");
);

After the batch is created, submit it to the server for processing. The return from the submit() call is an XPath
object that represents an XML document containing the responses for all of the API requests.

Example - submitting the batch:

Submit all the requests in a single envelope
$batch->submit();

Sample response from this example:

<responses xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:
 version="2.1" dispatchId=1680

<response requestId="1">
<property>

ElectricCommander

14

<propertyId>199827</propertyId>
<propertyName>p1</propertyName>
<createTime>2010-07-21T16:41:20.003Z</createTime>
<expandable>1</expandable>
<lastModifiedBy>project: EA Articles</lastModifiedBy>
<modifyTime>2010-07-21T16:41:20.003Z</modifyTime>
<owner>project: EA Articles</owner>
<value>99</value>

 </property>
 </response>
 <response requestId="2">
 <property>
 <propertyId>199828</propertyId>
 <propertyName>p2</propertyName>
 <createTime>2010-07-21T16:41:20.019Z</createTime>
 <expandable>1</expandable>
 <lastModifiedBy>project: EA Articles</lastModifiedBy>
 <modifyTime>2010-07-21T16:41:20.019Z</modifyTime>
 <owner>project: EA Articles</owner>
 <value>1</value>
 </property>
 </response>
</responses>

To extract information from the response to a request, use standard XPath syntax, and supply the requestId
returned by that specific API call to either the find or findvalue functions on the batch object.

Example - extracting response information:

Extract the value from the "increment" request
my $value = $batch->findvalue($reqIds[0], 'property/value');

print "New value is $value\n";

Single-transaction batch processing can continue after errors if you supply an ignoreErrors attribute in the
request and/or requests elements. The ignoreErrors value is evaluated as a regular expression against
any error codes from the batch. If the expression matches, an error will not cause the batch to fail.

There are two ways to specify ignoreErrors when issuing a single-transaction batch call:

1. Specify the ignoreErrors attribute when creating the batch object. In this case, the attribute applies to
all requests in the batch:
my $batch = $N->newBatch('single', 'DuplicateResourceName');

2. Specify the ignoreErrors attribute as an argument to an individual request. In this case, the attribute
applies only to that request and will override any global value specified:
my $req2 = $batch->createResource($resource, {ignoreErrors =>
'DuplicateResourceName'});

Installing Commander Perl modules into Your Perl
Distribution

You may want to use your existing Perl distribution. If so, Commander uses a CPAN style module, located in
<installdir>/src, that can be installed with the following commands:

tar xzvf ElectricCommander-<your version>.tar.gz
cd ElectricCommander-<your version>
perl Makefile.PL
make install;# Use nmake on Windows

How to Use the ElectricFlow API

15

These commands install the Commander Perl and all of its submodules. If some prerequisite modules are
missing, the Makefile.PL script will indicate which modules are needed.

Installing Perl Modules into the Commander Perl Distribution
You may want expand the Commander Perl distribution by adding Perl modules from CPAN or third party
vendors.

Install Perl modules using CPAN installer. The installer comes with the Commander Perl distribution in
<commanderDir>/perl/bin.

For Linux

From the command line use: <commanderDir>/perl/bin/perl -MCPAN -e 'install <module>'

For Windows

Compatibility with Commander is important. Commander 4.1 (and above) versions use Perl 5.8 for ec-perl.

If the Perl package is not Perl-only and requires compiling (for example, for C code):

Use Windows Visual Studio VC6 (the same version used by Commander).

Make sure that cl and nmake are both in your path. The Visual Studio install has a Command Prompt with
these executables already in the path.

Extra steps are needed for Windows because of a problem with Perl and CPAN if you are running from a
directory with spaces in the name. (By default, Commander has spaces in the installed directory.)

l Use a network drive to eliminate references to spaces.

Use subst to mount the Perl directory under a different drive letter:
c:\> subst x: "c:\program files\electric cloud\electriccommander"

Start CPAN from the new location:
c:\> x:\perl\bin\perl -MCPAN -e shell

Configure CPAN to install into the new location:
cpan> o conf makepl_arg PREFIX=x:/perl

Install the module:
cpan> install <module>

Ending CPAN:
cpan> quit

l Change the <commanderDir>\perl\lib\config.pm file to eliminate spaces in references to the
Commander path.
For example:

#archlibexp => 'C:\Program Files\Electric Cloud\ElectricCommander\perl\lib',
 archlibexp => 'X:\perl\lib',
#privlibexp => 'C:\Program Files\Electric Cloud\ElectricCommander\perl\lib',
 privlibexp => 'X:\perl\lib',
#scriptdir => 'C:\Program Files\Electric Cloud\ElectricCommander\perl\lib',
 scriptdir => 'X:\perl\lib',
#sitearchexp => 'C:\Program Files\Electric

ElectricCommander

16

Cloud\ElectricCommander\perl\site\lib',
 sitearchexp => 'X:\perl\lib',
#sitelibexp => 'C:\Program Files\Electric Cloud\ElectricCommander\perl\site\li
b',
 sitelibexp => 'X:\perl\lib',

l Temporarily add X:\perl\bin to your Windows path.

When Upgrading Commander
During a Commander upgrade, the installer makes every attempt to preserve Perl packages. However, future
Commander versions may contain an upgraded Perl version, which may then require a reinstall of any added
Perl packages.

API commands - ACL Management

17

API commands - ACL Management

breakAclInheritance
checkAccess
createAclEntry
deleteAclEntry
getAccess
getAclEntry
modifyAclEntry
restoreAclInheritance

breakAclInheritance
Breaks ACL (access control list) inheritance at the given object. With inheritance broken, only the access control
entries directly on the ACL will be considered.

You must specify locator arguments to find the object where you want to break inheritance.

Arguments Descriptions

artifactName The name of the artifact.

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name—the Commander server interprets
either name form correctly.

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object. A qualifying project
name is required.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

configName The name of the email configuration.

gatewayName The name of the gateway.

groupName The full name of the group. For Active Directory and LDAP, the full
name if the full DN.

ElectricCommander

18

Arguments Descriptions

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName The name of the email notifier.

objectId

This is an object identifier returned by findObjects and
getObjects. This value is a "handle" only for passing to API
commands. The internal structure of this value is subject to change
- do not parse this value.

pluginName The plugin key for a promoted plugin or a plugin key and version
for an unpromoted plugin.

procedureName
The name of the procedure or a path to a procedure, including the
name.
Also requires projectName

projectName
The name of the project - may be a path. The project name is
ignored for credentials, procedures, steps, and schedules if they
are specified as a path.

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

repositoryName The name of the repository used for artifact management.

resourceName The name of a resource.

resourcePoolName The name of a pool containing one or more resources.

scheduleName The name of a schedule - may be a path to a schedule.
Also requires projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step - may be a path to the step.
Also requires projectName and procedureName

systemObjectName

System objects names include:
admin|artifactVersions|directory|emailConfigs|log|p
lugins|
server|session|workspaces

transitionDefinitionName The name of the transition definition.

API commands - ACL Management

19

Arguments Descriptions

transitionName The name of the transition.

userName The full name of a user (for Active Directory or LDAP, this may be
user@domain).

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of a workspace.

zoneName The name of the zone.

Positional arguments
Arguments to locate the object, beginning with the top-level object locator.

Response
None or status OK message.

ec-perl
syntax: $cmdr->breakAclInheritance({...});

Example
$cmdr->breakAclInheritance ({ projectName => "Sample Project"});

ectool
syntax: ectool breakAclInheritance ...

Example
ectool breakAclInheritance --projectName "Sample Project"

Back to Top

checkAccess
Checks ACL (access control list) permission information associated with an object (including inherited ACLs)
for the current user.

You must specify object locator arguments to define the object where you need to verify access.

Arguments Descriptions

applicationName The name of the application container of the property sheet which
owns the property; must be unique among all projects.

ElectricCommander

20

Arguments Descriptions

applicationTierName The name of the application tier container of the property sheet
which owns the property.

artifactName The name of the artifact container of the property sheet which
owns the property.

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name—the Commander server interprets
either name form correctly.

componentName The name of the component container of the property sheet which
owns the property.

configName The name of the emailConfig container that owns the property.

credentialName

The name of the credential container of the property sheet which
owns the property.

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object. Requires a
qualifying project name.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

environmentName The name of the environment container of the property sheet
which owns the property; must be unique among all projects.

environmentTierName The name of the environment tier container of the property sheet
which owns the property.

gatewayName The name of the gateway container of the property sheet.

groupName

The full name of the group container of the property sheet which
owns the property.

For Active Directory and LDAP, this is a full DN.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier (UUID) for a job step, assigned automatically
when the job step is created.

API commands - ACL Management

21

Arguments Descriptions

notifierName The name of the email notifier.

objectId

This is an object identifier returned by findObjects and
getObjects. This value is a "handle" only for passing to API
commands. The internal structure of this value is subject to change
- do not parse this value.

path Property path string.

pluginName The name of the plugin - the plugin key for a promoted plugin or a
plugin key and version for an unpromoted plugin.

procedureName The name of the procedure - may be a path to the procedure.
Also requires projectName

processName The name of the process, if the container is a process or process
step.

processStepName The name of the process step, if the container is a process step.

projectName

The name of the project container of the property sheet which
owns the property that may be a path; must be unique among all
projects.

The project name is ignored for credentials, procedure, steps, and
schedules if it is specified as a path.

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

repositoryName The name of the repository for artifact management.

resourceName The name of the resource.

resourcePoolName The name of a pool containing one or more resources.

scheduleName The name of the schedule - may be a path to the schedule.
Also requires projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step - may be a path to the step.
Also requires projectName and procedureName

systemObjectName
System object names include:
admin|directory|licensing|log|plugins|priority|proj
ects|

ElectricCommander

22

Arguments Descriptions

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

userName The full name of the user. For Active Directory and LDAP, the
name may be user@domain.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of the workspace.

zoneName The name of the zone.

Positional arguments
Arguments to locate the object, beginning with the top-level object locator.

Response
For the specified object, returns the effective permissions for the current user.

ec-perl
syntax: $cmdr->checkAccess({...});

Example
$cmdr->checkAccess ({"projectName"=>"Sample Project"});

ectool
syntax: ectool checkAccess ...

Example
ectool checkAccess –-projectName "Sample Project"

Back to Top

createAclEntry
Creates an ACE (access control list entry) on an object for a given principal.

You must specify the principalType, principalName, and locator options for the object to modify.

Arguments Descriptions

artifactName The name of the artifact.

API commands - ACL Management

23

Arguments Descriptions

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name—the Commander server interprets
either name form correctly.

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

configName The name of the email configuration.

gatewayName The name of the gateway.

groupName The name of a group.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName The name of the email notifier.

objectId This is an object identifier returned by findObjects and
getObjects.

pluginName The name of the plugin - the plugin key for a promoted plugin or
plugin key and version for an unpromoted plugin.

principalName This is either a user or a group name.

principalType This is either user or group.

Privileges:
readPrivilege
modifyPrivilege
executePrivilege
changePermissionsPrivilege

<allow|deny>
If a privilege is not specified, permission is set to inherit from its
parent object’s ACL.

procedureName The name of the procedure.
Also requires projectName

ElectricCommander

24

Arguments Descriptions

projectName The name of the project.

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

repositoryName The name of the repository for artifact management.

resourceName The name of the resource.

resourcePoolName The name of a pool containing one or more resources.

scheduleName The name of the schedule.
Also requires projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step.
Also requires projectName and procedureName

systemObjectName

System object names include:
admin|artifacts|directory|emailConfigs|forceAbort|l
icensing|
log|plugins|priority|projects|repositories|resource
s|server| session|test|workspaces|zonesAndGateways

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

userName The full name of the user.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of the workspace.

zoneName The name of the zone.

Positional arguments
principalType, principalName

Response
None or status OK message.

API commands - ACL Management

25

ec-perl
syntax: $cmdr->createAclEntry(<principalType> <principalName>, {...});

Example
$cmdr->createAclEntry("user", "j smith", {"projectName"=>"Sample Project",
"readPrivilege"=>"allow", "modifyPrivilege"=>"deny", "executePrivilege"=>"deny",
"changePermissionsPrivilege"=>"deny"});

ectool
syntax: ectool createAclEntry <principalType> <principalName> ...

Example
ectool createAclEntry user "j smith" --projectName "Sample Project" --readPrivilege
allow
--modifyPrivilege deny --executePrivilege deny --changePermissionsPrivilege deny

Back to Top

deleteAclEntry
Deletes an ACE (access control list entry) on an object for a given principal.

You must specify a principalType and principalName and you must use locator arguments
to specify the location for this ACL entry.

Arguments Descriptions

artifactName The name of the artifact.

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question.
This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name--the Commander server interprets
either name form correctly.

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object's project.

configName The name of the email configuration.

gatewayName The name of the gateway.

ElectricCommander

26

Arguments Descriptions

groupName The name of a group whose ACL entry you want to delete.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

objectId An object identifier returned by findObjects and getObjects.

notifierName The name of the email notifier whose ACL entry you want to
delete.

pluginName The name of the plugin whose ACL entry you want to delete.

principalName This is either the user or the group name.

principalType This is either a user or a group <user|group>. Defaults to "user".

procedureName The name of the procedure whose ACL entry you want to delete.
Also requires projectName, where this procedure is a member.

projectName The name of the project where you are deleting an ACL entry.

propertySheetId
The unique identifier for a property sheet, assigned automatically
when the
property sheet is created.

repositoryName The name of the repository for artifact management.

resourceName The name of the resource whose ACL entry you want to delete.

resourcePoolName The name of a pool containing one or more resources.

scheduleName
The name of the schedule whose ACL entry you want to delete.
Also requires projectName from which this schedule runs
procedures.

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName
The name of the step whose ACL entry you want to delete.
Also requires projectName and procedureName to indicate
where this step resides.

API commands - ACL Management

27

Arguments Descriptions

systemObjectName
System object names include:
admin|directory|licensing|log|plugins|priority|
projects|resources|server|session|workspaces

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

userName The name of the user who's ACL entry you want to delete.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of the workspace whose ACL entry you want to delete.

zoneName The name of the zone.

Positional arguments
principalType, principalName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteAclEntry(<principalType>, <principalName>, {<optionals>});

Example
$cmdr->deleteAclEntry('user', 'j smith', {projectName => 'Sample Project'});

ectool
syntax: ectool deleteAclEntry <principalType> <principalName> ...

Example
ectool deleteAclEntry user "j smith" --projectName "Sample Project"

Back to Top

getAccess
Retrieves ACL information (access control list) associated with an object, including inherited ACLs.

You must specify object locators to find the object where you need to verify access.

ElectricCommander

28

Arguments Descriptions

applicationName The name of the application container of the property sheet which
owns the property; must be unique among all projects.

applicationTierName The name of the application tier container of the property sheet
which owns the property.

artifactName The name of the credential container of the property sheet which
owns the property.The name of the artifact.

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name--the Commander server interprets
either name form correctly.

componentName The name of the component container of the property sheet which
owns the property.

configName The name of the emailConfig container that owns the property.

credentialName

The name of the credential container of the property sheet which
owns the property.credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object's project.

emulateRestoreInheritance

Whether or not to include one level of broken inheritance if it
exists. Used for seeing what access would look like if the lowest
level of broken inheritance was restored.

<Boolean flag - 0|1|true|false> If set to 1, this argument
returns ACL information to what it would be if inheritance were
restored on this object.

environmentName The name of the environment container of the property sheet
which owns the property; must be unique among all projects.

environmentTierName The name of the environment tier container of the property sheet
which owns the property.

gatewayName The name of the gateway container of the property sheet.

groupName The name of the group container of the property sheet that owns
the property.

API commands - ACL Management

29

Arguments Descriptions

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName The name of the email notifier that contains the ACL.

objectId This is an object identifier returned by findObjects and
getObjects.

path Property path string.

pluginName The name of the plugin that contains the ACL.

procedureName The name of the procedure containing the ACL.
Also requires projectName

processName The name of the process, if the container is a process or process
step.

processStepName The name of the process step, if the container is a process step.

projectName The name of the project that contains the ACL; must be unique
among all projects.

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

repositoryName The name of the repository for artifact management.

resourceName The name of the resource that contains the ACL.

resourcePoolName The name of a pool containing one or more resources.

scheduleName The name of the schedule containing the ACL.
Also requires projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step containing the ACL.
Also requires projectName and procedureName

ElectricCommander

30

Arguments Descriptions

systemObjectName

System objects include:
admin|artifactVersions|directory|emailConfigs|log|p
lugins|
server|session|workspaces

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

userName The name of the user that contains the ACL.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of the workspace that contains the ACL.

zoneName The name of the zone.

Positional arguments
Arguments to specify the object, beginning with the top-level object locator.

Response
One or more object elements, each consisting of one or more aclEntry elements. Each object
represents
an object in the ACL inheritance chain starting with the most specific object. Each aclEntry identifies a
user or
group and the privileges granted or denied by the entry, and includes a breakInheritance element if
applicable.

ec-perl
syntax: $cmdr->getAccess({<optionals>});

Example
$cmdr->getAccess({projectName => "Sample Project"});

ectool
syntax: ectool getAccess ...

Example
ectool getAccess --projectName "Sample Project"

Back to Top

getAclEntry
Retrieves an ACE (access control entry list) on an object for a given principal.

API commands - ACL Management

31

You must specify a principalType, principalName, and an object locator to specify which ACE to examine.

Arguments Descriptions

artifactName The name of the artifact.

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name—the Commander server interprets
either name form correctly.

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

configName The name of the email configuration.

gatewayName The name of the gateway.

groupName The name of the group.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName The name of the email notifier.

objectId This is an object identifier returned by findObjects and
getObjects.

pluginName The name of the plugin - the plugin key for a promoted plugin or
plugin key and version for an unpromoted plugin.

principalName This is either the user or group name.

principalType This is either user or group.

procedureName The name of the procedure.
Also requires projectName

projectName The name of the project.

ElectricCommander

32

Arguments Descriptions

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

repositoryName The name of the repository for artifact management.

resourceName The name of the resource.

resourcePoolName The name of a pool containing one or more resources.

scheduleName The name of the schedule.
Also requires projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step.
Also requires projectName and procedureName

systemObjectName

System objects include:
admin|artifactVersions|directory|emailConfigs|log|p
lugins|
server|session|workspaces

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

userName The full name of the user.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of the workspace.

zoneName The name of the zone.

Positional arguments
principalType, principalName

Response
One aclEntry element.

ec-perl
syntax: $cmdr->getAclEntry(<principalType>, < principalName>, {...});

API commands - ACL Management

33

Example
$cmdr->getAclEntry("user", "j smith", {projectName => "Sample Project"});

ectool
syntax: ectool getAclEntry <principalType> < principalName> ...

Example
ectool getAclEntry --user "j smith" --projectName "Sample Project"

Back to Top

modifyAclEntry
Modifies an ACE (access control list entry) on an object for a given principal.

Note: If a privilege is not specified, it inherits from its parent object's ACL.

You must specify principalType, principalName and object locator arguments to identify the target ACL.

Arguments Descriptions

artifactName The name of the artifact.

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name--the Commander server interprets
either name form correctly.

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object's project.

configName The name of the email configuration.

gatewayName The name of the gateway.

groupName The name of the group containing the ACL entry.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

ElectricCommander

34

Arguments Descriptions

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName The name of the email notifier containing the ACL entry.

objectId This is an object identifier returned by findObjects and
getObjects.

pluginName The name of the plugin containing the ACL entry.

Privileges:
readPrivilege
modifyPrivilege
executePrivilege
changePermissionsPrivilege

<allow|deny>

principalName This is either the user or group name.

principalType This is either user or group.

procedureName The name of the procedure containing the ACL entry.
Also requires projectName

projectName The name of the project containing the ACL entry.

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

repositoryName The name of the repository for artifact management.

resourceName The name of the resource containing the ACL entry.

resourcePoolName The name of a pool containing one or more resources.

scheduleName The name of the schedule containing the ACL entry.
Also requires projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step containing the ACL entry.
Also requires projectName and procedureName

systemObjectName

System object names include:
admin|artifacts|directory|emailConfigs|forceAbort|
licensing|log|plugins|priority|projects|
repositories|resources|server|session|test|
workspaces|zonesAndGateways

API commands - ACL Management

35

Arguments Descriptions

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

userName The name of the user containing the ACL entry.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of the workspace containing the ACL entry.

zoneName The name of the zone.

Positional arguments
principalType, principalName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->modifyAclEntry(<principalType>, <principalName>, {<optionals>});

Example
$cmdr->modifyAclEntry("user", "j smith", {projectName => "Sample Project",

modifyPrivilege => "deny", });

ectool
syntax: ectool modifyAclEntry <principalType> <principalName> ...

Example
ectool modifyAclEntry user "j smith" --projectName "Sample Project"

--modifyPrivilege deny

Back to Top

restoreAclInheritance
Restores ACL (access control list) inheritance for the specified object.

Note: You must use object locators to specify the object where you want to restore ACL inheritance.

Arguments Descriptions

artifactName The name of the artifact.

ElectricCommander

36

Arguments Descriptions

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question.
This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name—the Commander server interprets
either name form correctly.

credentialName

The name of the credential whose ACL inheritance you want to
restore.
credentialName can be one of two forms:
relative
for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object's project.
Also requires projectName

configName The name of the email configuration.

gatewayName The name of the gateway.

groupName The name of the group whose ACL inheritance you want to
restore.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName

The name of the email notifier whose ACL inheritance you want to
restore.
Also requires projectName and procedureName;
projectName, procedureName, and stepName; jobId or
jobStepId

objectId This is an object identifier returned by findObjects and
getObjects.

pluginName The name of the plugin whose ACL inheritance you want to
restore.

procedureName
The name of the procedure whose ACL inheritance you want to
restore.
Also requires projectName

API commands - ACL Management

37

Arguments Descriptions

projectName The name of the project whose ACL inheritance you want to
restore.

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

repositoryName The name of the repository for artifact management.

resourceName The name of the resource whose ACL inheritance you want to
restore.

resourcePoolName The name of a pool containing one or more resources.

scheduleName
The name of the schedule whose ACL inheritance you want to
restore.
Also requires projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step whose ACL inheritance you want to restore.
Also requires projectName and procedureName

systemObjectName

The name of the system object whose ACL inheritance you want to
restore.
System objects include:
admin|artifactVersions|directory|emailConfigs|
log|plugins|server|session|workspaces

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

userName The name of the user whose ACL inheritance you want to restore.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of the workspace whose ACL inheritance you want to
restore.

zoneName The name of the zone.

Positional arguments
Arguments to locate the object, beginning with the top-level object locator.

ElectricCommander

38

Response
None or a status OK message.

ec-perl
syntax: $cmdr->restoreAclInheritance({<optionals>});

Example
$cmdr->restoreAclInheritance({projectName => "Sample Project"});

ectool
syntax: ectool restoreAclInheritance ...

Example
ectool restoreAclInheritance --projectName "Sample Project"

Back to Top

API commands - Applications

39

API commands - Applications

createApplication
deleteApplication
getApplication
getApplications
modifyApplication

createApplication
Creates a new application for a project.

You must specify the projectName and the applicationName arguments.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

applicationName
Name of the application; must be unique among all projects.

Argument Type: String

description

(Optional) Comment text describing this object; not interpreted at
all by ElectricCommander.

Argument Type: String

Response
Returns an application element.

ec-perl
syntax:$<object>->createApplication(<projectName>, <applicationName>,
{<optionals>});

Example
$ec->createApplication("Default", "app1", {description => "aDescription"});

ectool
syntax: ectool createApplication <projectName> <applicationName> [optionals...]

Example
ectool createApplication default newApp --description aDescription

Back to Top

ElectricCommander

40

deleteApplication
Delete an application.

You must specify the projectName and the applicationName arguments.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

applicationName
Name of the application; must be unique among all projects.

Argument Type: String

Response
None or a status OK message.

ec-perl
syntax: $<object>->deleteApplication (<projectName>, <applicationName>);

Example
$ec->deleteApplication ("Default", "appToDelete");

ectool
syntax: ectool deleteApplication <projectName> <applicationName>

Example
ectool deleteApplication default appToDelete

Back to Top

getApplication
Finds an application by name.

You must specify the projectName and the applicationName arguments.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

applicationName
Name of the application; must be unique among all projects.

Argument Type: String

API commands - Applications

41

Response
Retrieves the specified application element.

ec-perl
syntax: $<object>->getApplication(<projectName>, <applicationName>);

Example
$ec->getApplication("Default", "newApp");

ectool
syntax: ectool getApplication <projectName> <applicationName>

Example
ectool getApplication default newApp

Back to Top

getApplications
Retrieves all applications in a project.

You must specify the projectName argument.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

Response
Retrieves zero or more application elements.

ec-perl
syntax: $<object>->getApplications(<projectName>);

Example
$ec->getApplications("Default");

ectool
syntax:ectool getApplications <projectName>

Example
ectool getApplications default

Back to Top

ElectricCommander

42

modifyApplication
Modifies an existing application.

You must specify the projectName and the applicationName arguments.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

applicationName
Name of the application; must be unique among all projects.

Argument Type: String

description

(Optional) Comment text describing this object; not interpreted at
all by ElectricCommander.

Argument Type: String

newName
New name for an existing object that is being renamed.

Argument Type: String

Response
Retrieves an updated application element.

ec-perl
syntax:$<object>->modifyApplication(<projectName>, <applicationName>,
{<optionals>});

Example
$ec->modifyApplication("Default", "app1", {newName=> "newAppName",
description => "exampleText"});

ectool
syntax:ectool modifyApplication <projectName> <applicationName> [optionals...]

Example
ectool modifyApplication default newApp --newName modApp
--description exampleText

Back to Top

API commands - Application Tier

43

API commands - Application Tier

createApplicationTier
deleteApplicationTier
getApplicationTier
getApplicationTiersinComponent
modifyApplicationTier

createApplicationTier
Creates a new application tier in the application.

You must specify the projectName, applicationName, and applicationTierName arguments.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

applicationName
Name of the application; must be unique among all projects.

Argument Type: String

applicationTierName
Name of the tier; must be unique within the application.

Argument Type: String

description

(Optional) Comment text describing this object; not interpreted at
all by ElectricCommander.

Argument Type: String

Response
Returns an application tier element.

ec-perl
syntax:$<object>->createApplicationTier(<projectName>, <applicationName>,
<applicationTierName>, {<optionals>});

Example
$ec->createApplicationTier("Default", "app1", "appTier2",
{description=> "example_text"});

ectool
syntax: ectool createApplicationTier <projectName> <applicationName>
<applicationTierName> [optionals...]

ElectricCommander

44

Example
ectool createApplicationTier default newApp appTier1
--description example_text

Back to Top

deleteApplicationTier
Deletes a tier from an application.

You must specify the projectName, applicationName, and applicationTierName arguments.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

applicationName
Name of the application; must be unique among all projects.

Argument Type: String

applicationTierName
Name of the tier; must be unique within the application.

Argument Type: String

Response
None or a status OK message.

ec-perl
syntax: $<object>->deleteApplicationTier(<projectName>, <applicationName>,
<applicationTierName>);

Example
$ec->deleteApplicationTier("Default", "app1", "appTierToDelete");

ectool
syntax: ectool deleteApplicationTier <projectName> <applicationName>
<applicationTierName>

Example
ectool deleteApplicationTier default newApp appTierToDelete

Back to Top

getApplicationTier
Finds an application tier by name.

You must specify the projectName, applicationName, and applicationTierName arguments.

API commands - Application Tier

45

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

applicationName
Name of the application; must be unique among all projects.

Argument Type: String

applicationTierName
Name of the tier; must be unique within the application.

Argument Type: String

Response
Retrieves an application tier element.

ec-perl
syntax: $<object>->getApplicationTier(<projectName>, <applicationName>,
<applicationTierName>);

Example
$ec->getApplicationTier("Default", "app1", "appTier2");

ectool
syntax: ectool getApplicationTier <projectName> <applicationName>
<applicationTierName>

Example
ectool getApplicationTier default newApp appTier1

Back to Top

getApplicationTiers
Retrieves all application tiers in an application.

You must specify the projectName and applicationName arguments.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

applicationName
Name of the application; must be unique among all projects.

Argument Type: String

Response
Retrieves zero or more application tier elements.

ElectricCommander

46

ec-perl
syntax: $<object>->getApplicationTiers(<projectName>, <applicationName>);

Example
$ec->getApplicationTiers("Default", "app1");

ectool
syntax:ectool getApplicationTiers <projectName> <applicationName>

Example
ectool getApplicationTiers default newApp

Back to Top

getApplicationTiersInComponent
Retrieves all application tiers that are used by the given component.

You must specify the projectName and the componentName arguments.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

componentName
Name of the component.

Argument Type: String

applicationName

(Optional) Name of an application to which this component is
scoped.

Argument Type: String

Response
Retrieves zero or more application tier elements used by the specified component.

ec-perl
syntax:$<object>->getApplicationTiersInComponent(<projectName>, <componentName>,
{<optionals>});

Example
$ec->getApplicationTiersInComponent("default", "newComponent");

ectool
syntax:ectool getApplicationTiersInComponent <projectName> <componentName>
[optionals...]

API commands - Application Tier

47

Example
ectool getApplicationTiersInComponent default newComponent

Back to Top

modifyApplicationTier
Modifies an existing tier in the application.

You must specify the projectName, applicationName, and applicationTierName arguments.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

applicationName
Name of the application; must be unique among all projects.

Argument Type: String

applicationTierName
Name of the tier; must be unique within the application.

Argument Type: String

description

(Optional) Comment text describing this object; not interpreted at
all by ElectricCommander.

Argument Type: String

newName
New name for an existing object that is being renamed.

Argument Type: String

Response
Retrieves an updated application tier element.

ec-perl
syntax:$<object>->modifyApplicationTier(<projectName>, <applicationName>,
<applicationTierName>, {<optionals>});

Example
$ec->modifyApplicationTier("Default", "app1", "appTier2",
{newName=> "appTierB", description=> "newText"});

ectool
syntax:ectool modifyApplicationTier <projectName> <applicationName>
<applicationTierName> [optionals...]

ElectricCommander

48

Example
ectool modifyApplicationTier default newApp appTier1
--description new_exampleText --newName appTierA

Back to Top

API commands - Artifact Management

49

API commands - Artifact Management

addDependentsToArtifactVersion
cleanupArtifactCache
cleanupRepository
createArtifact
createRepository
deleteArtifact
deleteArtifactVersion
deleteRepository
findArtifactVersions
getArtifact
getArtifacts
getArtifactVersion

getArtifactVersions
getManifest
getRepositories
getRepository
modifyArtifact
modifyArtifactVersion
modifyRepository
moveRepository
publishArtifactVersion
removeDependentsFromArtifactVersion
retrieveArtifactVersions

addDependentsToArtifactVersion
Adds an artifact version query to an existing artifact. Dependent artifact versions are retrieved when the parent
artifact version is retrieved.

You must specify an artifactVersionName.

Arguments Descriptions

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name—the Commander server
interprets either name form correctly.

dependentArtifactVersions

One or more artifact version queries. The most current match of
each query is retrieved when the primary artifact is retrieved.
Dependent artifact version query strings are in this form:
<groupId>:<artifactKey>:<versionRange>
(versionRange is optional).
The version range syntax is standard number interval notation. ()
marks exclusive ranges and []marks inclusive ranges.

Positional arguments
artifactVersionName

Response
None or status OK message.

ElectricCommander

50

ec-perl
syntax: $cmdr->addDependentsToArtifactVersion (<artifactVersionName>,
{<optionals>});

Example
Add a dependency on cmdr:SDK:1.2.0 and the most current version of core:infra tha
t
is greater than or equal to 2.1.0.

$cmdr->addDependentsToArtifactVersion ({artifactVersionName => "myGroup:myAKey:1.0.
0-55",
dependentArtifactVersions => ["cmdr:SDK:1.2.0", "core:infra:[2.1.0,]"]});

ectool
syntax: ectool addDependentsToArtifactVersion <artifactVersionName>...

Example
ectool addDependentsToArtifactVersion --artifactVersionName "myGroup:myAKey:1.0.0-5
5",

--dependentArtifactVersions "cmdr:SDK:1.2.0" "core:infra:[2.1.0,]"

Back to Top

cleanupArtifactCache
Deletes stale artifact versions from an artifact cache. A "stale artifact version" is one whose metadata was
previously deleted from the Commander server.

Note: If you are not logged in as "admin", you cannot use this command. However, using the force option
overrides admin login privileges.

You must specify a cacheDirectory.

Arguments Descriptions

cacheDirectory The directory where stale artifact versions are stored.

force
<Boolean flag - 0|1|true|false> If set to "true", this option can
be used so you can cleanup the artifact cache if you are not
logged in as "admin".

Positional arguments
cacheDirectory

Response
Returns a list of directories that were deleted.

ec-perl
syntax: $cmdr->cleanupArtifactCache(<cacheDirectory>);

API commands - Artifact Management

51

Example
$cmdr->cleanupArtifactCache("/var/artifact-cache");

ectool
syntax: ectool cleanupArtifactCache <cacheDirectory>

Example
ectool cleanupArtifactCache "/var/artifact-cache"

Back to Top

cleanupRepository
Deletes stale artifact versions from the repository backing-store. A "stale artifact version" is one whose metadata
was previously deleted from the Commander server.

Note: If you are not logged in as "admin", you cannot use this command. However, using the force option
overrides
admin login privileges.

You must specify a backingStoreDirectory.

Arguments Descriptions

backingStoreDirectory The repository directory where artifact versions are stored.

force

<Boolean flag - 0|1|true|false> If set to "true", this option can
be used so you can cleanup the repository even if the g/a/v s in the
directory specified do not match up with any artifacts reported by
the server. By default, this is false, and helps users avoid deleting
arbitrary directory trees if they did not specify the repository
backingstore properly.

Positional arguments
backingStoreDirectory

Response
Returns a list of directories that were deleted.

ec-perl
syntax: $cmdr->cleanupRepository(<backingStoreDirectory>);

Example
use strict;
use ElectricCommander;

my $cmdr = ElectricCommander->new({debug => 1});
$cmdr->login("admin", "changeme");
$cmdr->cleanupRepository("/var/repository-data");

ElectricCommander

52

ectool
syntax: ectool cleanupRepository <backingStoreDirectory>

Example
ectool cleanupRepository "/var/repository-data"

Back to Top

createArtifact
Creates a new artifact.

You must specify a groupId and an artifactKey.

Arguments Descriptions

artifactKey
User-specified identifier for this artifact. This field is limited to
alphanumeric characters, spaces, underscores, hyphens, and
periods.

artifactVersionNameTemplate

A template for the names of artifact versions published to this
artifact. This option overrides the value set in the server settings for
"artifact name template.". The global setting can be manipulated in
the Server Settings page (Administration > Server, select the
Settings link).

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

groupId
A user-generated group name for this artifact. This field is limited to
alphanumeric characters, spaces, spaces, underscores, hyphens,
and periods.

Positional arguments
groupId, artifactKey

Response
Returns an artifact element.

ec-perl
syntax: $cmdr->createArtifact(<groupId>, <artifactKey>, {<optionals>});

Example
$cmdr->createArtifact("thirdPartyTools", "SDK", {description => "3rd party tools SD
K"});

API commands - Artifact Management

53

ectool
syntax: ectool createArtifact <groupId> <artifactKey> ...

Example
ectool createArtifact thirdPartyTools SDK --description "3rd party tools SDK"

Back to Top

createRepository
Creates a repository for one or more artifacts.

You must specify a repositoryName.

Arguments Descriptions

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

repositoryDisabled <Boolean flag -0|1|true|false> Determines whether the
repository is disabled. Default is "false".

repositoryName The name of the artifact repository.

url The URL to use to communicate with the repository server.

zoneName The name of the zone where this repository resides.

Positional arguments
repositoryName

Response
Returns a repository element.

ec-perl
syntax: $cmdr->createRepository(<repositoryName>, {<optionals>});

Example
$cmdr->createRepository("myRepos", {repositoryDisabled => "true", url =>

"https://test.ecloud.com:8200"});

ectool
syntax: ectool createRepository <repositoryName> ...

ElectricCommander

54

Example
ectool createRepository myRepos --repositoryDisabled "true" --url

"https://test.ecloud.com:8200"

Back to Top

deleteArtifact
Deletes an existing artifact element and all artifact versions.

You must specify an artifactName.

Arguments Descriptions

artifactName The name of the artifact to delete.

Positional arguments
artifactName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteArtifact(<artifactName>);

Example
$cmdr->deleteArtifact("commander:SDK");

ectool
syntax: ectool deleteArtifact <artifactName>

Example
ectool deleteArtifact "commander:SDK"

Back to Top

deleteArtifactVersion
Deletes artifact version metadata from the Commander database.
(This API call does not delete or remove artifacts stored on the repository machine.)

You must specify an artifactVersionName.

API commands - Artifact Management

55

Arguments Descriptions

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name--the Commander server interprets
either name form correctly.

Positional arguments
artifactVersionName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteArtifactVersion(<artifactVersionName>);

Example
$cmdr->deleteArtifactVersion("myGroup:myKey:1.0.0-55");

ectool
syntax: ectool deleteArtifactVersion <artifactVersionName>

Example
ectool deleteArtifactVersion "myGroup:myKey:1.00.0-55"

Back to Top

deleteRepository
Deletes artifact repository metadata from the Commander database.
(This API call does not delete or remove artifacts stored on the repository machine.)

You must supply a repositoryName.

Arguments Descriptions

repositoryName The name of the artifact repository to delete.

Positional arguments
repositoryName

Response
None or a status OK message.

ElectricCommander

56

ec-perl
syntax: $cmdr->deleteRepository(<repositoryName>);

Example
$cmdr->deleteRepository ("cmdrReposOne");

ectool
syntax: ectool deleteRepository <repositoryName>

Example
ectool deleteRepository cmdrReposOne

Back to Top

findArtifactVersions
This command returns the most current artifact version that matches the filter criteria and its dependent artifact
versions.
This API implicitly searches for artifact versions in the "available" state, and if run in a job step, registers
the step as a retriever for the returned artifact versions.

Because of the complexity of specifying filter criteria, this API is not supported by ectool. However, all
of its capabilities are supported through the Perl API.

Note: The retrieveArtifactVersions API uses this API to find the appropriate artifact version in the
Commander server
and then retrieves the artifact version from a repository. You may prefer to use the
retrieveArtifactVersions API
instead of this API because while this API returns slightly different information, it also has the side-effect of
"retriever
step registration" mentioned above.

You must specify an artifactName or a groupId with an artifactKey.

API commands - Artifact Management

57

Arguments Descriptions

filter

A list of zero or more filter criteria definitions used to define objects
to find.

Each element of the filter list is a hash reference containing one
filter criterion. You may specify several filter criteria, in which case
an object must meet all filter criteria to be included in the result.
See the code example below for instructions on forming the list
and passing it to the ElectricCommander Perl API.

Two types of filters:

"property filters" - used to select objects based on the value
of the object's intrinsic or custom property

"boolean filters" ("and", "or", "not") - used to combine one or
more filters using boolean logic.

Each "property filter" consists of a property name to test and an
operator to use for comparison. The property can be either an
intrinsic property defined by Commander or a custom property
added by the user. Each operator takes zero, one, or two operands
to compare against the desired property.

Property filter operators are:
between (2 operands)
contains (1)
equals (1)
greaterOrEqual (1)
greaterThan (1)
in (1)
lessOrEqual (1)
lessThan (1)
like (1)
notEqual (1)
notLike (1)
isNotNull (0)
isNull (0)

A boolean filter is a boolean operator and an array of one or more
filters that are operands. Each operand can be either a property
filter or a boolean filter.

Boolean operators are:
not (1 operand)
and (2 or more operands)
or (2 or more operands)

artifactKey
User-specified identifier for this artifact. This field is limited to
alphanumeric characters, spaces, underscores, hyphens, and
periods.

artifactName The name of an artifact.

artifactVersionName The name of an artifact version.

ElectricCommander

58

Arguments Descriptions

groupId
A user-generated group name for this artifact. This field may
consist of alphanumeric characters, spaces, underscores,
hyphens, and periods.

includeDependents

Options are:

l 0/false – dependent artifacts are not retrieved.

l 1/true – dependent artifacts are retrieved.

jobStepId
The unique identifier for the job step (if any), that is making the
request. This job step will be marked as a retriever for the
matching artifact versions.

versionRange
The range of versions to search. Version range syntax is standard
number interval notation. ()marks exclusive ranges and []marks
inclusive ranges.

Positional arguments
None

Response
This command returns zero or more artifactVersion elements. In addition, this API returns a
searchDetails element with
text describing how the server evaluated candidate artifact versions and ultimately decided to return the
result
artifactVersion and its dependent(s).

ec-perl
syntax: $cmdr->findArtifactVersions({<optionals>});

Example 1
Find the most current core:infra artifact version whose version is 1.x.x.
$cmdr->findArtifactVersions({groupId => "core",

artifactKey => "infra",
versionRange => "[1.0, 2.0)"});

Or alternatively ...
$cmdr->findArtifactVersions({artifactName => "core:infra",

versionRange => "[1.0,2.0)"});

Example 2
Find the most current core:infra artifact version with QA approval level 3 or abo
ve.
$cmdr->findArtifactVersions({groupId => "core",

artifactKey => "infra",
filter => {propertyName => "qaLevel",

API commands - Artifact Management

59

operator => "greaterOrEqual",
operand1 => "3"}});

ectool
Not supported.

Back to Top

getArtifact
Retrieves an artifact by name.

You must specify an artifactName.

Arguments Descriptions

artifactName The name of the artifact.

Positional arguments
artifactName

Response
Retrieves an artifact element.

ec-perl
syntax: $cmdr->getArtifact (<artifactName>);

Example
$cmdr-> getArtifact("myGroup:myKey");

ectool
syntax: ectool getArtifact <artifactName>

Example
ectool getArtifact "myGroup:myKey"

Back to Top

getArtifacts
Retrieves all artifacts in the system.

You must specify search filter criteria to find the artifacts you need.

Arguments Descriptions

None

ElectricCommander

60

Positional arguments
None

Response
Zero or more artifact elements.

ec-perl
syntax: $cmdr->getArtifacts ();

Example
$cmdr->getArtifacts ();

ectool
syntax: ectool getArtifacts

Example
ectool getArtifacts

Back to Top

getArtifactVersion
Retrieves an artifact version by its name.

You must specify an artifactVersionName.

Arguments Descriptions

artifactVersionName

The name of the artifact version to retrieve.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name--the Commander server interprets
either name form correctly.

includeRetrieverJobs
<Boolean flag - 0|1|true|false> If set to 1, this argument
includes jobId and jobName in returned information. A retriever
job is any job that has retrieved the artifact version.

includeRetrieverJobSteps

<Boolean flag - 0|1|true|false> If set to 1, this argument
includes jobId, jobName, and jobStepId information. A retriever
job is any job that has retrieved the artifact version. Because there
is no bound to how many job steps may retrieve a given artifact
version, the server limits the response to the most recent 200 job
steps.

maxRetrievers
If one of the includeRetriever* options are specified, return at
most "this many" of the most recent retrievers. Without this option,
the Commander server will return all retrievers.

API commands - Artifact Management

61

Positional arguments
artifactVersionName

Response
One artifactVersion element. If includeRetrieverJobs or includeRetrieverJobSteps is set,
the artifactVersion element will contain zero or more retriever child elements, each containing
retriever information for one job or job step.

ec-perl
syntax: $cmdr->getArtifactVersion(<artifactVersionName>, {<optionals>});

Example
$cmdr->getArtifactVersion("myGroup:myKey:1.0.0-55", {includeRetrieverJobs => "tru
e"});

ectool
syntax: ectool getArtifactVersion <artifactVersionName> ...

Example
ectool getArtifactVersion myGroup:myKey:1.0.0-55 -–includeRetrieverJobs "true"

Back to Top

getArtifactVersions
Retrieves all artifact versions in the system, filtered by artifact name, retriever job ID, and/or retriever job step ID.

You must specify search filter criteria to find the artifact versions you need.
If you do not provide any options, all artifact versions in the system are returned.

Arguments Descriptions

artifactName The name of the artifact for the versions to retrieve.

retrieverJobId The job ID that retrieved an artifact.

retrieverJobStepId The job step ID that retrieved an artifact.

Positional arguments
None

Response
Zero or more artifactVersion elements.

ec-perl
syntax: $cmdr->getArtifactVersions({<optionals>});

ElectricCommander

62

Example
$cmdr->getArtifactVersions({artifactName => "myGroup:myKey"});

ectool
syntax: ectool getArtifactVersions ...

Example
ectool getArtifactVersions --artifactName "myGroup:myKey"

Back to Top

getManifest
Retrieves the manifest for a specified artifact version. The manifest includes a list of files and directories
in the artifact version and its checksum file.

You must specify the artifactVersionName.

Arguments Descriptions

artifactVersionName The name of the artifact version whose manifest you want to
retrieve.

Positional arguments
None

Response
Manifest information for the specified artifact version: returns an XML stream containing any number of file
elements, including the file name, file size, and "sha1" hashes for every file in the artifactVersionName.

ec-perl
syntax: $cmdr->getManifest(<artifactVersionName>);

Example
my ($manifest,$diagnostics) = $cmdr->getManifest("myGroup:myKey:1.0.0-55");

ectool
syntax: ectool getManifest <artifactVersionName>

Example
ectool getManifest myGroup:myKey:1.0.0-55

getRepositories
Retrieves all artifact repository objects known to the Commander server.

API commands - Artifact Management

63

Arguments Descriptions

None

Positional arguments
None

Response
Zero or more repository elements.

ec-perl
syntax: $cmdr->getRepositories ();

Example
$cmdr->getRepositories ();

ectool
syntax: ectool getRepositories

Example
ectool getRepositories

Back to Top

getRepository
Retrieves an artifact repository by its name.

You must specify a repositoryName.

Arguments Descriptions

repositoryName The name of the artifact repository to retrieve.

Positional arguments
repositoryName

Response
One repository element.

ec-perl
syntax: $cmdr->getRepository(<repositoryName>);

Example
$cmdr->getRepository("myRepository");

ElectricCommander

64

ectool
syntax: ectool getRepository <repositoryName>

Example
ectool getRepository myRepository

Back to Top

modifyArtifact
Modifies an existing artifact.

You must specify an artifactName.

Arguments Descriptions

artifactName The name of the artifact to modify.

artifactVersionNameTemplate

A template for the names of artifact versions published to this
artifact. This option overrides the value set in the server settings for
"artifact name template." The global setting can be manipulated in
the Server Settings page (Administration > Server, select the
Settings link).

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

Positional arguments
artifactName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->modifyArtifact(<artifactName>, {<optionals>});

Example
$cmdr->modifyArtifact("thirdParty-SDK", {description => "contains artifact versions
for SDK"});

ectool
syntax: ectool modifyArtifact <artifactName> ...

API commands - Artifact Management

65

Example
ectool modifyArtifact thirdParty-SDK --description "contains artifact versions for
SDK"

Back to Top

modifyArtifactVersion
Modifies an existing artifact version.

You must specify an artifactVersionName.

Arguments Descriptions

artifactVersionName

The name of the artifact version to modify.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name--the Commander server interprets
either name form correctly.

artifactVersionState The state of the artifact version.
<publishing|available|unavailable>.

dependentArtifactVersions

One or more artifact version queries. The most current match for
each query is retrieved when the primary artifact is retrieved.
Dependent artifact version query strings are in this form:
<groupId>:<artifactKey>:<versionRange>
(version range is optional).
Note: The absence of this argument does not clear or modify the
dependent artifact version list for this artifact version.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

newName Any name you choose to use as the new name for this artifact
version.

removeAllDependentArtifactVe
rsions

<Boolean flag - 0|1|true|false> Defaults to "false."
Removes all dependent artifacts from this artifact version.
Subsequent "retrieves" will no longer retrieve dependent artifacts
for this artifact version.

repositoryName The name of the artifact repository.

Positional arguments
artifactVersionName

ElectricCommander

66

Response
None or a status OK message.

ec-perl
syntax: $cmdr->modifyArtifactVersion(<artifactVersionName>, {<optionals>});

Example
$cmdr->modifyArtifactVersion("myGroup:myKey:1.0.1-42375", {artifactVersionState =>
"unavailable"});

ectool
syntax: ectool modifyArtifactVersion <artifactVersionName> ...

Example
ectool modifyArtifactVersion "myGroup:myKey:1.0.1-57385" --artifactVersionState una
vailable

Back to Top

modifyRepository
Modifies an existing artifact repository.

You must specify a repositoryName.

Arguments Descriptions

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

newName Supply any name of your choice to rename the repository.

repositoryDisabled
<Boolean flag - 0|1|true|false> Marks the repository as
enabled or disabled. If you do not supply this option, the state of
the repository is unchanged.

repositoryName The name of the artifact repository.

url The URL used to communicate with the artifact repository.

zoneName The name of the zone where this repository resides.

Positional arguments
repositoryName

API commands - Artifact Management

67

Response
Returns a modified repository element.

ec-perl
syntax: $cmdr->modifyRepository (<repositoryName>, {<optionals>});

Example
$cmdr->modifyRepository("myNewRepos", {newName => "cmdrRepository"});

ectool
syntax: ectool modifyRepository <repositoryName> ...

Example
ectool modifyRepository myNewRepos --newName cmdrRepository

Back to Top

moveRepository
Moves an artifact repository in front of another, specified repository or to the end of the list.
This API does not move artifact version data to another repository server machine. Only the repository
order in which Commander searches to retrieve an artifact version is changed.

You must specify a repositoryName.

Arguments Descriptions

repositoryName The name of the artifact repository you need to move.

beforeRepositoryName
Moves this repository (repositoryName) to a place before the
name specified by this option. If omitted repositoryName is
moved to the end.

Positional arguments
repositoryName

Response
Returns a modified repository element or an error if the repository does not exist.

ec-perl
syntax: $cmdr->moveRepository(<repositoryName>, {<optionals>});

Example
$cmdr->moveRepository(reposThree, {beforeRepositoryName => "reposOne"});

ectool
syntax: ectool moveRepository <repositoryName> ...

ElectricCommander

68

Example
ectool moveRepository reposThree --beforeRepositoryName reposOne

Back to Top

publishArtifactVersion
Publishes an artifact version to an artifact repository.

Note: This API wraps the "publish" function in the ElectricCommander::ArtifactManagement
Perl module and hides some additional functionality implemented in that module.

You must specify an artifactName or a groupId with an artifactKey.

Arguments Descriptions

artifactKey
User-specified identifier for this artifact. This field is limited to
alphanumeric characters, spaces, underscores, hyphens, and
periods.

artifactName The name of an artifact.

compress

<Boolean flag - 0|1|true|false> Default is "true".
Controls whether or not the artifact version is compressed during
transport, which improves performance for cases where artifact
version files are compressible, saving network bandwidth. Where
artifact version files are not compressible, performance is reduced.
Another consideration is that the artifact version is stored
compressed/uncompressed based on this setting in the repository
backing-store.

dependentArtifactVersions

One or more artifact version queries. The most current match of
each query is retrieved when the primary artifact is retrieved.
Dependent artifact version query strings are in this form:
<groupId>:<artifactKey>:<versionRange> (versionRange
is optional).
The version range syntax is standard number interval notation.
()marks exclusive ranges and []marks inclusive ranges.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

excludePatterns

Semi-colon delimited list of file-path patterns indicating which
files/directories under "fromDirectory" to exclude when
publishing an artifact version. Defaults to "empty," which means no
files are excluded. See more information on "pattern syntax"
below.

API commands - Artifact Management

69

Arguments Descriptions

followSymlinks

<Boolean flag - 0|1|true|false> Default is "true".

If true, follow symbolic links and record the target file contents with
the symbolic link name in the artifact. If false, record the symbolic
link as a symbolic link. Following symbolic links causes the publish
API to remain compatible with previous releases.

fromDirectory
The directory containing files to publish as the artifact version. A
subset of files can be published based on includePatterns and
excludePatterns.

groupId
A user-generated group name for this artifact. This field is limited to
alphanumeric characters, spaces, underscores, hyphens, and
periods.

includePatterns

Semi-colon delimited list of file-path patterns indicating which
files/directories under "fromDirectory" to publish in the artifact
version. Defaults to "empty," which means all files will be included.
Conversely, if only two files are "included," no other files except
those two will be included. See more information on "pattern
syntax" below.

repositoryName The name of the artifact repository where you want to publish.

version

Unique identifier for the artifact version in the form:
major.minor.patch-qualifier-buildNumber
major, minor, patch, and buildNumber are integers and
qualifier can contain any character except the following:
\:<>|?*/
If a version argument is provided, but does not follow the above
format, the version will be considered 0.0.0-<user-specified-
version-arg>-0 implicitly.
See examples below.

Version number examples

User Input
Interpretation

Major.Minor.Patch Qualifier Build Number

1 1.0.0 0

1.0 1.0.0 0

1.0-frank 1.0.0 frank 0

1.0-36 1.0.0 36

1.0-frank-36 1.0.0 frank 36

ElectricCommander

70

Pattern syntax
Include / exclude patterns are expressed as relative paths under the fromDirectory.

Pattern syntax and behavior is the same as Ant and uses the following wildcard specifiers:

 ? - matches a single character

 * - matches any number of characters, but only at a single directory level

** - matches any number of directory levels

Examples:

Use *.txt to match any .txt file in the top-level directory.

Use */*.txt to match any .txt file in any child directory.

Use **/*.txt to match any .txt file at any level.

Positional arguments
None

Response
One artifactVersion element.

ec-perl
syntax: $cmdr->publishArtifactVersion({<optionals>});

Example
Add version 1.0.0-55 for artifact myGroup:myKey with a dependency on cmdr:SDK:1.2
.0,
and the most current version of core:infra that is greater than or equal to 2.1.
0.
Note: In the Perl API, the argument must be specified as singular even though it
can take multiple values.

$cmdr->publishArtifactVersion({artifactName => "myGroup:myKey",
version => "1.0.0-55",

dependentArtifactVersion => ["cmdr:SDK:1.2.0", "core:infra:{2.
1,]"]});

ectool
syntax: ectool publishArtifactVersion ...

Example
ectool publishArtifactVersion --artifactName "myGroup:myKey" --version "1.0.0-55"

--dependentArtifactVersion "cmdr:SDK:1.2.0":"core:infra"

Back to Top

removeDependentsFromArtifactVersion
Removes a list of dependent artifact versions from an existing artifact version.

You must specify the artifactVersionName.

API commands - Artifact Management

71

Arguments Descriptions

artifactVersionName

The name of the artifact version from which you want to remove
dependents.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name--the Commander server interprets
either name form correctly.

dependentArtifactVersions

One or more artifact version queries. The most current match of
each query is retrieved when the primary artifact is retrieved.
Dependent artifact version query strings are in this form:
<groupId>:<artifactKey>:<versionRange>
(versionRange is optional).
The version range syntax is standard number interval notation.
()marks exclusive ranges and []marks inclusive ranges.

Positional arguments
artifactVersionName

Response
None or status OK message.

ec-perl
syntax: $cmdr->removeDependentsFromArtifactVersion(<artifactVersionName>,
{<optionals>});

Example
Note: In the Perl API, the argument must be specified as singular
even though it can take multiple values.

$cmdr->removeDependentsFromArtifactVersion(myGroup:myKey:1.0.0-55,
{dependentArtifactVersion => ["cmdr:onlineHelp:1.0.0"});

ectool
syntax: ectool removeDependentsFromArtifactVersion <artifactVersionName> ...

Example
ectool removeDependentsFromArtifactVersion myGroup:myKey:1.0.0-55

--dependentArtifactVersions "cmdr"onlineHelp:1.0.0"

Back to Top

retrieveArtifactVersions
Retrieves the most recent artifact version (including its dependents) from an artifact repository.

Note: This API wraps the "retrieve" function in the ElectricCommander::ArtifactManagement
Perl module and hides some additional functionality implemented in that module.

ElectricCommander

72

You must specify search criteria options to locate the artifact versions you want to retrieve.

Arguments Descriptions

artifactKey
User-specified identifier for this artifact. This field is limited to
alphanumeric characters, spaces, underscores, hyphens, and
periods.

artifactName The name of the artifact.

artifactVersionName The name of the artifact version.

cacheDirectory
The directory where the artifact version is stored.
Note: The artifact version files are stored in a subdirectory under
this cache directory.

API commands - Artifact Management

73

Arguments Descriptions

filters

A list of zero or more filter criteria definitions used to define objects
to find.

Each element of the filter list is a hash reference containing one
filter criterion. You may specify several filter criteria, in which case
an object must meet all filter criteria to be included in the result.
See the code example below for instructions on forming the list
and passing it to the ElectricCommander Perl API.

Two types of filters:
"property filters" are used to select objects based on the value of
the object's intrinsic or custom property.

"boolean filters" ("and", "or", "not") are used to combine one or
more filters using boolean logic.

Each "property filter" consists of a property name to test and an
operator to use for comparison. The property can be either an
intrinsic property defined by Commander or a custom property
added by the user. Each operator takes zero, one, or two operands
to compare against the desired property.

Property filter operators are:
between (2 operands)

contains (1)

equals (1)

greaterOrEqual (1)

greaterThan (1)

in (1)

lessOrEqual (1)

lessThan (1)

like (1)

notEqual (1)

notLike (1)

isNotNull (0)

isNull (0)

A boolean filter is a boolean operator and an array of one or more
filters that are operands. Each operand can be either a property
filter or a boolean filter.

Boolean operators are:
not (1 operand)

and (2 or more operands)

ElectricCommander

74

Arguments Descriptions

or (2 or more operands)

groupId
A user-generated group name for this artifact. This field may
consist of alphanumeric characters, spaces, underscores,
hyphens, and periods.

includeDependents

Options are:

l 0/false – dependent artifacts are not retrieved.

l 1/true – dependent artifacts are retrieved.

overwrite

Options are:

l true - deletes previous content in the directory and
replaces the content with your new version.

l false - (existing behavior) if the directory does not exist,
one will be created and filled with the artifact's content. If
the directory exists, a new directory is created with a
unique name and the artifact contents is supplied there.

l update - this is similar to a merge operation—two artifact
versions can be moved into the same directory, but
individual files with the same name will be overwritten.

repositoryNames

A space-separated list of artifact repository names. Retrieval is
attempted from each specified repository in a specified order until
it succeeds or all specified repositories have rejected the retrieval.
If not specified, and if this request is made in a job step context, a
preferred list of repository names is obtained from the Resource
definition in the server. If that list is empty, the global repository list
is used.

toDirectory

Used to retrieve an artifact version to a specific directory without
imposing the structure of a cache directory. Specify the full path to
the new directory.

l If the artifact version is in a local cache directory. it will be
copied out of the cache.

l If the artifact version is not in a cache directory, it will be
downloaded directly to the specified directory, without
putting it into a cache. toDirectory overrides
cacheDirectory for downloads.

versionRange
The range of versions to search. Version range syntax is standard
number interval notation. ()marks exclusive ranges and []marks
inclusive ranges.

Positional arguments
None

API commands - Artifact Management

75

Response
Returns one or more artifactVersion elements.

ec-perl
syntax: $cmdr->retrieveArtifactVersions {<optionals>});

Examples
Retrieve the most current core:infra artifact version whose version is 1.x.x.
$cmdr->retrieveArtifactVersions({groupId => "core",

artifactKey => "infra",
versionRange => "[1.0,2.0)"});

Or alternatively...
$cmdr->retrieveArtifactVersions({artifactName => "core:infra",

versionRange => "[1.0,2.0)"});

ectool
syntax: ectool retrieveArtifactVersions ...

Example
ectool retrieveArtifactVersions --artifactName "core:infra" --versionRange "[1.0,2.
0)"

Note: The filter option does not perform as expected if using ectool. If you need the filter option,
write your retrieveArtifactVersions API call in ec-perl.

Back to Top

ElectricCommander

76

API commands - Component

addComponentToApplicationTier
createComponent
deleteComponent
getComponent
getComponents
getComponentsinApplicationTier
modifyComponent
removeComponentFromApplicationTier

addComponentToApplicationTier
Adds the given component to the given application tier.

You must specify the projectName, applicationName, and applicationTierName arguments.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

applicationName
Name of the application; must be unique among all projects.

Argument Type: String

applicationTierName
Name of the tier; must be unique within the application.

Argument Type: String

componentName
Name of the component.

Argument Type: String

componentProjectName
(Optional) Project name of the component.

Argument Type: String

Response
Returns the component and specified application tier elements.

ec-perl
Syntax:

$<object>->addComponentToApplicationTier(<projectName>, <applicationName>,
<applicationTierName>, <componentProjectName>, <componentName>,
{<optionals>});

Example:

$ec->addComponentToApplicationTier("default", "newApp", "appTier1",
"component1");

API commands - Component

77

ectool
Syntax:

ectool addComponentToApplicationTier <projectName> <applicationName>
<applicationTierName> <componentName> [optionals...]

Example:

ectool addComponentToApplicationTier default newApp appTier1 VCScomponent

Back to Top

createComponent
Creates a new component for a project.

You must specify the projectName, applicationName, and applicationTierName arguments.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

componentName
Name of the component.

Argument Type: String

pluginName
Name of the plugin.

Argument Type: String

applicationName
(Optional) Name of an application to scope this component to.

Argument Type: String

credentialName
(Optional) Name of a credential to attach to this component.

Argument Type: String

description

(Optional) Comment text describing this object; not interpreted at
all by ElectricCommander.

Argument Type: String

Response
Returns a version control component element.

ec-perl
Syntax:

$<object>->createComponent(<projectName>, <componentName>, <pluginName>,
{<optionals>});

Example:

ElectricCommander

78

$ec->createComponent("default", "component1", "Publish Artifact Version",
{description => "New agent"});

ectool
Syntax:

ectool createComponent <projectName> <componentName> <pluginName>
[optionals...]

Example:

ectool createComponent default component1 "Publish Artifact Version"
--description "New agent"

Back to Top

deleteComponent
Deletes a component.

You must specify the projectName and componentName arguments.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

componentName
Name of the component.

Argument Type: String

applicationName

(Optional) The name of an application to which this component is
scoped.

Argument Type: String

Response
None or a status OK message.

ec-perl
Syntax:

$<object>->deleteComponent(<projectName>, <componentName>),
{<optionals>};

Example:

$ec->deleteComponent("default", "VCScomponent");

ectool
Syntax:

API commands - Component

79

ectool deleteComponent <projectName> <componentName>
[optionals...]

Example:

ectool deleteComponent default VCScomponent

Back to Top

getComponent
Finds a component by name.

You must specify the projectName and componentName arguments.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

componentName
Name of the component.

Argument Type: String

applicationName

(Optional) Name of an application to which this component is
scoped.

Argument Type: String

Response
Retrieves the specified component element.

ec-perl
Syntax:

$<object>->getComponent(<projectName>, <componentName>, {<optionals>});

Example:

$ec->getComponent("default", "component1");

ectool
Syntax:

ectool getComponent <projectName> <componentName>
[optionals...]

Example:

ectool getComponent default VCScomponent

Back to Top

ElectricCommander

80

getComponents
Retrieves all components in a project.

You must specify the projectName argument.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

applicationName

(Optional) Name of the application. Specify to search for
components scoped to an application.

Argument Type: String

Response
Retrieves zero or more component elements.

ec-perl
Syntax:

$<object>->getComponents(<projectName>, {<optionals>);

Example:

$ec->getComponents("default");

ectool
Syntax:

ectool getComponents <projectName> [optionals...]

Example:

ectool getComponents default

Back to Top

getComponentsinApplicationTier
Returns the list of components in an application tier.

You must specify the projectName, applicationName, and applicationTierName arguments.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

API commands - Component

81

Arguments Descriptions

applicationName
Name of the application; must be unique among all projects.

Argument Type: String

applicationTierName
Name of the tier; must be unique within the application.

Argument Type: String

Response
Retrieves zero or more component elements in the specified application tier.

ec-perl
Syntax:

$<object>->getComponentsInApplicationTier(<projectName>, <applicationName>,
<applicationTierName>);

Example:

$ec->getComponentsInApplicationTier("default", "newApp", "appTier1");

ectool
Syntax:

ectool getComponentsInApplicationTier <projectName> <applicationName>
<applicationTierName>

Example:

ectool getComponentsInApplicationTier default newApp appTier1

Back to Top

modifyComponent
Modifies an existing component.

You must specify the projectName and componentName arguments.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

componentName
Name of the component.

Argument Type: String

ElectricCommander

82

Arguments Descriptions

credential Name
(Optional) Name of the credential.

Argument Type: String

description

(Optional) Comment text describing this component; not
interpreted at all by ElectricFlow.

Argument Type: String

newName
(Optional) New name of the component.

Argument Type: String

Response
Retrieves an updated component element.

ec-perl
Syntax:

$<object>->modifyComponent(<projectName>, <componentName>, {<optionals>});

Example:

$ec->modifyComponent("default", "component1", {credentialName => "cred1",
newName => "NewName"});

ectool
Syntax:

ectool modifyComponent <projectName> <componentName> [optionals...]

Example:

ectool modifyComponent default component1 --credentialName cred1 --newName New
Name

Back to Top

removeComponentFromApplicationTier
Removes the given component from the given application tier.

You must specify the projectName, applicationName, applicationTierName, and componentName
arguments.

Arguments Descriptions

projectName
Name for the project; must be unique among all projects.

Argument Type: String

API commands - Component

83

Arguments Descriptions

applicationName
Name of the application; must be unique among all projects.

Argument Type: String

applicationTierName
Name of the tier; must be unique within the application.

Argument Type: String

componentName
Name of component.

Argument Type: String

Response
None or a status OK message.

ec-perl
Syntax:

$<object>->removeComponentFromApplicationTierOperation(<projectName>,
<applicationName>, <applicationTierName>, <componentName>);

Example:

$ec->removeComponentFromApplicationTierOperation("default", "newApp",
"appTier1", "component1");

ectool
Syntax:

ectool removeComponentFromApplicationTierOperation <projectName>
<applicationName> <applicationTierName> <componentName>

Example:

ectool removeComponentFromApplicationTierOperation default newApp
appTier1 VCScomponent

Back to Top

ElectricCommander

84

API Commands - Credential Management

attachCredential
createCredential
deleteCredential
detachCredential
getCredential
getCredentials
getFullCredential
modifyCredential

attachCredential
Attaches a credential to a step or a schedule.

Attaching a credential allows the credential to be passed as an actual argument by a schedule or subprocedure
step, or to be used in a getFullCredential call by a command step.

You must specify projectName, credentialName, and locator arguments to identify a step or a schedule.

Arguments Descriptions

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

procedureName The name of a procedure within the "named" project where this
credential will be attached.

projectName The name of the project that contains the object where this
credential will be attached.

scheduleName The schedule name for running one of the procedures within the
"named" project.

stepName A step name within one of the procedures contained in the
"named" project.

Positional arguments
projectName, credentialName

Response
None or status OK message.

API Commands - Credential Management

85

ec-perl
syntax: $cmdr->attachCredential(<projectName>, <credentialName>, {...});

Example
$cmdr->attachCredential("Test Proj", "Preflight User", {procedureName =>

"Run Build", stepName=>"Get Sources"});

ectool
syntax: ectool attachCredential <projectName> <credentialName> ...

Example
ectool attachCredential "Test Proj" "Preflight User"

--procedureName "Run Build" --stepName "Get Sources"

Back to Top

createCredential
Creates a new credential for a project.

You must specify a projectName and credentialName.

Arguments Descriptions

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with <html> ...
</html> tags. The only HTML tags allowed in the text are: <a>

 <div> <dl> <i> <p> <pre>
 <style> <table> <tc> <td> <th> <tr>

credentialName The name of the credential to create (any name you choose).

password The password matching the specified user name.

projectName The name of the project where the credential will be stored.

userName The name of the user.

Positional arguments
projectName, credentialName

Response
None or status OK message.

ec-perl
syntax: $cmdr->createCredential(<projectName>, <credentialName>, {<optionals>});

ElectricCommander

86

Example
$cmdr->createCredential("Sample Project", "Build User", {userName => "build",

password => "abc123"});

ectool
syntax: ectool createCredential <projectName> <credentialName> --userName <userName>
 --password <password> ...

Example
ectool createCredential "Sample Project" "Build User" --userName build --password a
bc123

Back to Top

deleteCredential
Deletes a credential.

You must specify a projectName and a credentialName.

Arguments Descriptions

projectName The name of the project that contains this credential.

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object's project.

Positional arguments
projectName, credentialName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteCredential(<projectName>, <credentialName>);

Example
$cmdr->deleteCredential('Sample Project', 'Build User');

ectool
syntax: ectool deleteCredential <projectName> <credentialName>

API Commands - Credential Management

87

Example
ectool deleteCredential "Sample Project" "Build User"

Back to Top

detachCredential
Detaches a credential from an object.

You must specify projectName and credentialName. Also, depending on where the credential is
attached, you must specify a step (using procedureName and stepName), or define a schedule
(using scheduleName).

Arguments Descriptions

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object's project.

procedureName The name of the procedure that contains the step with the
credential to detach.

projectName The name of the project that contains this credential, schedule, or
procedure step.

scheduleName The name of the schedule where this credential may be attached.

stepName The name of the step where this credential may be attached.
Also requires procedureName.

Positional arguments
projectName, credentialName

Response
None, or a status OK message on success, or:

NoSuchCredential if the specified credential does not exist.

NoSuchSchedule if the specified schedule does not exist.

ec-perl
syntax: $cmdr->detachCredential(<projectName>, <credentialName>, {<optionals>});

Examples
$cmdr->detachCredential("Test Proj", "Preflight User",

{procedureName => "Run Build",

ElectricCommander

88

stepName => "Get Sources"});

$cmdr->detachCredential("Test Proj", "Preflight User",
{scheduleName => "Build Schedule"});

ectool
syntax: ectool detachCredential <projectName> <credentialName> ...

Examples
ectool detachCredential "Test Proj" "Preflight User"
--procedureName "Run Build" --stepName "Get Sources"

ectool detachCredential "Test Proj" "Preflight User"
--scheduleName "Build Schedule"

Back to Top

getCredential
Finds a credential by name.

You must specify projectName and credentialName.

Arguments Descriptions

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object's project.

projectName The name of the project containing this credential.

Positional arguments
projectName, credentialName

Response
One credential element.

ec-perl
syntax: $cmdr->getCredential(<projectName>, <credentialName>);

Example
$cmdr->getCredential("SampleProject", "Build User");

ectool
syntax: ectool getCredential <projectName> <credentialName>

API Commands - Credential Management

89

Example
ectool getCredential "Sample Project" "Build User"

Back to Top

getCredentials
Retrieves all credentials in a project.

You must specify a projectName.

Arguments Descriptions

projectName The name of the project containing these credentials.

usableOnly
<Boolean flag - 0|1|true|false> If set to 1, only those
credentials that the currently logged-in user has execute privileges
for will be returned.

Positional arguments
projectName

Response
Zero or more credential elements.

ec-perl
syntax: $cmdr->getCredentials(<projectName>, {...});

Example
$cmdr->getCredentials("Sample Project", {"usableOnly" => 1});

ectool
syntax: ectool getCredentials <projectName> ...

Example
ectool getCredentials "Sample Project" --usableOnly 1

Back to Top

getFullCredential
Finds a credential by name, including password, from within a running step.

You must specify the credentialName.

ElectricCommander

90

Arguments Descriptions

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

value <password|userName> If specified, returns only the password or
user name.

Positional arguments
credentialName

Response
If value is supplied, only the name is returned when called by ectool. If no value is supplied,
an xPath object is returned.

ec-perl
syntax: $cmdr->getFullCredential(<credentialName>, {<optionals>});

Example
Returns an xPath object containing the password.
my $xpath = $cmdr->getFullCredential("myCred", {value => "password"});

Parse password from response.
my $password = $xpath->find("//password");

ectool
syntax: ectool getFullCredential <credentialName> ...

Example
ectool getFullCredential myCred --value password

Back to Top

modifyCredential
Modifies an existing credential.

You must specify projectName and credentialName.

API Commands - Credential Management

91

Arguments Descriptions

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example,
/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object's project.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

newName Supply any name of your choice to rename the credential.

password The password for the specified user name.

projectName The name of the project containing this credential.

userName The name of the user containing this credential.

Positional arguments
projectName, credentialName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->modifyCredential(<projectName>, <credentialName>, {<optionals>});

Example
$cmdr->modifyCredential("Sample Project", "Build User", {userName => "build"});

ectool
syntax: ectool modifyCredential <projectName> <credentialName> ...

Example
ectool modifyCredential "Sample Project" "Build User" --userName build

Back to Top

ElectricCommander

92

API Commands - Database Configuration

getDatabaseConfiguration
setDatabaseConfiguration

getDatabaseConfiguration
Retrieves the current database configuration.

Arguments Descriptions

None

Positional arguments
None

Response
Returns a databaseConfiguration element, which includes the database name, user name,
database dialect, driver, URL, along with the host name and port number.

ec-perl
syntax: $cmdr->getDatabaseConfiguration();

Example
$cmdr->getDatabaseConfiguration();

ectool
syntax: ectool getDatabaseConfiguration

Example
ectool getDatabaseConfiguration

setDatabaseConfiguration
Sets the database configuration on the server. If the server is in bootstrap mode, these changes take effect
immediately and the server attempts to start. If the server is already running, these changes have no effect
until the server is restarted.

Note: If you are replacing the database you are currently using, you must restart the Commander
server after configuring the new database you want to use.

ElectricCommander assigns default values to the following three arguments--these values are derived
from information you supply for the arguments below. The values for these arguments can be viewed in the
XML Response for getDatabaseConfiguration. You should not need to change these values, but
"customDatabase" arguments may be used to over-ride Commander default values. Contact
Electric Cloud Customer Support for assistance with using these arguments:

API Commands - Database Configuration

93

customDatabaseDialect
customDatabaseDriver
customDatabaseUrl

Arguments Descriptions

customDatabaseDialect
Class name of the Hibernate dialect (advanced use only--the
server will choose an appropriate dialect based on the
databaseType).

customDatabaseDriver Class name of the JDBC driver (advanced use only--the server will
choose an appropriate driver based on the databaseType).

customDatabaseUrl The JDBC to use (advanced use only--the server will compose an
appropriate URL).

databaseName The name of the database you want the Commander server to use.

databaseType
The type of database you want the Commander server to use.
Supported database types are:
<builtin|mysql|sqlserver|oracle>

hostName The name of the host machine where the database is running.

ignorePasskeyMismatch
<Boolean flag - 0|1|true|false> If the server is started with a
different passkey, ignore the mismatch if "true".
Note: This action discards all saved passwords.

ignoreServerMismatch
<Boolean flag - 0|1|true|false> If the server is started on a
different host than where the server previously started, ignore the
mismatch if "true".

password
The password required to access the database.
setDatabaseConfiguration does not allow a passwordless
database user. Make sure the database user has a password.

port The port number used to access the database.

preserveSessions

<Boolean flag - 0|1|true|false> If ignoring a server mismatch,
default behavior invalidates all sessions. Setting this flag to "true"
preserves all sessions, allowing the server to reconnect to running
jobs. This option is used in combination with
ignoreServerMismatch.

userName The name of the user required to access the database.

Positional arguments
None

ElectricCommander

94

Response
None or a status OK message.

ec-perl
syntax: $cmdr->setDatabaseConfiguration({<optionals>});

Example
$cmdr->setDatabaseConfiguration({hostName => "localhost", port => 3306});

If the database type is set to the mysql, sqlserver, or oracle and
you want to use the builtin database

$cmdr->setDatabaseConfiguration({databaseType => "builtin", databaseName => "builti
n"});

ectool
syntax: ectool setDatabaseConfiguration <specify configuration values> ...>

Example
ectool setDatabaseConfiguration --hostName localhost --port 3306

If the database type is set to the mysql, sqlserver, or oracle and
you want to use the builtin database

ectool setDatabaseConfiguration --databaseType builtin --databaseName builtin

Back to Top

API Commands - Directory Provider Management

95

API Commands - Directory Provider Management

createDirectoryProvider
deleteDirectoryProvider
getDirectoryProvider
getDirectoryProviders
modifyDirectoryProvider
moveDirectoryProvider
testDirectoryProvider

createDirectoryProvider
Creates a new Active Directory or LDAP directory provider.

You must specify a providerName, providerType, and url.

Arguments Descriptions

commonGroupNameAttribute

The attribute in a group record that contains the common group
name. If specified, this name is used only when searching for
groups from an external provider. Use this argument if the
groupNameAttribute or the uniqueGroupNameAttribute is
set to distinguishedName, which is not searchable.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

domainName The domain name from which Active Directory server(s) are
automatically discovered.

emailAttribute
The attribute in a user record that contains the user's email
address. If the attribute is not specified, the account name and
domain name are concatenated to form an email address.

enableGroups
<Boolean flag -0|1|true|false> Determines whether or not to
enable external groups for the directory provider. Defaults to "true".

fullUserNameAttribute

The attribute in a user record that contains the user's full name
(first and last) for display in the UI. If this attribute is not specified or
the resulting value is empty, the user's account name is used
instead.

groupBase This string is prepended to the basedn to construct the directory
DN that contains group records.

ElectricCommander

96

Arguments Descriptions

groupMemberAttributes

A comma-separated attribute name list that identifies a group
member. Most LDAP configurations only specify a single value, but
if there is a mixture of POSIX and LDAP style groups in the
directory, multiple attributes might be required.

groupMemberFilter

This LDAP query is performed in the groups directory context to
identify groups containing a specific user as a member. Two
common forms of group record in LDAP directories: POSIX style
groups where members are identified by account name, and
groupOfNames or uniqueGroupOfNames records where
members are identified by the full user DN. Both forms are
supported, so the query is passed to parameters: "{0}" is replaced
with the full user record DN, and "{1}" is replaced with the user's
account name.

groupNameAttribute The group record attribute that contains the name of the group.

groupSearchFilter This LDAP query is performed in the context of the groups
directory to enumerate group records.

managerDn

The DN of a user who has read-only access to LDAP user and
group directories. If this property is not specified, the server
attempts to connect as an unauthenticated user. Not all servers
allow anonymous read-only access.
Note: This user does not need to be an admin user with modify
privileges.

managerPassword If the managerDn property is set, this password is used to
authenticate the manager user.

providerName This human-readable name will be displayed in the user interface
to identify users and groups that come from this provider.

providerType <ldap|activedirectory>

realm

This is an identifier (string) used for LDAP directory providers so
users and groups (within LDAP) can be uniquely identified in
"same name" collisions across multiple directory providers. The
realm is appended to the user or group name when stored in the
Commander server. For example, <user>@dir (where the realm is
set to "dir").

url

The server URL is in the form protocol://host:port/basedn.
Protocol is either ldap or ldaps (for secure LDAP). The port is
implied by the protocol, but can be overridden if it is not at the
default location (389 for ldap, 636 for ldaps). The basedn is the
path to the top-level directory that contains users and groups at
this site. This is typically the domain name where each part is
listed with a dc= and separated by commas.
Note: Spaces in the basednmust be URL encoded (%20).

API Commands - Directory Provider Management

97

Arguments Descriptions

userBase This string is prepended to the basedn to construct the directory
DN that contains user records.

userNameAttribute The attribute in a user record that contains the user's account
name.

userSearchFilter

This LDAP query is performed in the context of the user directory to
search for a user by account name. The string “{0}” is replaced
with the user's login ID. Typically, the query compares a user
record attribute with the substituted user login ID.

userSearchSubtree <Boolean flag - 0|1|true|false> If true, recursively search the
subtree below the user base.

useSSL

<Boolean flag -0|1|true|false> Use this flag to define whether
or not SSL is used for server-agent communication, or if you need
to use SSL to communicate with your Active Directory servers.
Default is "true".

Positional arguments
providerName, providerType, url

Response
None or status OK message.

ec-perl
syntax: $cmdr->createDirectoryProvider(<providerName>, {<optionals>});

Example
$cmdr->createDirectoryProvider("AD3", {url => "ldaps://pdc/dc=coname3.dc=com",

providerType => "activedirectory"});

ectool
syntax: ectool createDirectoryProvider <providerName> ...

Example
ectool createDirectoryProvider AD3 --url "ldaps://pdc/dc=coname3.dc=com"

--providerType activedirectory

Back to Top

deleteDirectoryProvider
Deletes an Active Directory or LDAP directory provider.

You must specify a providerName.

ElectricCommander

98

Arguments Descriptions

providerName The name of the directory provider you want to delete.

Positional arguments
providerName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteDirectoryProvider(<providerName>);

Example
$cmdr->deleteDirectoryProvider('AD3');

ectool
syntax: ectool deleteDirectoryProvider <providerName>

Example
ectool deleteDirectoryProvider AD3

Back to Top

getDirectoryProvider
Retrieves a directory provider by name.

You must specify a providerName.

Arguments Descriptions

providerName The name of the directory provider.

Positional arguments
providerName

Response
One directoryProvider element.

Note: For security reasons, the managerPassword field is never returned.

ec-perl
syntax: $cmdr->getDirectoryProvider(<providerName>);

Example
$cmdr->getDirectoryProvider("AD3");

API Commands - Directory Provider Management

99

ectool
syntax: ectool getDirectoryProvider <providerName>

Example
ectool getDirectoryProvider AD3

Back to Top

getDirectoryProviders
Retrieves all directory providers.

Arguments Descriptions

None

Positional arguments
None

Response
Zero or more directoryProvider elements.

ec-perl
syntax: $cmdr->getDirectoryProviders();

Example
$cmdr->getDirectoryProviders();

ectool
syntax: ectool getDirectoryProviders

Example
ectool getDirectoryProviders

Back to Top

modifyDirectoryProvider
Modifies an existing LDAP directory provider.

You must specify the providerName.

ElectricCommander

100

Arguments Descriptions

commonGroupNameAttribute

The attribute in a group record that contains the common group
name. If specified, this name is used only when searching for
groups from an external provider. Use this argument if the
groupNameAttribute or the uniqueGroupNameAttribute is
set to distinguishedName, which is not searchable.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

domainName The domain from which Active Directory servers are automatically
discovered.

emailAttribute
The attribute in a user record that contains the user's email
address. If the attribute is not specified, the account name and
domain name are concatenated to form an email address.

enableGroups
<Boolean flag - 0|1|true|false> Determines whether or not to
enable external groups for the directory provider. Defaults to "true".

fullUserNameAttribute

The attribute in a user record that contains the user's full name
(first and last) for display in the UI. If this attribute is not specified or
the resulting value is empty, the user's account name is used
instead.

groupBase This string is prepended to the basedn to construct the directory
DN that contains group records.

groupMemberAttributes

A comma-separated attribute name list that identifies a group
member. Most LDAP configurations only specify a single value, but
if there is a mixture of POSIX and LDAP style groups in the
directory, multiple attributes might be required.

groupMemberFilter

This LDAP query is performed in the group directory context to
identify groups containing a specific user as a member. Two
common forms of group record in LDAP directories: POSIX style
groups where members are identified by account name, and
groupOfNames or uniqueGroupOfNames records where
members are identified by the full user DN. Both forms are
supported, so the query is passed two parameters: "{0}" is
replaced with the full user record DN, and "{1}" is replaced with
the user's account name.

groupNameAttribute The group record attribute that contains the name of the group.

groupSearchFilter A filter name: this LDAP query is performed in the context of the
groups directory to enumerate group records.

API Commands - Directory Provider Management

101

Arguments Descriptions

managerDn

The DN of a user who has read access to LDAP user and group
directories. If this property is not specified, the server attempts to
connect as an unauthenticated user. Not all servers allow
anonymous read-only access.
Note: This user does not need to be an admin user with modify
privileges.

managerPassword If the managerDn property is set, this password is used to
authenticate the manager user.

newName Supply any name of your choice to rename the directory provider.

providerName This human readable name will be displayed in the user interface
to identify users and groups that come from this provider.

providerType <ldap|activedirectory>

realm

This is an identifier (string) used for LDAP directory providers so
users and groups (within LDAP) can be uniquely identified in
"same name" collisions across multiple directory providers. The
realm is appended to the user or group name when stored in the
Commander server. For example, <user>@dir (where the realm is
set to "dir").

url

The LDAP server URL is in the form
protocol://host:port/basedn.
Protocol is either ldap or ldaps (for secure LDAP). The port is
implied by the protocol, but can be overridden if it is not at the
default location (389 for ldap, 636 for ldaps). The basedn is the
path to the top-level directory that contains users and groups at
this site. This is typically the domain name where each part is
listed with a dc= and separated by commas.
Note: Spaces in the basednmust be URL encoded (%20).

userBase This string is prepended to the basedn to construct the directory
DN that contains user records.

userNameAttribute The attribute in a user record that contains the user's account
name.

userSearchFilter

This LDAP query is performed in the context of the user directory to
search for a user by account name. The string "{0}" is replaced
with the user's login ID. Typically, the query compares a user
record attribute with the substituted user login ID.

userSearchSubtree <Boolean flag - 0|1|true|false> If "true", recursively search
the subtree below the user base.

ElectricCommander

102

Arguments Descriptions

useSSL

<Boolean flag - 0|1|true|false > Use this flag to define
whether or not SSL is used for server-agent communication, or if
you need to use SSL to communicate with your Active Directory
servers. Default is "true".

Positional arguments
providerName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->modifyDirectoryProvider(<providerName>, {<optionals>});

Example
$cmdr->modifyDirectoryProvider("AD3", {emailAttribute => "email"});

ectool
syntax: ectool modifyDirectoryProvider <providerName> ...

Example
ectool modifyDirectoryProvider AD3 --emailAttribute email

Back to Top

moveDirectoryProvider
Moves an Active Directory or LDAP directory provider in front of another specified provider or to the
end of the list.

You must specify a providerName.

Arguments Descriptions

providerName The name of the directory provider to move.

beforeProviderName
Moves this directory provider (providerName) to a place before
the name specified by this option. If omitted, providerName is
moved to the end.

Positional arguments
providerName

Response
None or a status OK message.

API Commands - Directory Provider Management

103

ec-perl
syntax: $cmdr->moveDirectoryProvider(<providerName>, {<optionals>});

Example
$cmdr->moveDirectoryProvider("AD3", {beforeProviderName => "AD2"});

ectool
syntax: ectool moveDirectoryProvider <providerName> ...

Example
ectool moveDirectoryProvider AD3 --beforeProviderName AD2

Back to Top

testDirectoryProvider
Tests that a specific user name and password combination work with the specified directory provider settings.

You must specify userName and password (the command will prompt for the password if it is omitted).

Arguments Descriptions

commonGroupNameAttribute

The attribute in a group record that contains the common group
name. If specified, this name is used only when searching for
groups from an external provider. Use this argument if the
groupNameAttribute or the uniqueGroupNameAttribute is
set to distinguishedName, which is not searchable.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

domainName The domain from which Active Directory servers are automatically
discovered.

emailAttribute
The attribute in a user record that contains the user's email
address. If the attribute is not specified, the account name and
domain name are concatenated to form an email address.

enableGroups
<Boolean flag - 0|1|true|false> Determines whether or not to
enable external groups for the directory provider. Defaults to "true".

fullUserNameAttribute

The attribute in a user record that contains the user's full name
(first and last) for display in the UI. If this attribute is not specified or
the resulting value is empty, the user's account name is used
instead.

ElectricCommander

104

Arguments Descriptions

groupBase This string is prepended to the basedn to construct the directory
DN that contains group records.

groupMemberAttributes

A comma separated attribute name list that identifies a group
member. Most LDAP configurations only specify a single value, but
if there is a mixture of POSIX and LDAP style groups in the
directory, multiple attributes might be required.

groupMemberFilter

This LDAP query is performed in the groups directory context to
identify groups containing a specific user as a member.
Two common forms of group record in LDAP directories: POSIX
style groups where members are identified by account name, and
groupOfNames or uniqueGroupOfNames records where
members are
identified by the full user DN. Both forms are supported, so the
query is passed two parameters: "{0}" is replaced with the full
user record DN, and "{1}" is replaced with the user's account
name.

groupNameAttribute The group record attribute that contains the name of the group.

groupSearchFilter This LDAP query is performed in the context of the groups
directory to enumerate group records.

managerDn

The DN of a user who has read-only access to LDAP user and
group directories. If this property is not specified, the server
attempts to connect as an unauthenticated user. Not all servers
allow anonymous read-only access.
Note: This user does not need to be an admin user with modify
privileges.

managerPassword If the managerDn property is set, this password is used to
authenticate the manager user.

password The password for the user that you are testing for this provider. The
command will prompt for the password if it is omitted.

providerType <ldap|activedirectory>

realm

This is an identifier (string) used for LDAP directory providers so
users and groups (within LDAP) can be uniquely identified in
"same name" collisions across multiple directory providers. The
realm is appended to the user or group name when stored in the
Commander server. For example, <user>@dir (where the realm is
set to "dir").

API Commands - Directory Provider Management

105

Arguments Descriptions

url

The LDAP server URL is in the form
protocol://host:port/basedn.
Protocol is either ldap or ldaps (for secure LDAP). The port is
implied by the protocol, but can be overridden if it is not at the
default location (389 for ldap, 636 for ldaps). The basedn is the
path to the top-level directory that contains users and groups at
this site. This is typically the domain name where each part is
listed with a dc= and separated by commas.
Note: Spaces in the basednmust be URL encoded (%20).

useDefaults <Boolean flag - 0|1|true|false> If "true", defaults will be used
for all fields not specified.

userBase This string is prepended to the base DN to construct the directory
DN that contains user records.

userName The name of the user you are testing for this provider.

userNameAttribute The attribute in a user record that contains the user's account
name.

userSearchFilter

A filter name. This LDAP query is performed in the context of the
user directory to search for a user by account name. The string "
{0}" is replaced with the user's login ID. Typically, the query
compares a user record attribute with the substituted user login ID.

userSearchSubtree <Boolean flag - 0|1|true|false> If "true", recursively search
the subtree below the user base.

useSSL

<Boolean flag - 0|1|true|false> Use this flag to define
whether or not SSL is used for server-agent communication, or if
you need to use SSL to communicate with your Active Directory
servers. Default is "true".

Positional arguments
userName, password

Response
Three queries are returned: One query authenticates the user userAuthenticationTest, one query
retrieves information about the user findUserTest, and one shows the results of finding groups where the
user is a member findGroupsTest.

ec-perl
syntax: $cmdr->testDirectoryProvider(<userName>, <password>, {<optionals>});

Example
$cmdr->testDirectoryProvider("testUser", "testUserPassword",

{providerType => "activedirectory",
domainName => "my-company.com",

ElectricCommander

106

useDefaults => 1,
managerDn => "testManager",

managerPassword => "testManagerPassword"});

ectool
syntax: ectool testDirectoryProvider <userName> <password> ...

Example
ectool testDirectoryProvider testUser testUserPassword --providerType activeDirecto
ry

--domainName my-company.com
--useDefaults 1
--managerDn testManager
--managerPassword testManagerPassword

Back to Top

API Commands - Email Configuration Management

107

API Commands - Email Configuration Management

createEmailConfig
deleteEmailConfig
getEmailConfig
getEmailConfigs
modifyEmailConfig

createEmailConfig
Creates a new email configuration.

You must specify configName, mailFrom, and mailHost.

Arguments Descriptions

configName The name of your email configuration.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

mailFrom The email address used as the email sender address for
notifications.

mailHost The name of the email server host.

mailPort

The port number for the mail server, but may not need to be
specified. The protocol software determines the default value (25
for SMTP and 465 for SSMTP). Specify a value for this argument
when a non-default port is used.

mailProtocol This is either SSMTP or SMTP (not case-sensitive). The default is
SMTP.

mailUser
This can be an individual or a generic name like "Commander" -
name of the email user on whose behalf Commander sends email
notifications.

mailUserPassword Password for the email user who is sending notifications.

Positional arguments
configName

Response
None or status OK message.

ElectricCommander

108

ec-perl
syntax: $cmdr->createEmailConfig(<configName>, {<optionals>});

Example
$cmdr->createEmailConfig("testConfiguration",

{mailHost => "ectest-sol2",
mailFrom => 'commander@electric-cloud.com',
mailUser => "build@electric-cloud.com",

mailUserPassword => "mybuildmail"});

ectool
syntax: ectool createEmailConfig <configName> ...

Example
ectool createEmailConfig EmailConfig_test --mailHost ectest-sol2
--mailFrom commander@electric-cloud.com --mailUser "build@electric-cloud.com"
--mailUserPassword "mybuildmail" --description "This is a test for the email conf

ig object"

Back to Top

deleteEmailConfig
Deletes an email configuration.

You must specify a configName.

Arguments Descriptions

configName The name of the email configuration you want to delete.

Positional arguments
configName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteEmailConfig(<configName>);

Example
$cmdr->deleteEmailConfig("emailA");

ectool
syntax: ectool deleteEmailConfig <configName>

Example
ectool deleteEmailConfig emailA

API Commands - Email Configuration Management

109

Back to Top

getEmailConfig
Retrieves an email configuration by name.

You must specify a configName.

Arguments Descriptions

configName The name of the email configuration.

Positional arguments
configName

Response
Returns one emailConfig element.

Note: The mailUserPassword attribute value is not returned or displayed by the getEmailConfigs and
getEmailConfig commands for security reasons.

ec-perl
syntax: $cmdr->getEmailConfig(<configName>);

Example
$cmdr->getEmailConfig("EmailConfig_test");

ectool
syntax: ectool getEmailConfig <configName>

Example
ectool getEmailConfig EmailConfig_test

Back to Top

getEmailConfigs
Retrieves all email configurations.

Arguments Descriptions

None

Positional arguments
None

ElectricCommander

110

Response
Returns one or more emailConfig elements.

Notes:
1. The mailUserPassword attribute value is not returned or displayed by the getEmailConfigs and
getEmailConfig commands for security reasons.

2. The configIndex attribute is managed internally by ElectricCommander and cannot be used
 in any of the email configuration APIs. It is used internally to identify the order of emailConfig
 objects within the list.

ec-perl
syntax: $cmdr->getEmailConfigs();

Example
$cmdr->getEmailConfigs();

ectool
syntax: ectool getEmailConfigs

Example
ectool getEmailConfigs

Back to Top

modifyEmailConfig
Modifies an existing email configuration.

You must specify the configName.

Arguments Descriptions

configName The name of your email configuration.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

mailFrom The email address used as the email "sender" address for
notifications.

mailHost The name of the email server host.

API Commands - Email Configuration Management

111

Arguments Descriptions

mailPort

The port number for the mail server, but may not need to be
specified. The protocol software determines the default value (25
for SMTP and 465 for SSMTP).
Specify a value for this argument when a non-default port is used.

mailProtocol This is either SSMTP or SMTP (not case-sensitive). Default is
SMTP.

mailUser The name of the email user, which can be an individual or a
generic name like "Commander".

mailUserPassword The password for the email user.

newName Supply any name of your choice to rename the email
configuration.

Positional arguments
configName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->modifyEmailConfig(<configName>, {<optionals>});

Example
$cmdr->modifyEmailConfig("testConfiguration",

{mailFrom => "test@my-company.com"});

ectool
syntax: ectool modifyEmailConfig <configName> ...

Example
ectool modifyEmailConfig testconfiguration --mailFrom test@my-company.com

--description "This is a Secure SMTP email config object for testing"

Back to Top

ElectricCommander

112

API Commands - Email Notifier Management

createEmailNotifier
deleteEmailNotifier
getEmailNotifier
getEmailNotifiers
modifyEmailNotifier
sendEmail

createEmailNotifier
Creates an email notifier attached to the specified object.

You must specify a notifierName and object locators for either a job, job step, procedure, or procedure step.

Arguments Descriptions

condition

Only send mail if the condition evaluates to "true". The condition is
a string subject to property expansion. The notification will NOT be
sent if the expanded string is "false" or "0". If no condition is
specified, the notification is ALWAYS sent.

configName

If specified, this argument must specify the name of an
emailConfig object. If not specified, the default value is the name
of the FIRST emailConfig object defined for the Commander
server (emailConfig objects are "ordered" Commander entities).
Note: If using this argument, you must include either the
formattingTemplate or the formattingTemplateFile
argument also.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

destinations

A mandatory argument for a create operation. A space-separated
list of valid email addresses, email aliases, or Commander user
names, or a string subject to property expansion that expands into
such a list.

eventType

<onStart|onCompletion>
"onStart" triggers an event when the job or job step begins.
"onCompletion" triggers an event when the job finishes, no matter
how it finishes. Default is "onCompletion."

formattingTemplate

This argument specifies a template for formatting email messages
when an event [notification] is triggered by the emailNotifier.
Make sure the content is formatted correctly, i.e., no illegal
characters or spacing.

API Commands - Email Notifier Management

113

Arguments Descriptions

formattingTemplateFile

This option is supported only in Perl and ectool bindings - it is
not part of the XML protocol.
Contents of the formatting template file is read and stored in the
"formatting template" field. This is an alternative argument for --
formattingTemplate and is useful if the "formatting template"
field spans multiple lines.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName The name of the email notifier.

projectName The name of the project.
Also requires procedureName

procedureName The name of the procedure.
Also requires projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step.
Also requires projectName and procedureName

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

Positional arguments
notifierName

Response
None or status OK message.

ec-perl
syntax: $cmdr->createEmailNotifier(<notifierName>, {<optionals>});

Example
$cmdr->createEmailNotifier("testNotifier",

{eventType => "onStart",
condition => "$[/javascript if(myJobStep.outcome == 'warning') 'true'; els

e 'false';]",
destinations => 'user1@abc.com user2@abc.com emailAlias1@abc.com',

ElectricCommander

114

configName => "testConfiguration",
projectName => "Project_test",

procedureName => "Procedure_test",
formattingTemplate => "Subject: Job started Notification: Job: $[/myJob/jobName] $[
/myEvent/type]
Job: $[/myJob/jobName] $[/myEvent/type] at $[/myEvent/time]",});

ectool
syntax: ectool createEmailNotifier <notifierName> ...

Example
ectool createEmailNotifier testNotifier --condition "$[/javascript if(myJobStep.out
come
== 'warning') 'true'; else 'false';]"

--destinations "user1@abc.com user2@abc.com emailAlias1@abc.com"
--configName EmailConfig_test --formattingTemplate "Notification: Job:

$[/myJob/jobName]
$[/myEvent/type] Job: $[/myJob/jobName] $[/myEvent/type] at $[/myEvent/time]"
--projectName Project_test
--procedureName Procedure_test
--description "This is a test email notifier for Job completion"

Back to Top

deleteEmailNotifier
Deletes an email notifier from a procedure, procedure step, job, or job step.

You must specify a notifierName, and you must specify locator arguments to find the email notifier you want
to delete.

Arguments Descriptions

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName The name of the email notifier you want to delete.

procedureName The name of the procedure that contains this email notifier.
Also requires projectName

projectName The name of the project that contains this email notifier.

stateDefinitionName The name of the state definition.

stateName The name of the state.

API Commands - Email Notifier Management

115

Arguments Descriptions

stepName The name of the step that contains this email notifier.
Also requires projectName and procedureName

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

Positional arguments
notifierName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteEmailNotifier(<notifierName>, { ...});

Example
$cmdr->deleteEmailNotifier(emailNotifier_stepTest, {projectName => "Project_test",

procedureName => "Procedure_test", stepName => "Step_test2"});

ectool
syntax: ectool deleteEmailNotifier <notifierName> ...

Example
ectool deleteEmailNotifier emailNotifier_stepTest --projectName Project_test

--procedureName Procedure_test --stepName Step_test2

Back to Top

getEmailNotifier
Retrieves an email notifier from a property sheet container.

You must specify a notifierName and object locators to identify the object where the notifier is attached.

Arguments Descriptions

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName The name of your email notifier.

ElectricCommander

116

Arguments Descriptions

procedureName The name of the procedure.
Also requires the projectName

projectName The name of the project that contains this email notifier.
Also requires the procedureName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step.
Also requires the procedureName and the projectName

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

Positional arguments
notifierName

Response
Returns one emailNotifier element.

ec-perl
syntax: $cmdr->getEmailNotifier(<notifierName>, {<optionals>});

Example
$cmdr->getEmailNotifier("Error", {projectName => "Test",

procedureName => "Build"});

ectool
syntax: ectool getEmailNotifier <notifierName> ...

Example
ectool getEmailNotifier Error --projectName Test --procedureName Build

--procedureName Procedure_test

Back to Top

getEmailNotifiers
Retrieves all email notifiers defined for the specified property sheet container.

You must specify one or more object locators.

API Commands - Email Notifier Management

117

Arguments Descriptions

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

procedureName The name of the procedure containing the email notifier.
Also requires the projectName

projectName The name of the project containing the email notifier.
Also requires the procedureName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step.
Also requires the procedureName and the projectName

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

Positional arguments
Arguments to locate the notifier, beginning with the top-level object locator.

Response
Returns one or more emailNotifier elements.

ec-perl
syntax: $cmdr->getEmailNotifiers({<optionals>});

Example
$cmdr->getEmailNotifiers({projectName => "Test",

procedureName => "Build"});

ectool
syntax: ectool getEmailNotifiers ...

Example
ectool getEmailNotifiers --projectName Project_test

--procedureName Procedure_test

Back to Top

ElectricCommander

118

modifyEmailNotifier
Modifies an email notifier in a property sheet container specified by an emailNotifierSelector.

Note: Email notifiers are evaluated and sent based on the privileges of the notifier's owner. "Owner" can be
changed to the current user if that user has sufficient privileges to have deleted the notifier object and recreated
it.
Modify privilege on the "admin" system ACL is required.

You must specify a notifierName.

Arguments Descriptions

condition

Only send mail if the condition evaluates to "true ". The condition is
a string subject to property expansion. Notification will NOT be
sent if the expanded string is "false" or "0". If no condition is
specified, the notification is always sent.

configName

If specified, this argument must specify the name of an
emailConfig object. If not specified, the default value is the name
of the FIRST emailConfig object defined for the Commander
server (emailConfig objects are "ordered" ElectricCommander
entities).
Note: If using this argument, you must include either
formattingTemplate or formattingTemplateFile also (not
both arguments).

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

destinations

A space-separated list of valid email addresses, email aliases, or
ElectricCommander user names, or a string subject to property
expansion that expands into such a list.
Note: This argument is mandatory for the "create" operation.

eventType

<onStart|onCompletion> "onStart" triggers an event when the
job/jobstep begins. "onCompletion" triggers an event when the job
finishes, no matter how it finishes.
Default is "onCompletion."

formattingTemplate

This argument specifies a template for formatting email messages
when an event [notification] is triggered by the emailNotifier.
Make sure the content is formatted correctly, i.e., no illegal
characters or spacing.

API Commands - Email Notifier Management

119

Arguments Descriptions

formattingTemplateFile

This option is supported only in Perl and ectool bindings - it is
not part of the XML protocol.
Contents of the formatting template file is read and stored in the
"formatting template" field. This is an alternative argument for
formattingTemplate and is useful if the "formatting template"
field spans multiple lines.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

newName Supply any name of your choice to rename the email notifier.

notifierName The name of your email notifier.

procedureName The name of the procedure.
Also requires projectName

projectName The name of the project.
Also requires the procedureName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step.
Also requires the procedureName and the projectName

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

Positional arguments
notifierName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->modifyEmailNotifier(<notifierName>, {<optionals>});

Example
$cmdr->modifyEmailNotifier("testNotifier",

{eventType => "onCompletion",

ElectricCommander

120

projectName => "Project_test",
procedureName => "Procedure_test",});

ectool
syntax: ectool modifyEmailNotifier <notifierName> ...

Example
ectool modifyEmailNotifier testNotifier --eventType onCompletion

--projectName Project_test
--procedureName Procedure_test

Back to Top

sendEmail
Facilitates sending an email from the command-line or a Command Job Step without setting up an Email
Notifier.
This API is more dynamic than an email notifier because you do not need to setup some kind of a
template beforehand. This API also makes sending email attachments easier than using a notifier template.

Instead of (or in addition to) specifying a configName, any of the configuration options for an email
configuration can be specified as options.
These options are: mailHost,mailPort, mailFrom, mailUser, and mailUserPassword.

Note: If both a configName and some or all of the configuration options are specified, the specified options
override values stored in the configuration. In this case, the user must have both modify and execute
permission on the configuration.

Specify the options you need to create the type of email message you want to send.

Arguments Descriptions

configName

The name of the email configuration to use. If no configuration is
specified, the configuration named "default" will be used.
Note: The user must have "execute" permission on the
configuration.

subject The subject of the email message.

to
A "To" recipient for the email message. The recipient can be a user
or group name or a complete email address. This option can be
specified multiple times.

cc
A "Cc" recipient for the email message. The recipient can be a user
or group name or a complete email address. This option can be
specified multiple times.

bcc
A "Bcc" recipient for the email message. The recipient can be a
user or group name or a complete email address. This option can
be specified multiple times.

header An RFC822 email header line (for example: "reply-to:
user@host.com"). This option can be specified multiple times.

API Commands - Email Notifier Management

121

Arguments Descriptions

html The body of a simple HTML message.

htmlFile Reads the specified client-side file and uses it as the body of a
simple HTML message.

text The body of a simple text message.

textFile Reads the specified client-side file and uses it as the body of a
simple text message.

raw

A raw email message including headers to use as the basis for the
email message. Additional options can be applied to this
message.
The value should be a properly formatted RFC822 message.

rawFile Reads the specified client-side file and uses it as the entire mail
message, including headers.

attachment
One or more client-side files to send as attachments. The filename
extension is examined to determine the content-type. This option
can be specified multiple times.

inline

<contentId>=<fileName> [<contentId>=<fileName> ...]
One or more inline attachments specified as a contentId and a
client-side filename. The filename extension is examined to
determine the content-type. The contentId can be referenced in
an HTML body using the cid:protocol.
For example:
 could reference
 --inlinemyImage=image.jpg
This option can be specified multiple times.

mailFrom The "From" header to use when sending mail. Overrides the value
from the email configuration if specified.

mailHost The name of the mail server to use if no configName is specified.
Overrides the value from the email configuration if specified.

mailPort The mail server port to use if no configName is specified.
Overrides the value from the email configuration if specified.

mailProtocol The mail protocol. Must be either SMTP or SMTPS. Overrides the
value from the email configuration if specified.

mailUser The user account to use when authenticating to the mail server.
Overrides the value from the email configuration if specified.

mailUserPassword The password to use when authenticating to the mail server.
Overrides the value from the email configuration if specified.

ElectricCommander

122

Arguments Descriptions

multipartMode

<none|mixed|related|mixedRelated>
Sets the multipart mode. Must be one of the following allowed
multipart modes:

none - non-multipart message

mixed - single-root multipart element of type "mixed". Texts,
inline elements, and attachments will be all be added to this
root element.

related - multipart message with a single root multipart
element of type "related". Texts, inline elements, and
attachments will be added to this root element. Works on most
mail clients, except Lotus Notes.

mixedRelated - multipart element "mixed" plus a nested
multipart element of type "related". Texts and inline elements
will be added to the nested "related' element, while
attachments will be added to the "mixed' root element. Works
on most mail clients other than Mac Mail and some situations
on Outlook. If you experience problems, try "related".

Note: multipartMode defaults to none unless there are multiple
parts, in which case it defaults to mixedRelated. If both text and
html arguments are specified, both values are sent as alternates
in a multipart message.

Positional arguments
None

Response
None or status OK message.

ec-perl
syntax: $cmdr->sendEmail

Note: The to, cc, bcc, header, and attachment options can have multiple values specified as
an array. The inline option can have multiple values specified as an array of hashes with contentId
and fileName values.

Example
$cmdr->sendEmail({

configName => 'config1',
subject => 'Test message',

to => ['user1', 'user2'],
html => '<html><body>Some stuff <img src=cid:image1/body/html',

inline => [{contentId => 'image1', fileName => 'image1.jpg'},
{contentId => 'image2', fileName => 'image2.jpg'}],

attachment => ['report1.html', 'report2.pdf']
})

API Commands - Email Notifier Management

123

ectool
syntax: ectool sendEmail

Note: Options that take multiple values may be specified as a single option with each value as a separate
argument or as multiple options, each with a single argument.

Examples
ectool sendEmail \

--to user1 \
--to user2 \
--subject Test \
--html '<html><body>Some stuff </body></html>' \
--inline image1=image1.jpg \
--inline image2=image2.jpg \
--attachment report1.html \
--attachment report2.pdf

ectool sendEmail \
--to user1 user2 \
--subject Test \
--html '<html><body>Some stuff </body></html>' \
--inline image1=image1.jpg image2=image2.jpg \
--attachment report1.html report2.pdf

Back to Top

ElectricCommander

124

API Commands - Environment Requests
createEnvironment

createEnvironmentInventoryItem

deleteEnvironment

deleteEnvironmentInventoryItem

getEnvironment

getEnvironments

getEnvironmentApplications

getEnvironmentInventory

getEnvironmentInventoryItem

getEnvironmentInventoryItems

modifyEnvironment

modifyEnvironmentInventoryItem

createEnvironment
Creates a new environment.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment; must be unique among all projects.

Argument Type: String

Optional Arguments

applicationName

Description: Create environment from the specified application; must be unique among all projects.

Argument Type: String

applicationProjectName

Description: Name of the application project.

Argument Type: String

description

Description: Comment text describing this object; not interpreted at all by the ElectricCommander
platform.

API Commands - Environment Requests

125

Argument Type: String

environmentEnabled

Description: True to enable the environment.

Argument Type: Boolean

Response
Returns an environment element.

ec-perl
Syntax:

$<object>->createEnvironment(<projectName>, <environmentName>,
{<optionals>});

Example:

$ec->createEnvironment("Default", "aEnv", {environmentEnabled => "true",
description => "aDescription"});

ectool
Syntax:

ectool createEnvironment <projectName> <environmentName>
[optionals...]

Example:

ectool createEnvironment default newEnv --environmentEnabled true
--description exampleText

createEnvironmentInventoryItem
Creates a new environment inventory item.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment.

Argument Type: String

applicationName

Description: Name of the application that owns the inventory item.

Argument Type: String

componentName

Description: Component that owns the inventory item.

ElectricCommander

126

Argument Type: String

resourceName

Description: Resource where the item is installed.

Argument Type: String

artifactName

Description: Artifact name for the inventory item.

Argument Type: String

artifactVersion

Description: Artifact version for the inventory item.

Argument Type: String

Optional Arguments

artifactSource

Description: Source of the artifact.

Argument Type: String

artifactUrl

Description: URL of the artifact.

Argument Type: String

description

Description: Comment text describing this object; not interpreted by the ElectricCommander platform.

Argument Type: String

Response
Returns an environment inventory item.

ec-perl
Syntax:

$<object>->createEnvironmentInventoryItem(<projectName>, <environmentName>,
<applicationName>, <componentName>, <resourceName>, <artifactName>,
<artifactVersion>,{<optionals>});

Example:

$ec->createEnvironmentInventoryItem("Default", "aEnv", "App1", "ComponentA",
"ResourceA", "Artifact1", "V3", {description => "aDescription"});

ectool
Syntax:

ectool createEnvironmentInventoryItem <projectName> <environmentName>
<applicationName> <componentName> <resourceName> <artifactName>
<artifactVersion> [optionals...]

Example:

API Commands - Environment Requests

127

ectool createEnvironmentInventoryItem Default aEnv App1 ComponentA ResourceA
Artifact1 V3 --description aDescription

deleteEnvironment
Deletes an environment.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment; must be unique among all projects.

Argument Type: String

Optional Arguments

None

Response
None or a status OK message.

ec-perl
Syntax:

$<object>->deleteEnvironment(<projectName>, <environmentName>);

Example:

$cmdr->deleteEnvironment("Default", "envToDelete");

ectool
Syntax:

ectool deleteEnvironment <projectName>
<environmentName>

Example:

ectool deleteEnvironment default envToDelete

deleteEnvironmentInventoryItem
Delete an inventory item.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

environmentName

ElectricCommander

128

Description: Name of the environment.

Argument Type: String

applicationName

Description: Name of the application that owns the inventory item.

Argument Type: String

componentName

Description: Name of the component that owns the inventory item.

Argument Type: String

resourceName

Description: Name of the resource where the item is installed.

Argument Type: String

Optional Arguments

None

Response
None or a status OK message.

ec-perl
Syntax:

$<object>->deleteEnvironmentInventoryItem(<projectName>, <environmentName>,
<applicationName>, <componentName>, <resourceName>);

Example:

$cmdr->deleteEnvironmentInventoryItem("Default", "Env1A", "AppTest1",
"Component1", "Server1");

ectool
Syntax:

ectool deleteEnvironmentInventoryItem <projectName> <environmentName>
<applicationName> <componentName> <resourceName>

Example:

ectool deleteEnvironmentInventoryItem "Default" "Env1A" "AppTest1" "Component
1"
"Server1"

getEnvironment
Retrieves an environment by name.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

API Commands - Environment Requests

129

Argument Type: String

environmentName

Description: Name of the environment; must be unique among all projects.

Argument Type: String

Optional Arguments

None

Response
Retrieves an environment element.

ec-perl
Syntax:

$<object>->getEnvironment(<projectName>, <environmentName>);

Example:

$ec->getEnvironment("Default", "aEnv");

ectool
Syntax:

ectool getEnvironment <projectName> <environmentName>

Example:

ectool getEnvironment default newEnv

getEnvironments
Retrieves all environments in a project.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

Optional Arguments

None

Response
Retrieves zero or more environment elements.

ec-perl
Syntax:

$<object>->getEnvironments(<projectName>);

Example:

$ec->getEnvironments("Default");

ElectricCommander

130

ectool
Syntax:

ectool getEnvironments <projectName>

Example:

ectool getEnvironments default

getEnvironmentApplications
Retrieves a list of applications installed on the given environment.

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment.

Argument Type: String

Optional Arguments

None

Response
Retrieves a list of applications for the specified environment.

ec-perl
Syntax:

$<object>->getEnvironmentApplications(<projectName>, <environmentName>);

Example:

$ec->getEnvironmentApplications("Default", "aEnv");

ectool
Syntax:

ectool getEnvironmentApplications <projectName> <environmentName>

Example:

ectool getEnvironmentApplications default newEnv

getEnvironmentInventory
Retrieves a per-component grouped list of inventory items.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

API Commands - Environment Requests

131

Argument Type: String

environmentName

Description: Name of the environment.

Argument Type: String

applicationName

Description: Name of the application.

Argument Type: String

Optional Arguments

None

Response
Retrieves a per-component grouped list of inventory items.

ec-perl
Syntax:

$<object>->getEnvironmentInventory(<projectName>, <environmentName>,
<applicationName>);

Example:

$ec->getEnvironmentInventory("Default", "aEnv", "App1");

ectool
Syntax:

ectool getEnvironmentInventory <projectName> <environmentName>
<applicationName>

Example:

ectool getEnvironmentInventory default newEnv App1

getEnvironmentInventoryItem
Retrieves an inventory item.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment.

Argument Type: String

applicationName

Description: Name of the application that owns the inventory item.

ElectricCommander

132

Argument Type: String

componentName

Description: Name of the component that owns the inventory item.

Argument Type: String

resourceName

Description: Name of the resource where the item is installed.

Argument Type: String

Optional Arguments

None

Response
Retrieves an inventory item.

ec-perl
Syntax:

$<object>->getEnvironmentInventoryItem(<projectName>,
<environmentName>, <applicationName>, <componentName>,
<resourceName>);

Example:

$ec->getEnvironmentInventoryItem("Default", "aEnv", "App1",
"Component1", "Server1");

ectool
Syntax:

ectool getEnvironmentInventoryItem <projectName> <environmentName>
<applicationName> <componentName> <resourceName>

Example:

ectool getEnvironmentInventoryItem default newEnv App1 Component1
Server1

getEnvironmentInventoryItems
Retrieves all inventory items for a given environment.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment.

Argument Type: String

API Commands - Environment Requests

133

Optional Arguments

None

Response
Retrieves all inventory items for the specified environment.

ec-perl
Syntax:

$<object>->getEnvironmentInventoryItems(<projectName>,
<environmentName>);

Example:

$ec->getEnvironmentInventoryItems("Default", "aEnv");

ectool
Syntax:

ectool getEnvironmentInventoryItems <projectName> <environmentName>

Example:

ectool getEnvironmentInventoryItems default newEnv

modifyEnvironment
Modifies an environment.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment; must be unique among all projects.

Argument Type: String

Optional Arguments

description

Description: Comment text describing this object; not interpreted at all by the ElectricCommander
platform.

Argument Type: String

environmentEnabled

Description: True to enable the environment.

Argument Type: Boolean

newName

Description: New name for an existing object that is being renamed.

ElectricCommander

134

Argument Type: String

Response
Retrieves an updated environment element.

ec-perl
Syntax:

$<object>->modifyEnvironment(<projectName>, <environmentName>,
{<optionals>});

Example:

$ec->modifyEnvironment("Default", "aEnv", {newName => "upDatedName",
description => "aNewDescription"});

ectool
Syntax:

ectool modifyEnvironment <projectName> <environmentName>
[optionals...]

Example:

ectool modifyEnvironment default testEnv --newName modEnv
--description exampleText

modifyEnvironmentInventoryItem
Modifies an existing environment inventory item.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment.

Argument Type: String

applicationName

Description: Name of the application that owns the inventory item.

Argument Type: String

componentName

Description: Name of the component that owns the inventory item.

Argument Type: String

resourceName

Description: Name of the resource where the item is installed.

API Commands - Environment Requests

135

Argument Type: String

artifactName

Description: Name of the artifact for the inventory item.

Argument Type: String

artifactVersion

Description: Version of the artifact for the inventory item.

Argument Type: String

Optional Arguments

artifactSource

Description: Source of the artifact.

Argument Type: String

artifactUrl

Description: URL of the artifact.

Argument Type: String

description

Description: Comment text describing this object; not interpreted by the ElectricCommander platform.

Argument Type: String

Response
Retrieves an updated environment inventory item.

ec-perl
Syntax:

$<object>->modifyEnvironmentInventoryItem(<projectName>, <environmentName>,
<applicationName>, <componentName>, <resourceName>, <artifactName>,
<artifactVersion> {<optionals>});

Example:

$ec->modifyEnvironmentInventoryItem("Default", "aEnv", "App1", "Component1",
"Server1", "Artifact1", "V3");

ectool
Syntax:

ectool modifyEnvironmentInventoryItem <projectName> <environmentName>
<applicationName> <componentName> <resourceName> <artifactName>
<artifactVersion> [optionals...]

Example:

ectool modifyEnvironmentInventoryItem default testEnv App1 Component1 Server1
Artifact1 V3

ElectricCommander

136

API Commands - Environment Tier
createEnvironmentTier

deleteEnvironmentTier

getEnvironmentTier

getEnvironmentTiers

modifyEnvironmentTier

createEnvironmentTier
Creates a new environment tier.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment which must be unique among all environments for the project;
must be unique among all projects.

Argument Type: String

environmentTierName

Description: Name of the environment tier; must be unique among all tiers for the environment.

Argument Type: String

Optional Arguments

description

Description: Comment text describing this object; not interpreted at all by the ElectricCommander
platform.

Argument Type: String

Response
Returns an environment tier element.

ec-perl
Syntax:

$<object>->createEnvironmentTier(<projectName>, <environmentName>,
<environmentTierName>, {<optionals>});

Example:

$ec->createEnvironmentTier("Default", "newEnv", "envTier2",
{description => "Description"});

API Commands - Environment Tier

137

ectool
Syntax:

ectool createEnvironmentTier <projectName> <environmentName>
<environmentTierName> [optionals...]

Example:

ectool createEnvironmentTier default newEnv envTier1
--description exampleText

deleteEnvironmentTier
Deletes an environment tier.

Required Arguments

projectName

Description: Name of the project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment that must be unique among all environments for the project; must
be unique among all projects.

Argument Type: String

environmentTierName

Description: Name of the environment tier; must be unique among all tiers for the environment.

Argument Type: String

Optional Arguments

None

Response
None or a status OK message.

ec-perl
Syntax:

$<object>->deleteEnvironmentTier(<projectName>, <environmentName>,
<environmentTierName>);

Example:

$ec->deleteEnvironmentTier("Default", "newEnv", "tierToDelete");

ectool
Syntax:

ectool deleteEnvironmentTier <projectName> <environmentName>
<environmentTierName>

Example:

ElectricCommander

138

ectool deleteEnvironmentTier default newEnv tierToDelete

getEnvironmentTier
Retrieves an environment tier by name.

Required Arguments

projectName

Description: Name of the project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment which must be unique among all environments for the project;
must be unique among all projects.

Argument Type: String

environmentTierName

Description: Name of the environment tier; must be unique among all tiers for the environment.

Argument Type: String

Optional Arguments

None

Response
Retrieves an environment tier element.

ec-perl
Syntax:

$<object>->getEnvironmentTier(<projectName>, <environmentName>,
<environmentTierName>);

Example:

$ec->getEnvironmentTier("Default", "newEnv", "envTier2");

ectool
Syntax:

ectool getEnvironmentTier <projectName> <environmentName>
<environmentTierName>

Example:

ectool getEnvironmentTier default newEnv envTier1

getEnvironmentTiers
Retrieves all environment tiers in an environment.

API Commands - Environment Tier

139

Required Arguments

projectName

Description: Name of the project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment that must be unique among all environments for the project; must
be unique among all projects.

Argument Type: String

Optional Arguments

None

Response
Retrieves zero or more environment tier elements.

ec-perl
Syntax:

$<object>->getEnvironmentTiers(<projectName>, <environmentName>);

Example:

$ec->getEnvironmentTiers("Default", "newEnv");

ectool
Syntax:

ectool getEnvironmentTiers <projectName> <environmentName>

Example:

ectool getEnvironmentTiers default newEnv

modifyEnvironmentTier
Modifies an environment tier.

Required Arguments

projectName

Description: Name of the project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment which must be unique among all environments for the project;
must be unique among all projects.

Argument Type: String

environmentTierName

Description: Name of the environment tier; must be unique among all tiers for the environment.

ElectricCommander

140

Argument Type: String

Optional Arguments

description

Description: Comment text describing this object; not interpreted at all by the ElectricCommander
platform.

Argument Type: String

newName

Description: New name for an existing object that is being renamed.

Argument Type: String

Response
Retrieves an updated environment tier element.

ec-perl
Syntax:

$<object>->modifyEnvironmentTier(<projectName>, <environmentName>,
<environmentTierName>, {<optionals>});

Example:

$ec->modifyEnvironmentTier("Default", "newEnv", "envTier2",
{newName => "envTierB", description => "New_Description"});

ectool
Syntax:

ectool modifyEnvironmentTier <projectName> <environmentName>
<environmentTierName> [optionals...]

Example:

ectool modifyEnvironmentTier default newEnv envTier1
--description new_exampleText --newName envTierA

API Commands - Gateways/Zones Management

141

API Commands - Gateways/Zones Management

createGateway
deleteGateway
getGateway
getGateways
modifyGateway

createZone
deleteZone
getZone
getZones
modifyZone

createGateway
Creates a new gateway.

Scenario: You have two zones, ZoneA and ZoneB. ResourceA in ZoneA is accessible from ResourceB in
ZoneB, and conversely—communication between specified gateway resources is enabled with host/port
information recorded in each resource object. Other resources in each zone are restricted to talking to
resources within their zone only. Creating a gateway between ResourceA and ResourceB to link the two zones
enables resources from one zone to communicate with the other using ResourceA and ResourceB.

You must specify gatewayName.

Arguments Descriptions

description

A plain text or HTML description for this object. If using HTML, you
must surround your text with <html> ... </html> tags. The only
HTML tags allowed in the text are: <a>
 <div> <dl>
 <i> <p> <pre> <style>
<table> <tc> <td> <th> <tr>

gatewayDisabled <Boolean flag - 0|1|true|false > If set to 1, the gateway is
disabled.

gatewayName The name of the gateway. Supply any of your choice, but the name
must be unique among other gateway names.

hostName1

The agent host name where Resource1 resides. This host name is
used by Resource2 to communicate with Resource1. Do not
specify this option is you want to use the host name from
Resource1's definition.

hostName2

The agent host name where Resource2 resides. This host name is
used by Resource1 to communicate with Resource2. Do not
specify this option is you want to use the host name from
Resource2's definition.

port1 The port number used by Resource1 - defaults to the port number
used by the resource.

port2 The port number used by Resource2 - defaults to the port number
used by the resource.

ElectricCommander

142

Arguments Descriptions

resourceName1 The name of your choice for the first of two required gateway
resources. Do not include "spaces" in a resource name.

resourceName2 The name of your choice for the second of two required gateway
resources. Do not include "spaces" in a resource name.

Positional arguments
gatewayName

Response
Returns a gateway object.

ec-perl
syntax: $cmdr->createGateway (<gatewayName>, {<optionals>});

Example
$cmdr->createGateway ("AB_Gateway",

{description => "Gateway linking ZoneA and ZoneB",
resourceName1 => "ResourceA",
resourceName2 => "ResourceB"});

ectool
syntax: ectool createGateway <gatewayName> ...

Example
ectool createGateway AB_Gateway --description "Gateway linking ZoneA and ZoneB"

--resourceName1 "ResourceA"
--resourceName2 "ResourceB"

Back to Top

deleteGateway
Deletes a gateway.

You must supply a gatewayName.

Arguments Descriptions

gatewayName The name of the gateway to delete.

Positional arguments
gatewayName

API Commands - Gateways/Zones Management

143

Response
None

ec-perl
syntax: $cmdr->deleteGateway (<gatewayName>);

Example
$cmdr->deleteGateway ("AB_Gateway");

ectool
syntax: ectool deleteGateway <gatewayName>

Example
ectool deleteGateway "AB_Gateway"

Back to Top

getGateway
Finds a gateway by name.

You must specify a gatewayName.

Arguments Descriptions

gatewayName The name of the gateway you want to find.

Positional arguments
gatewayName

Response
Returns one gateway element.

ec-perl
syntax: $cmdr->getGateway (<gatewayName>);

Example
$cmdr->getGateway ("AB_Gateway");

ectool
syntax: ectool getGateway <gatewayName>

Example
ectool getGateway AB_Gateway

Back to Top

ElectricCommander

144

getGateways
Retrieves all gateways.

Arguments Descriptions

None

Positional arguments
None.

Response
Returns one or more gateway elements.

ec-perl
syntax: $cmdr->getGateways();

Example
$cmdr->getGateways();

ectool
syntax: ectool getGateways

Example
ectool getGateways

Back to Top

modifyGateway
Modifies an existing gateway.

You must specify a gatewayName.

Arguments Descriptions

description

A plain text or HTML description for this object. If using HTML, you
must surround your text with <html> ... </html> tags. The only
HTML tags allowed in the text are: <a>
 <div> <dl>
 <i> <p> <pre> <style>
<table> <tc> <td> <th> <tr>

gatewayDisabled <Boolean flag - 0|1|true|false > If set to 1, the gateway is
disabled.

gatewayName The name of the gateway you want to modify.

API Commands - Gateways/Zones Management

145

Arguments Descriptions

hostName1

The agent host name where Resource1 resides. This host name is
used by Resource2 to communicate with Resource1. Do not
specify this option is you want to use the host name from
Resource1's definition.

hostName2

The agent host name where Resource2 resides. This host name is
used by Resource1 to communicate with Resource2. Do not
specify this option is you want to use the host name from
Resource2's definition.

newName Supply any name of your choice to rename the gateway.

port1 The port number used by Resource1 - defaults to the port number
used by the resource.

port2 The port number used by Resource2 - defaults to the port number
used by the resource.

resourceName1 The name of your choice for the first of two required gateway
resources. Do not include "spaces" in a resource name.

resourceName2 The name of your choice for the second of two required gateway
resources. Do not include "spaces" in a resource name.

Positional arguments
gatewayName

Response
An updated gateway object.

ec-perl
syntax: $cmdr->modifyGateway (<gatewayName>, {...});

Example
$cmdr->modifyGateway ("AB_Gateway",

{description=> "Gateway linking zoneA and zoneB",

resourceName1=> "ResourceA",
resourceName2=> "ResourceB"});,

ectool
syntax: ectool modifyGateway <gatewayName> ...

Example
ectool modifyGateway AB_Gateway --description "Gateway linking ZoneA and ZoneB"

--resourceName1 "ResourceA"
--resourceName2 "ResourceB"

Back to Top

ElectricCommander

146

createZone
Creates a new zone.

You must specify a zoneName.

Arguments Descriptions

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

zoneName The name of the zone. Supply any unique name of your choice.

Positional arguments
zoneName

Response
Returns a zone object.

ec-perl
syntax: $cmdr->createZone (<zoneName>, {...});

Example
$cmdr->createZone("DevZone", {description => "Zone containing resources that the de
v group uses."});

ectool
syntax: ectool createZone <zoneName> ...

Example
ectool createZone DevZone --description "Zone containing resources that the dev gro
up uses."

Back to Top

deleteZone
Deletes an existing zone.

You must specify a zoneName.

Arguments Descriptions

zoneName The name of the zone to delete.

API Commands - Gateways/Zones Management

147

Positional arguments
zoneName

Response
None

ec-perl
syntax: $cmdr->deleteZone (<zoneName>);

Example
$cmdr->deleteZone ("DevZone");

ectool
syntax: ectool deleteZone <zoneName>

Example
ectool deleteZone DevZone

Back to Top

getZone
Finds a zone by name.

You must specify a zoneName.

Arguments Descriptions

zoneName The name of the zone you want to find.

Positional arguments
zoneName

Response
Returns a zone element, including a list of resources belonging to the zone.

ec-perl
syntax: $cmdr->getZone (<zoneName>);

Example
$cmdr->getZone ("DevZone");

ectool
syntax: ectool getZone <zoneName>

ElectricCommander

148

Example
ectool getZone DevZone

Back to Top

getZones
Retrieves all zones.

Arguments Descriptions

None

Positional arguments
None

Response
Returns a zone object.

ec-perl
syntax: $cmdr->getZones();

Example
$cmdr->getZones();

ectool
syntax: ectool getZones

Example
ectool getZones

Back to Top

modifyZone
Modifies an existing zone.

You must specify a zoneName.

API Commands - Gateways/Zones Management

149

Arguments Descriptions

description

A plain text or HTML description for this object. If using HTML, you
must surround your text with <html> ... </html> tags. The only
HTML tags allowed in the text are: <a>
 <div> <dl>
 <i> <p> <pre> <style>
<table> <tc> <td> <th> <tr>

newName Supply any unique name of your choice to rename the zone.

zoneName The name of this zone.

Positional arguments
zoneName

Response
Returns an updated zone element.

ec-perl
syntax: $cmdr->modifyZone (<zoneName>, {...});

Example
$cmdr->modifyZone ("DevZone", {description => "Zone containing resources that the d
ev group uses."});

ectool
syntax: ectool modifyZone <zoneName> ...

Example
ectool modifyZone DevZone --description "Zone containing resources that the dev gro
up uses."

Back to Top

ElectricCommander

150

API Commands - Job Management

abortAllJobs
abortJob
abortJobStep
deleteJob
findJobSteps
getJobDetails
getJobInfo
getJobNotes
getJobs

getJobsForSchedule
getJobStatus
getJobStepDetails
getJobStepStatus
moveJobs
runProcedure
setJobName

External Job APIs
completeJob
completeJobStep
createJob
createJobStep

modifyJob
modifyJobStep

abortAllJobs
Aborts all running jobs.

Arguments Descriptions

force
<Boolean flag - 0|1|true|false > If set to 1, the job aborts
immediately. A zero value allows jobs to terminate in an orderly
way, executing steps marked “always run".

reason

A string added to the aborted job/jobstep that describes or
records the reason for the abort. The server records this value, but
places no meaning on the string - similar to a text Description "for
your reference only."

Positional arguments
None

Response
None or status OK message.

ec-perl
syntax: $cmdr->abortAllJobs({...});

Example
$cmdr->abortAllJobs({force => 1});

API Commands - Job Management

151

ectool
syntax: ectool abortAllJobs ...

Example
ectool abortAllJobs --force 1

Back to Top

abortJob
Aborts a running job.

You must supply a jobId.

Arguments Descriptions

force
<Boolean flag - 0|1|true|false> If set to 1, the job aborts
immediately. A zero value allows jobs to terminate in an orderly
way, executing steps marked "always run".

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

reason

A string added to the aborted job/jobstep that describes or
records the reason for the abort. The server records this value, but
places no meaning on the string - similar to a text Description "for
your reference only."

Positional arguments
jobId

Response
None or status OK message.

ec-perl
syntax: $cmdr->abortJob(<jobId>, {...});

Example
$cmdr->abortJob(4fa765dd-73f1-11e3-b67e-b0a420524153, {force => 1});

ectool
syntax: ectool abortJob <jobId> ...

Example
ectool abortJob 4fa765dd-73f1-11e3-b67e-b0a420524153 --force 1

Back to Top

ElectricCommander

152

abortJobStep
Aborts any type of step—command step or subprocedure step.

Aborting a subprocedure step aborts all steps of the subprocedure as well. Steps marked "always run" will still
run to completion unless the "force" flag is specified.

You must specify a jobStepId.

Arguments Descriptions

force
<Boolean flag - 0|1|true|false> If set to 1, the job aborts
immediately. A zero value allows jobs to terminate in an orderly
way, for example, executing steps marked "always run".

jobStepId The jobStep to abort - the unique identifier for a job step,
assigned automatically when the job step is created.

reason

A string added to the aborted job/jobstep that describes or
records the reason for the abort. The server records this value, but
places no meaning on the string - similar to a text Description "for
your reference only."

Positional arguments
jobStepId

Response
None or status OK message.

ec-perl
syntax: $cmdr->abortJobStep(<jobStepId>, {...});

Example
$cmdr->abortJobStep(5da765dd-73f1-11e3-b67e-b0a420524153, {force => 1});

ectool
syntax: ectool abortJobStep <jobStepId> ...

Example
ectool abortJobStep 5da765dd-73f1-11e3-b67e-b0a420524153

Back to Top

deleteJob
Deletes a job from the ElectricCommander database.

You must specify a jobId.

API Commands - Job Management

153

Arguments Descriptions

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

Positional arguments
jobId

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteJob(<jobId>);

Example
$cmdr->deleteJob(4fa765dd-73f1-11e3-b67e-b0a420524153);

ectool
syntax: ectool deleteJob <jobId>

Example
ectool deleteJob 4fa765dd-73f1-11e3-b67e-b0a420524153

Back to Top

findJobSteps
Returns a list of job steps from a single job or from a single subprocedure job step. This API is used by the
Job Details web page in the Commander UI. The elements in the list are returned in their natural "job order".

You must specify either a jobId or a jobStepId, but not both.

Arguments Descriptions

jobId
The unique identifier for the job whose steps you want to retrieve -
assigned automatically when the job is created. Also accepts a
job name assigned to the job by its name template.

jobStepId The unique identifier for a job step whose job steps you want to
retrieve - assigned automatically when the job step is created.

filter

A list of zero or more filter criteria definitions used to define objects
to find.
See the findObjects API for complete description for using
filters.

ElectricCommander

154

Arguments Descriptions

numObjects

<full object count>
This specifies the number of full job steps (not just the IDs)
returned in the response. Returned job steps will be from the
beginning of the list. If numObjects is not specified, all job steps in
the list of object IDs are returned. Any and all job steps can be
retrieved using the getObjects command.

select

This is an unordered list of property names that specify additional
top-level properties to return for each object. See the code
example for findObjects for instructions on forming the list and
passing it to the ElectricCommander Perl API.

Positional arguments
jobId, or jobStepId

Response
One or more jobStep elements.

ec-perl
syntax: $cmdr->findJobSteps({<optionals>});

Example 1
my $xPath = $cmdr->findJobSteps(

{jobId => "4fa765dd-73f1-11e3-b67e-b0a420524153",
select => [{propertyName => 'charEncoding'},

{propertyName => 'abc'}]});
print "Return data from Commander:\n" .

$xPath-> findnodes_as_string("/"). "\n";

Example 2
my $xPath = $cmdr->findJobSteps({jobStepId => "5da765dd-73f1-11e3-b67e-b0a42052415
3"});

print "Return data from Commander:\n" .
$xPath-> findnodes_as_string("/"). "\n";

ectool
Not supported.

Back to Top

getJobDetails
Retrieves complete information about a job, including details from each job step.

You must specify a jobId.

API Commands - Job Management

155

Arguments Descriptions

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

structureOnly <Boolean flag - 0|1|true|false> Reduces the amount of
information returned to minimal structural information.

Positional arguments
jobId

Response
One job element, including one or more jobStep elements.

ec-perl
syntax: $cmdr->getJobDetails(<jobId>, {<optionals>});

Example
$cmdr->getJobDetails(4fa765dd-73f1-11e3-b67e-b0a420524153, {structureOnly => 1});

ectool
syntax: ectool getJobDetails <jobId> ...

Example
ectool getJobDetails 4fa765dd-73f1-11e3-b67e-b0a420524153 --structureOnly 1

Back to Top

getJobInfo
Retrieves all information about a job, except job step information.

You must specify a jobId.

Arguments Descriptions

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

Positional arguments
jobId

Response
One job element.

ElectricCommander

156

ec-perl
syntax: $cmdr->getJobInfo(<jobId>);

Example
$cmdr->getJobInfo(4fa765dd-73f1-11e3-b67e-b0a420524153);

ectool
syntax: ectool getJobInfo <jobId>

Example
ectool getJobInfo 4fa765dd-73f1-11e3-b67e-b0a420524153

Back to Top

getJobNotes
Retrieves the notes property sheet from a job.

You must specify a jobId.

Arguments Descriptions

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

Positional arguments
jobId

Response
A propertySheet element that contains the job.

ec-perl
syntax: $cmdr->getJobNotes(<jobId>);

Example
$cmdr->getJobNotes(4fa765dd-73f1-11e3-b67e-b0a420524153);

ectool
syntax: ectool getJobNotes <jobId>

Example
ectool getJobNotes 4fa765dd-73f1-11e3-b67e-b0a420524153

Back to Top

API Commands - Job Management

157

getJobs
Retrieves summary information for a list of jobs. By default, all jobs are returned.

Notes:
1. If using sortKey or sortOrder, you must use both arguments together.
2. You can use firstResult and maxResults together or separately to select a limited sub-list of jobs for the
result set.

Arguments Descriptions

firstResult <index number> 0-based index identifies the first element returned
from filtered, sorted result set.

maxResults <result count> This number sets the maximum number of returned
jobs.

sortKey <jobId|jobName|start|finish|procedureName> Choose
how you want to sort the list.

sortOrder <ascending|descending>

status <running|completed|runnable> Choose status to restrict the
list.

Positional arguments
None

Response
One or more job elements. A job element contains summary information only.

ec-perl
syntax: $cmdr->getJobs({...});

Examples
How do I get the first 10 jobs (index 0-9)?

$cmdr-> getJobs ({maxResults=>10});

How do I get the next 10 jobs (index 10-19)?

$cmdr-> getJobs({firstResult=>10, maxResults=>10});

How do I get the most recent job by start time?

$cmdr-> getJobs({sortKey=>'start', sortOrder=>'descending', maxResults=>1});

ectool
syntax: ectool getJobs ...

ElectricCommander

158

Examples
How do I get the first 10 jobs (index 0-9)?

ectool getJobs --maxResults 10

How do I get the next 10 jobs (index 10-19)?

ectool getJobs --firstResult 10 --maxResults 10

How do I get the most recent job by start time?

ectool getJobs --sortKey start --sortOrder descending --maxResults 1

Back to Top

getJobsForSchedule
Retrieves jobs started by a specific schedule.

You must specify a projectName and scheduleName.

Arguments Descriptions

projectName The name of the project that contains this schedule.

scheduleName The name of the schedule that launched these jobs.

Positional arguments
projectName, scheduleName

Response
Returns an XML stream containing any number of job elements. The job elements contain
summary information only.

ec-perl
syntax: $cmdr->getJobsForSchedule(<projectName>, <scheduleName>);

Example
$cmdr->getJobsForSchedule('Test', 'ea1');

ectool
syntax: ectool getJobsForSchedule <projectName> <scheduleName>

Example
ectool getJobsForSchedule Test ea1

Back to Top

API Commands - Job Management

159

getJobStatus
Retrieves the status of a job.

You must specify the jobId.

Arguments Descriptions

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

Positional arguments
jobId

Response
Values for status and outcome as follows:

Possible values for status:

pending - The job is not yet runnable--it is waiting for other steps to complete first. A job should
 not stay in this state for longer than a few seconds.

runnable - The job is ready to run, but it is waiting for a resource to become available.

running - The job is assigned to a resource and is executing the step command.

completed - The job finished executing.

Possible values for outcome: The outcome is accurate only if the job status is "completed."

success - The job finished successfully.

warning - The job completed with no errors, but encountered some suspicious conditions.

error - The job has finished execution with errors.

ec-perl
syntax: $cmdr->getJobStatus(<jobId>);

Example
$cmdr->getJobStatus(4fa765dd-73f1-11e3-b67e-b0a420524153);

ectool
syntax: ectool getJobStatus <jobId>

Example
ectool getJobStatus 4fa765dd-73f1-11e3-b67e-b0a420524153

Back to Top

getJobStepDetails
Retrieves details for a job step.

ElectricCommander

160

You may never need to use this command. This information is available for all job steps in a job by using the
getJobDetails command. The getJobStepDetails command can be used to refresh data for a single step if
you
need an update in real time.

You must specify jobStepId.

Arguments Descriptions

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

structureOnly <Boolean flag - <0|1|true|false> Reduces the amount of
information returned to minimal structural information.

Positional arguments
jobStepId

Response
A jobStep element.

ec-perl
syntax: $cmdr->getJobStepDetails(<jobStepId>, {...});

Example
$cmdr->getJobStepDetails(5da765dd-73f1-11e3-b67e-b0a420524153);

ectool
syntax: ectool getJobStepDetails <jobStepId> ...

Example
ectool getJobStepDetails 5da765dd-73f1-11e3-b67e-b0a420524153

Back to Top

getJobStepStatus
Retrieves the status of a job step.

You must specify the jobStepId.

Arguments Descriptions

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

Positional arguments
jobStepId

API Commands - Job Management

161

Response
A status tag - for example: <status>completed</status>

Possible values for status:

pending - The job step is not yet runnable--it is waiting for other steps to complete first. A job
 should not stay in this state for longer than a few seconds.

runnable - The job step is ready to run, but it is waiting for a resource to become available.

running - The job step is assigned to a resource and is executing the step command.

completed - The job step finished executing.

ec-perl
syntax: $cmdr->getJobStepStatus(<jobStepId>, {...});

Example
$cmdr->getJobStepStatus(5da765dd-73f1-11e3-b67e-b0a420524153);

ectool
syntax: ectool getJobStepStatus <jobStepId>

Example
ectool getJobStepStatus 5da765dd-73f1-11e3-b67e-b0a420524153

Back to Top

moveJobs
Moves jobs from one project to another project.

You must specify sourceProject and destinationProject.

Arguments Descriptions

sourceProject The name of the project that contains the jobs you want to move.

destinationProject The new project that will contain the jobs.

Positional arguments
sourceProject, destinationProject

Response
None or a status OK message.

ec-perl
syntax: $cmdr->moveJobs(<sourceProject>, <destinationProject>);

ElectricCommander

162

Example
$cmdr->moveJobs("ProjectA", "ProjectB");

ectool
syntax: ectool moveJobs <sourceProject> <destinationProject> ...

Example
ectool moveJobs "ProjectA" "ProjectB"

Back to Top

runProcedure
Creates and starts a new job using a procedure directly or a procedure specified indirectly through a schedule.
Returns a new job ID. If the pollInterval option is provided, wait until the job completes up to a maximum
of timeout seconds (if also provided). If the scheduleName option is provided, the parameters provided by
that schedule will be used.

runProcedure credentials - two types of credentials can be passed to runProcedure:

l Impersonation credentials

l Credential parameters

Impersonation credentials

Impersonation credentials are used to set the top level impersonation credential for a job. If specified, the
impersonation credential [on the job] is used as the default impersonation credential for all steps in the job.

The impersonation credential can be specified in two ways. If the credentialName argument is supplied,
the job looks for the named credential specified. If the user has execute permission on the specified
credential,
runProcedure is allowed to start the job.

If the userName and password arguments are supplied, the job creates a transient credential to contain
the pair. The transient credential is used by the job and then discarded when the job completes.

Only one of credentialName or userName should be specified. If both are specified, only userName is
used.
Neither can be specified if the procedure being run already has a credential defined on the procedure or
the project.

Credential parameters

If the procedure defines one or more credential parameters, runProceduremust specify a credential to
use for each parameter. The actualParameter argument identifies the credential name to use for the
parameter, and the credential argument specifies the user name for each defined credential. For each
credential specified, ectool prompts for a password.

For example, for a procedure named 'proc1' with a single credential parameter named 'param1'. The
following command could be used to pass a transient credential where the user name is 'joe' and the
password
is 'plumber':

$ ectool runProcedure test --procedureName proc1 \
--actualParameter param1=cred1 --credential cred1=joe
cred1 password: plumber

API Commands - Job Management

163

Multiple parameters or credentials can be specified by having additional name=value pairs after the
actualParameter or credential arguments. The same credential can be specified as the value for
more than one actual parameter.

You must specify a projectName and either a procedureName or a scheduleName.

Arguments Descriptions

actualParameter

Specifies the values to pass as parameters to the called
procedure. Each parameter value is specified with an
actualParameterName and a value. The
actualParameterNamemust match the name of a formal
parameter on the called procedure.
Used in conjunction with procedureName to set the value of the
actual parameters. Do not use this argument with scheduleName.

credential Use the following syntax to specify a credential:
<credName>=<userName> [<credName>=<userName> ...]]

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

destinationProject This argument is used to specify the name of the destination
project.

password The password for the user running the procedure.

priority

Priorities take effect when two or more job steps in different jobs
are waiting for the same resource. When the resource is available,
it will be used by the job step that belongs to the job with the
highest priority. If the priority level is the same, the resource will be
used by the job step that belongs to the job with the lowest job ID
number. If the job steps are in the same job, the resource will be
used first by the step with the lowest job step ID number.
Priority values are: low|normal|high|highest

procedureName The name of the procedure you want to run.

projectName The name of the project that contains the procedure you want to
run.

scheduleName The name of the schedule. Use this option if you want to use the
parameters from an existing specific schedule.

userName The name of the user who is running the procedure.

ElectricCommander

164

Arguments Descriptions

Note:
The following two arguments are used to control whether runProcedure returns immediately or waits until
the job completes.
*** If pollInterval is used and timeout is not used, pollInterval will timeout in 60 seconds.

pollInterval

If this option is not specified, runProcedure returns immediately. If
it is specified, runProcedure waits until the job completes. This
argument requires setting a value in seconds to determine how
often ectool queries the Commander server for job status, but this
is not an indefinite activity - set the timeout value to extend the
pollInterval for longer than 60 seconds if needed.

timeout

This argument requires a value set in seconds. If pollInterval is
specified, this timeout causes runProcedure to stop waiting for
the job to complete. It does not stop the job itself.
If pollInterval is used and timeout is not used,
pollInterval will timeout in 60 seconds.

Positional arguments
projectName, procedureName, scheduleName

Response
The new job ID number.

ec-perl
syntax: $cmdr->runProcedure(<project name>, {<optionals});

Example
$cmdr->runProcedure("Sample Project", {procedureName => "Delay",

actualParameter => {actualParameterName => "Delay Time", value => 10}});
$xpath = $ec->runProcedure("BSHTest",

{procedureName => "FakeMotoBuild",
actualParameter => [

{actualParameterName => "builddir", value => $cwd},
{actualParameterName => "board", value => $board},
{actualParameterName => "myview", value => $cwv},
{actualParameterName => "resourcetouse",

value => $resourcetouse},
]});

ectool
syntax: ectool runProcedure <project name> <procedureName> ...

Examples
ectool runProcedure <project name> --procedureName <procedure name>

--scheduleName <schedule name>

ectool runProcedure "Sample Project" --procedureName "Delay"

API Commands - Job Management

165

--actualParameter "Delay Time=10"

Back to Top

setJobName
Sets the name of a running job.

You must specify jobId and newName.

Notes:

The jobId can be omitted if the command is run as part of an ElectricCommander step.

A job cannot be renamed after it has completed.

Arguments Descriptions

jobId

The ID or name of the job you want to rename. The unique
ElectricFlow-generated identifier (a UUID) for a job, assigned
automatically when the job is created. Also accepts a job name
assigned to the job by its name template.

newName Supply any name of your choice to rename the job.

Positional arguments
jobId, newName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->setJobName(<jobId>, <newName>);

Examples
$cmdr->setJobName(4fa765dd-73f1-11e3-b67e-b0a420524153, "Delay Test_541"); (from th
e command line)

$cmdr->setJobName("TestJob_252"); (from a step's command)

ectool
syntax: ectool setJobName <jobId> <newName> ...

Examples
ectool setJobName 4fa765dd-73f1-11e3-b67e-b0a420524153 "Delay Test"_541 (from the c
ommand line)

ectool setJobName "TestJob"_252

Back to Top

ElectricCommander

166

External Job APIs
What are external job APIs and do you need them?

Overview

ElectricCommander includes a powerful built-in scheduler for both managing execution and real-time reporting
for a "running" process. Most Commander Installations choose to use its built-in scheduler because it is more
powerful than most in-house built and other scheduling solutions.

However, there are use cases where an external scheduler may be appropriate, for example, an LSF Grid
engine. Often, such systems are quite mature and may have been in use for many years. An organizations
reliance on an LSF Grid system can mandate it remain as the driving scheduler. Many schedulers lack the
richness in their graphical user interface, which is an area where Commander excels—especially as it applies
to monitoring the status of complex processes and workflows as they progress in real-time through the
Commander system. The Commander GUI also provides powerful auditing capabilities for reviewing results of
complex process runs.

External Job APIs are designed to leverage the Commander GUI to display results for jobs running on external
schedulers. The external scheduler can issue calls through these APIs to provide a representation of this same
job within the Commander Jobs page. Commander users and the external scheduler can then monitor the
complete integrated system through a single interface—the Commander GUI.

The external system need not be a formal scheduler. In fact, even a simple script might be able to leverage the
External Job Step API. For example, a build script could issue API calls at its beginning and end so the build is
represented in Commander as a job.

Using the API does NOT consume agent resources. The API simply allows for graphical representation of
external jobs within Commander.

completeJob
Completes an externally managed job. Marks the job's root step so the job is marked "completed" when all child
steps are completed,
and updates the run time for the root step.

You must specify a jobId.

Arguments Descriptions

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

force

<Boolean flag - 0|1|true|false> If true, all external steps
belonging to the job will be marked "complete".
Determines whether all external steps under the job should be
recursively marked "complete".
Note: If this API is called on a job launched with runProcedure,
there is no effect unless force is enabled, in which case only
external steps are affected.

API Commands - Job Management

167

Arguments Descriptions

outcome

Possible values for outcome:
success - The job finished successfully.

warning - The job completed with no errors, but
encountered some suspicious conditions.

error - The job has finished execution with errors.

If specified, the outcome overrides any previously propagated
outcome value.

Positional arguments
jobId

Response
None or status OK message.

ec-perl
syntax: $cmdr->completeJob(<jobId>);

Example
$cmdr->completeJob(1234);

ectool
syntax: ectool completeJob <jobId>

Example
ectool completeJob 1234

Back to Top

completeJobStep
Completes an externally managed job step. Marks the job step "completed" when all child steps are completed
and updates the step run time.

You must specify a jobStepId.

Arguments Descriptions

exitCode The step's exit code.

force

<Boolean flag - 0|1|true|false> If true, all external steps under
the job should be recursively marked "complete".
Note: If this API is called on a job launched with runProcedure,
there is no effect unless force is enabled, in which case only
external steps are affected.

ElectricCommander

168

Arguments Descriptions

jobStepId
The unique identifier for a job step, assigned automatically when
the job is created. Also accepts a job name assigned to the job by
its name template.

outcome

Possible values for outcome:
success - The job step finished successfully.

warning - The job step completed with no errors, but
encountered some suspicious conditions.

error - The job step has finished execution with errors.

skipped - The job step was skipped.

Positional arguments
jobStepId

Response
None or status OK message.

ec-perl
syntax: $cmdr->completeJobStep(<jobStepId>);

Example
$cmdr->completeJobStep(5da765dd-73f1-11e3-b67e-b0a420524153);

ectool
syntax: ectool completeJobStep <jobStepId>

Example
ectool completeJobStep 5da765dd-73f1-11e3-b67e-b0a420524153

Back to Top

createJob
Creates an externally managed job that will serve as a container for external job steps.

You must specify projectName or destinationProject.

Arguments Descriptions

destinationProject

If specified, determines the project where the job will reside. You
must have modify permission on the destination project.
projectName or destinationProject must be specified to
determine the project where the job is created,
destinationProject is preferred.

API Commands - Job Management

169

Arguments Descriptions

jobNameTemplate

If specified, the job name will be generated by expanding this
argument value.
Note: The job name is generated by expanding the
jobNameTemplate argument or the jobNameTemplate from the
procedure or the system default.

procedureName

If specified, projectName and procedureName are used as a
template for the job. You must have execute permission on the
procedure.
Note: The job name is generated by expanding the
jobNameTemplate argument or the jobNameTemplate from the
specified procedure or the system default.

projectName

The name of the project where this job will reside. You must have
modify permission on the destination project.
projectName or destinationProject must be specified to
determine the project where the job is created. If both are
specified, destinationProject is preferred.

status

<pending|runnable|scheduled|running>
The status argument determines the "starting" job status. This is
useful if you want to immediately go into a specific status without
having to use modifyJob to update the status. Defaults to
pending.

Possible values for status:
pending - The job is not yet runnable.

runnable - The job is ready to run.

scheduled - The job is scheduled to run.

running - The job is executing.

Positional arguments
None

Response
The new job ID number.

ec-perl
syntax: $cmdr->createJob({<optionals>});

Example
$cmdr->createJob({projectName => "Sample Project"});

ectool
syntax: ectool createJob ...

ElectricCommander

170

Example
ectool createJob --projectName "Sample Project"

Back to Top

createJobStep
Use this API to add Commander managed job steps to a running job or job step as well as to create externally
managed steps (if "external" is set).

You must specify the parent job step using either the jobStepId or parentPath arguments (COMMANDER_
JOBSTEPID implicitly sets jobStepId). The parent job step status must not be completed.

Arguments Descriptions

actualParameter

Specifies the values to pass as parameters to the called
procedure. Each parameter value is specified with an
actualParameterName and a value. The
actualParameterNamemust match the name of a formal
parameter on the called procedure.
For more information about parameters, click here.

alwaysRun

If set to 1, indicates this job step will run even if the job is aborted
before the job step completes. A useful argument for running a
"cleanup" step that should run whether the job step is successful or
not. The value for alwaysRun is a <Boolean flag -
0|1|true|false>. Defaults to "false".

broadcast

Use this flag to run the same job step on several resources at the
same time. The job step is "broadcast" to all resources listed in the
resourceName argument.
The broadcast value = <Boolean flag -0|1|true|false>. This
argument is applicable only to command job steps. Defaults to
"false".

command The command to run. This argument is applicable to command job
steps only.

condition

If empty or non-zero, the job step will run. If set to "0", the job step
is skipped. A useful setting during procedure development or
when re-running a job that has already completed some of the job
steps. Also, this argument is useful for conditional execution of
steps based on properties set by earlier steps.

credential

Refers to one or more credentials to attach to this job step. These
are "dynamic" credentials, captured when a job is created.
Dynamic credentials are stored on the server temporarily until the
job completes and then discarded. For more information about
credentials, see the Credentials and User Impersonation Help
topic.

API Commands - Job Management

171

Arguments Descriptions

credentialName

The credential to use for impersonation on the agent.
credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

errorHandling

Determines what happens to the procedure if the step fails:

l failProcedure - The current procedure continues, but the
overall
status is error (default).

l abortProcedure - Aborts the current procedure, but
allows
already-running steps in the current procedure to complete.

l abortProcedureNow - Aborts the current procedure and
terminates running steps in the current procedure.

l abortJob - Aborts the entire job, terminates running steps,
but allows alwaysRun steps to run.

l abortJobNow - Aborts the entire job and terminates all
running steps, including alwaysRun steps.

l ignore - Continues as if the step succeeded.

exclusive

If set to 1, indicates this job step should acquire and retain this
resource exclusively. The value for exclusive is a
<Boolean flag -0|1|true|false>. Defaults to "false".
Note: Setting exclusive, sets exclusiveMode to "job".

ElectricCommander

172

Arguments Descriptions

exclusiveMode

Use one of the following options:

l None - the "default", which does not retain a resource.

l Job - keeps the resource for the duration of the job step. No
other job can use this resource, regardless of its step limit,
until this job completes or "Release Exclusive" is used in a
job step. Future steps for this job will use this resource in
preference to other resources--if this resource meets the
needs of the job steps and its step limit is not exceeded.

l Step - keeps the resource for the duration of the job step.

l Call - keeps the resource for the duration of the procedure
that called this job step, which is equivalent to 'job' for top
level steps.

external

If set, indicates this job step is an external step. Commander will
not schedule or run agent commands for external steps, but
instead, represents a step managed outside of Commander. The
typical usage is with an external Job (see createJob). The status
of an external job step is set using modifyJobStep, and it can be
completed using completeJobStep. The value for external is a
<Boolean flag - 0|1|true|false>. Default is "false".

jobStepId ID of the parent job step. If both jobStepId and parentPath are
specified, parentPath is preferred.

jobStepName The name of the job step. You can use any name of your choice.

logFileName A custom log file name produced by running the job step. By
default, Commander assigns a unique name for this file.

parallel

If set, indicates this job step should run at the same time as
adjacent job steps marked to run as parallel also. The value for
parallel is a <Boolean flag -0|1|true|false>. Defaults to
"false".

parentPath The path of the parent job step. If both jobStepId and
parentPath are specified, parentPath is preferred.

postProcessor

The name of a program to run after a job step completes. This
program looks at the job step output to find errors and warnings.
Commander includes a customizable program called "postp" for
this purpose. The value for postProcessor is a command string
for invoking a post-processor program in the platform shell for the
resource (cmd for Windows, sh for UNIX).

API Commands - Job Management

173

Arguments Descriptions

precondition

The precondition property (if it exists) is copied to the job step
when the step is created. When the job step is eligible to transition
from pending to runnable, the precondition is evaluated. If the
precondition result is empty, false, or "0", the step remains in the
pending state. Any other value allows the step to proceed to the
runnable state.
Note: A precondition property allows steps to be created
with "pause", which then pauses the procedure. In a paused state,
all currently running steps continue, but no additional steps will
start.
Set this property to make a step wait until one or more dependent
conditions are met. When a job step is eligible to transition from
pending to runnable, a precondition is evaluated.
A precondition is a fixed text or text embedding property reference
that is evaluated to TRUE or FALSE. An empty string, a \"0\" or
\"false\" is interpreted as FALSE. Any other result string is
interpreted as TRUE. The step will block until the precondition is
TRUE.

Precondition example:
Assume we defined these 4 steps:

1. Build object files and executables

2. Build installer

3. Run unit tests

4. Install bits on test system

Step 1 is an ordinary serial step.
Steps 2 and 3 can run in parallel because they depend only on
step 1's completion.
Step 4 depends on step 2, but not step 3.

You can achieve optimal step execution order with
preconditions:

l Make steps 2-4 run in parallel.

l Step 2 needs a job property set at the end of its step to
indicate step 2 is completing
(/myJob/buildInstallerCompleted=1).

l Set a precondition in step 4:
$[/myJob/buildInstallerCompleted]

procedureName The name of the procedure that will contain this job step.

projectName The name of the project that contains the procedure where you are
adding a new job step.

ElectricCommander

174

Arguments Descriptions

releaseExclusive

<Boolean flag - 0|1|true|false> Declares whether or not this
job step will release its resource, which is currently held
"exclusively".
Note: Setting this flag to "true" is the same as setting
releaseMode to release.

releaseMode

Use one of the following options:

l None - the "default" - no action if the resource was not
previously marked as "retain".

l Release - releases the resource at the end of this job step.
If the resource for the job step was previously acquired with
"Retain exclusive" (either by this job step or some
preceding job step), the resource exclusivity is canceled at
the end of this job step. The resource is released in the
normal way so it may be acquired by other jobs.

l Release to job - allows a job step to promote a "step
exclusive" resource to a Job exclusive resource.

resourceName The name of the resource you want this job step to use.

shell

Where shell is the name of a program used to execute commands
contained in the "command" field. The name of a temporary file
containing commands will be appended to the end of this
invocation line. Normally, this file is a command shell, but it can be
any other command line program. The default is to use the
standard shell for the platform it runs on (cmd for Windows, sh for
UNIX). Applicable to command steps only.

status

<pending|runnable|scheduled|running>
The status argument determines the "starting" job status. This is
useful if you want to immediately go into a specific status without
having to use modifyJobStep to update the status. Defaults to
pending.

Possible values for status:
pending - The job step is not yet runnable.

runnable - The job step is ready to run.

scheduled - The job step is scheduled to run.

running - The job step is executing.

stepName The name of the new job step you are creating. You can use any
name of your choice.

subprocedure
The name of the nested procedure to call when this job step runs.
If a subprocedure is specified, do not include the command or
commandFile options.

API Commands - Job Management

175

Arguments Descriptions

subproject
If a subprocedure argument is used, this is the name of the
project where that subprocedure is found. By default, the current
project is used.

timeLimit

The maximum length of time the job step is allowed to run. After
the time specified, the job step will be aborted.
The time limit is specified in units that can be hours, minutes, or
seconds.

timeLimitUnits Specify hours|minutes|seconds for time limit units.

workingDirectory

The Commander agent sets this directory as the “current working
directory,” when running the command contained in the job step. If
no working directory is specified in the job step, Commander uses
the directory it created for the job in the Commander workspace as
the working directory.
Note: If running a job step on a proxy resource, this directory must
exist on the proxy target.

workspaceName The name of the workspace where this job step's log files will be
stored.

Positional arguments
jobStepId or parentPath

Response
Returns a jobStep object.

ec-perl
syntax: $cmdr->createJobStep({<optionals>});

Examples
$cmdr->createJobStep ({parentPath => "/jobs/123", external => "1"});

$cmdr->createJobStep ({jobStepId => "5da765dd-73f1-11e3-b67e-b0a420524153", externa
l => "1"});

Create a job step that calls a subprocedure and passes a parameter credential

‘coolProcedure’ is a procedure within the Default project with one parameter

credential named ‘sshCredentialParameter’.

$cmdr->createJobStep(

{

projectName => 'Default',

subprocedure => 'coolProcedure',

actualParameter => [

{

ElectricCommander

176

actualParameterName => 'sshCredentialParameter',

value => 'sshCredentialParameter'

}

],

credential => [

{

credentialName => 'sshCredentialParameter',

userName => 'sshUser',

password => 'super_secure_sshPassword'

}

]

}

);

Create two parallel job steps and send them to the Commander server using the bat
ch API.

Create the batch API object

my $batch = $ec->newBatch('parallel');

Create multiple requests

my @reqIds = (

$batch->createJobStep(

{

parallel => '1',

projectName => 'Default',

subprocedure => 'coolProcedure',

actualParameter => [

{

actualParameterName => 'input',

value => 'helloWorld'

}

],

}

),

$batch->createJobStep(

API Commands - Job Management

177

{

parallel => '1',

projectName => 'Default',

subprocedure => 'coolProcedure',

actualParameter => [

{

actualParameterName => 'input',

value => 'helloWorld'

}

],

}

),

);

Send off the requests

$batch->submit();

ectool
syntax: ectool createJobStep ...

Examples
ectool createJobStep --parentPath /jobs/123 --external 1

ectool createJobStep --jobStepId 5da765dd-73f1-11e3-b67e-b0a420524153 --external 1

ectool createJobStep --parallel 1 --projectName Default --subprocedure

coolProcedure --actualParameter input=helloWorld

Back to Top

modifyJob
Modifies the status of an externally managed job.

You must specify a jobId.

Arguments Descriptions

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

ElectricCommander

178

Arguments Descriptions

status

<pending|runnable|scheduled|running>
The status argument determines the current status of the job, and
also sets related timing values.

Possible values for status:
pending - The job is not yet runnable.

runnable - The job is ready to run.

scheduled - The job is scheduled to run.

running - The job is executing.

Positional arguments
jobId

Response
The jobId element.

ec-perl
syntax: $cmdr->modifyJob (<jobId>, {<optionals>});

Example
$cmdr->modifyJob (4fa765dd-73f1-11e3-b67e-b0a420524153, {status => "running"});

ectool
syntax: ectool modifyJob <jobId> ...

Example
ectool modifyJob 4fa765dd-73f1-11e3-b67e-b0a420524153 --status "running"

Back to Top

modifyJobStep
Modifies the status of an externally managed job step.

You must specify a projectName and jobStepId.

Arguments Descriptions

jobStepId The Commander-generated ID for the job step.

API Commands - Job Management

179

Arguments Descriptions

status

<pending|runnable|scheduled|running>
The status argument determines the current status of the job, and
also sets related timing values.

Possible values for status:
pending - The job step is not yet runnable.

runnable - The job step is ready to run.

scheduled - The job step is scheduled to run.

running - The job step is executing.

Positional arguments
jobStepId

Response
Returns a modified jobStep object.

ec-perl
syntax: $cmdr->modifyJobStep (<jobStepId>, {<optional>});

Example
$cmdr->modifyJobStep (4fa765dd-73f1-11e3-b67e-b0a420524153, {status => "running"});

ectool
syntax: ectool modifyJobStep <jobStepId> ...

Example
ectool modifyJobStep 4fa765dd-73f1-11e3-b67e-b0a420524153 --status "running"

Back to Top

waitForJob
Waits until the specified job reaches a given status or the timeout expires. Returns the result from the final
getJobStatus query.

Arguments Descriptions

jobId
The job to wait for. The unique ElectricFlow-generated identifier (a
UUID) for a job, assigned automatically when the job is created.
Also accepts a job name assigned to the job by its name template.

finalStatus The status to wait for. Must be either "running" or "completed"
(default is "completed").

timeout The number of seconds to wait before giving up on a request.

ElectricCommander

180

Positional arguments
jobId

Response
Returns the result from the final getJobStatus query.

ec-perl
syntax:$cmdr->waitForJob ($4fa765dd-73f1-11e3-b67e-b0a420524153, {<optional>);

Example
$cmdr->waitForJob (4fa765dd-73f1-11e3-b67e-b0a420524153, {status => "running"});

Back to Top

API Commands - Parameter Management

181

API Commands - Parameter Management

attachParameter
createActualParameter
createFormalParameter
deleteActualParameter
deleteFormalParameter
detachParameter
getActualParameter
getActualParameters
getFormalParameter
getFormalParameters
modifyActualParameter
modifyFormalParameter

attachParameter
Attaches a formal parameter to a step.

Attaching a parameter allows a step to use the credential (passed in a parameter) as an actual parameter to a
subprocedure
call or directly in a getFullCredential call in a command step. For more information about parameters, click
here.

You must specify projectName, procedureName, stepName, and formalParameterName.

Arguments Descriptions

formalParameterName The name of the procedure's parameter, containing a credential
reference.

procedureName The name of the procedure containing the step.

projectName The name of the project containing the step.

stepName The name of the step to attach the parameter credential.

Positional arguments
projectName, procedureName, stepName, formalParameterName

Response
None or status OK message.

ec-perl
syntax: $cmdr->attachParameter(<projectName>, <procedureName>, <stepName>,
 <formalParameterName>);

ElectricCommander

182

Example
$cmdr->attachCredential("Test Proj", "Run Build", "Get Sources", "SCM Credentia
l"});

ectool
syntax: ectool attachParameter <projectName> <procedureName> <stepName>
 <formalParameterName>

Example
ectool attachParameter "Test Proj" "Run Build" "Get Sources" "SCM Credential”

Back to Top

createActualParameter
Creates a new actual parameter for a step that calls a nested procedure. The parameter is passed to the nested
procedure when the step runs. At run time, the actual parameter name must match the name of a formal
parameter in the nested procedure.

Passing Actual Parameters

You can use actual parameters in three types of API calls:

l calling runProcedure to start a new job

l setting up a schedule

l creating or modifying a subprocedure step

For example, when you call runProcedure using ectool, set the actual parameters to the procedure on the
command line using the optional argument --actualParameter, followed by a list of name/value pairs.
The following is an example of calling a procedure named MasterBuild:

ectool runProcedure "project A" --procedureName "MasterBuild"
--actualParameter Branch=main Type=Debug

To make this call using the Perl API, define a list. Each element of the list is an anonymous hash reference
that specifies one of the actual parameters. Now you can pass a reference to the list as the value of the
actualParameter argument.

Here is the same example called via the Perl API:

Run the procedure
$xPath = $cmdr->runProcedure("project A",

{procedureName => "MasterBuild",
actualParameter => [

{actualParameterName => 'Branch',
value => 'main'},

actualParameterName => 'Type',
value => 'Debug'},

]});

Specifying most arguments to the createStep API in Perl is fairly intuitive; like any other API,
you specify key-value pairs in a hash argument for all optional parameters. However, specifying actual
parameters is more involved because actual parameters are not arbitrary key-values characterizing the step.
Instead, they are key-values characterizing actual parameters to the step. See the following
createStep request in XML:

API Commands - Parameter Management

183

<createStep>
<projectName>MyProject</projectName>
<procedureName>MyProcedure</procedureName>
<stepName>Step1</stepName>
<actualParameter>

<actualParameterName>parm1</actualParameterName>
<value>myval</value>

</actualParameter>
<actualParameter>

<actualParameterName>parm2</actualParameterName>
<value>val2</value>

</actualParameter>
</createStep>

Each actual parameter key-value is under an <actualParameter> element. Code this in the optional
arguments hash in
the Perl API like this:

{ ..., => ..., actualParameter => [{actualParameterName => 'parm1',
value => 'myval'},

{actualParameterName => 'parm2',
value => 'val2'}],
... => ...}

In other words, the value of the actualParameter key in the optional arguments hash is a list of hashes, each
representing one actual parameter. If the sub-procedure call takes only one actual parameter, the value of the
actualParameter key can be specified as just the hash representing the one parameter:

actualParameter => {actualParameterName => 'parm1',
value => 'myval'}

You must specify projectName, procedureName, stepName, and actualParameterName.

Arguments Descriptions

actualParameterName
The name of the parameter. This name must be unique within the
step, and at run time it must match the name of a formal parameter
in the subprocedure.

procedureName The name of the procedure containing the step.

projectName The name of the project containing the procedure.

scheduleName The name of the schedule containing this parameter.

stateDefinitionName The name of the state definition.

stepName The name of the step that calls a subprocedure.

transitionDefinitionName The name of the transition definition.

value This value is passed to the subprocedure as the value of the
matching formal parameter.

workflowDefinitionName The name of the workflow definition.

ElectricCommander

184

Positional arguments
projectName, procedureName, stepName, actualParameterName

Response
None or status OK message.

ec-perl
syntax: $cmdr->createActualParameter(<projectName>, <procedureName>, <stepName>,
 <actualParameterName>, {<optionals>});

Example
$cmdr->createActualParameter("Sample Project", "CallSub", "Step1", "Extra Parm",

{value => "abcd efg"});

ectool
syntax: ectool <projectName> <procedureName> <stepName> <actualParameterName>

Example
ectool createActualParameter "Sample Project" "CallSub" "Step1" "Extra Parm"

--value "abcd efg"

Back to Top

createFormalParameter
Creates a new formal parameter.

Arguments Descriptions

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

defaultValue This value is used for the formal parameter if a value is not
supplied by the caller.

expansionDeferred <Boolean flag - 0|1|true|false> Default is "false," which
means the formal parameter is expanded immediately.

formalParameterName The name for this parameter - used when the procedure is invoked
to specify a value for the parameter.

API Commands - Parameter Management

185

Arguments Descriptions

procedureName

The name of the procedure containing the parameter.

Note: In releases earlier than ElectricCommander 5.0,
procedureName is required. In ElectricCommander 5.0 and
later and in ElectricFlow 5.0 and later, procedureName is
optional.

projectName The name of the project containing the procedure.

required
<Boolean flag - 0|1|true|false> If set to 1, this value indicates
whether a non-blank value must be supplied when calling the
procedure.

stateDefinitionName The name of the state definition.

type

The "type" can be any string value. Used primarily by the web
interface to represent custom form elements. However, if
"credential" is the string value, the server will expect a credential
as the parameter value.

workflowDefinitionName The name of the workflow definition.

Positional arguments
In ElectricCommander 5.0 and later and in ElectricFlow 5.0 and later, for procedure parameters:
projectName and formalParameterName.

In releases earlier than ElectricCommander 5.0, for procedure parameters: projectName,
procedureName, and formalParameterName.

For workflow state parameters: projectName, formalParameterName, workflowDefinitionName
and stateDefinitionName

Response
None or status OK message.

ec-perl
syntax: $cmdr->createFormalParameter(<projectName>, <formalParameterName>,
{<optionals>});

For backward compatibility with releases earlier than ElectricCommander 5.0, you can also enter:

syntax: $cmdr->createFormalParameter(<projectName>, <procedureName>,
<formalParameterName>, {<optionals>});

Example
$cmdr->createFormalParameter("Sample Project", "Branch Name", {required => 1 });

Examples using parameters to create checkbox, radio button, and dropdown box
Checkbox example:

ElectricCommander

186

$ec->createFormalParameter(
$newProjectName,
"$buildprocedurename",
'CheckoutSources',
{
type => "checkbox",
required => 0,
defaultValue => 'true',
description => "If checked, update the sandbox from Subversion (turn

off for debugging only)."
}
);
$ec->setProperty("/projects/$newProjectName/procedures/$buildprocedurename/

ec_customEditorData/parameters/CheckoutSources/checkedValue", "true");
$ec->setProperty("/projects/$newProjectName/procedures/$buildprocedurename/

ec_customEditorData/parameters/CheckoutSources/uncheckedValue", "false");
$ec->setProperty("/projects/$newProjectName/procedures/$buildprocedurename/

ec_customEditorData/parameters/CheckoutSources/initiallyChecked", "0");

Radio button example:

$ec->createFormalParameter(
$newProjectName,
"$buildprocedurename",
'BuildType',
{
type =>"radio",
required => 1,
defaultValue => 'Continuous',
description => "Select type of build"
}
);
$ec->setProperty("/projects/$newProjectName/procedures/$buildprocedurename/

ec_customEditorData/parameters/BuildType/options/optionCount", "2");
$ec->setProperty("/projects/$newProjectName/procedures/$buildprocedurename/

ec_customEditorData/parameters/BuildType/options/type", "list");
$ec->setProperty("/projects/$newProjectName/procedures/$buildprocedurename/

ec_customEditorData/parameters/BuildType/options/option1/text", "one");
$ec->setProperty("/projects/$newProjectName/procedures/$buildprocedurename/

ec_customEditorData/parameters/BuildType/options/option1/value", "1");
$ec->setProperty("/projects/$newProjectName/procedures/$buildprocedurename/

ec_customEditorData/parameters/BuildType/options/option2/text", "two");
$ec->setProperty("/projects/$newProjectName/procedures/$buildprocedurename/

ec_customEditorData/parameters/BuildType/options/option2/value", "2");

Dropdownmenu example:

$ec->createFormalParameter(
$newProjectName,
"$buildprocedurename",
'BuildType',
{
type =>"dropdown",
required => 1,
defaultValue => 'Continuous',
description => "Select type of build"
}
);

API Commands - Parameter Management

187

$ec->setProperty("/projects/$newProjectName/procedures/$buildprocedurename/
ec_customEditorData/parameters/BuildType/options/optionCount", "2");

$ec->setProperty("/projects/$newProjectName/procedures/$buildprocedurename/
ec_customEditorData/parameters/BuildType/options/select", "list");

$ec->setProperty("/projects/$newProjectName/procedures/$buildprocedurename/
ec_customEditorData/parameters/BuildType/options/option1/text", "one");

$ec->setProperty("/projects/$newProjectName/procedures/$buildprocedurename/
ec_customEditorData/parameters/BuildType/options/option1/value", "1");

$ec->setProperty("/projects/$newProjectName/procedures/$buildprocedurename/
ec_customEditorData/parameters/BuildType/options/option2/text", "two");

$ec->setProperty("/projects/$newProjectName/procedures/$buildprocedurename/
ec_customEditorData/parameters/BuildType/options/option2/value", "2");

ectool
For procedure parameters

syntax: ectool createFormalParameter <projectName> <formalParameterName> ...

For backward compatibility with releases earlier than ElectricCommander 5.0, you can also enter:

syntax:ectool createFormalParameter <projectName> <procedureName>
<formalParameterName> ...

Example
ectool createFormalParameter "Sample Project" "Branch Name" --required 1

For workflow state parameters

syntax: ectool createFormalParameter --formalParameterName <name>
--projectName <name> --workflowDefinitionName <name> --stateDefinitionName <name>

Back to Top

deleteActualParameter
Deletes an actual parameter.

You must specify a projectName, procedureName, stepName, and actualParameterName.

Arguments Descriptions

actualParameterName The name of the actual parameter you want to delete.

procedureName The name of the procedure that contains the step with this
parameter.

projectName The name of the project that contains this actual parameter.

scheduleName The name of the schedule containing the actual parameter.

ElectricCommander

188

Arguments Descriptions

stateDefinitionName The name of the state definition.

stepName The name of the step that contains this actual parameter you want
to delete.

transitionDefinitionName The name of the transition definition.

workflowDefinitionName The name of the workflow definition.

Positional arguments
projectName, procedureName, stepName, actualParameterName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteActualParameter(<projectName>, <procedureName>, <stepName>,
 <actualParameterName>);

Example
$cmdr->deleteActualParameter('Sample Project', 'CallSub', 'Step1', 'Different Par
m');

ectool
syntax: ectool deleteActualParameter <projectName> <procedureName> <stepName>
 <actualParameterName>

Example
ectool deleteActualParameter "Sample Project" "CallSub" "Step1" "Different Parm"

Back to Top

deleteFormalParameter
Deletes a formal parameter.

You must specify projectNameand formalParameterName.

Arguments Descriptions

formalParameterName The name of the formal parameter you want to delete.

API Commands - Parameter Management

189

Arguments Descriptions

procedureName

The name of the procedure that contains this parameter.

Note: In releases earlier than ElectricCommander 5.0,
procedureName is required. In ElectricCommander 5.0 and
later and in ElectricFlow 5.0 and later, procedureName is
optional.

projectName The name of the project that contains the procedure/parameter you
want to delete.

stateDefinitionName The name of the state definition.

workflowDefinitionName The name of the workflow definition.

Positional arguments

In ElectricCommander 5.0 and later and in ElectricFlow 5.0 and later, projectName and
formalParameterName.

In releases earlier than ElectricCommander 5.0, projectName, procedureName, and
formalParameterName.

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteFormalParameter(<projectName>, <formalParameterName>);

For backward compatibility with releases earlier than ElectricCommander 5.0, you can also enter:

syntax:$cmdr->deleteFormalParameter(<projectName>, <procedureName>,
<formalParameterName>);

Example
$cmdr->deleteFormalParameter("Sample Project", "Build Name");

ectool
syntax: ectool deleteFormalParameter <projectName> <formalParameterName>

For backward compatibility with releases earlier than ElectricCommander 5.0, you can also enter:

syntax:ectool deleteFormalParameter <projectName> <procedureName>
<formalParameterName>

Example
ectool deleteFormalParameter "Sample Project" "Build Name"

Back to Top

ElectricCommander

190

detachParameter
Detaches a formal parameter from a step.

You must specify projectName, procedureName, stepName, and formalParameterName.

Arguments Descriptions

formalParameterName The name of the parameter to detach.

procedureName The name of the procedure that contains this parameter.

projectName The name of the project that contains this parameter.

stepName The name of the step where this parameter is currently attached.

Positional arguments
projectName, procedureName, stepName, formalParameterName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->detachParameter(<projectName>, <procedureName>, <stepName>,
 <formalParameterName>);

Example
$cmdr-> detachParameter("Test Proj", "Run Build", "Get Sources", "SCM Credential");

ectool
syntax: ectool detachParameter <projectName> <procedureName> <stepName>
 <formalParameterName>

Example
ectool detachParameter "Test Proj" "Run Build" "Get Sources" "SCM Credential"

Back to Top

getActualParameter
Retrieves an actual parameter by its name. For more information about parameters, click here.

You must specify an actualParameterName. If you need actual parameters on a step, the following 3
arguments
must be used together to specify a step: projectName, procedureName, and stepName.

API Commands - Parameter Management

191

Arguments Descriptions

actualParameterName The name of the actual parameter.

applicationName The name of the application, if the actual parameter is on an
application process step; must be unique among all projects.

componentName The name of the component, if the actual parameter is on a
component process step.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId
The unique identifier for a job step, assigned automatically when
the job step is created. Supply this argument to query a
subprocedure call to the job step's parameter.

procedureName The name of the procedure to query for the procedure step's
parameter.

processName The name of the process, if the actual parameter is on a process
step.

processStepName The name of the process step, if the actual parameter is on a
process step.

projectName The name of the project to query for a schedule or procedure
step's parameter.

scheduleName The name of the schedule to query for the schedule's parameter.

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step to query for the step's parameter.

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

Positional arguments
actualParameterName

Response
One actualParameter element.

ElectricCommander

192

ec-perl
syntax: $cmdr->getActualParameter(<actualParameterName>, {...});

Example
$cmdr->getActualParameter("Extra Parm",

{"projectName" => "Sample Project",
"procedureName" => "CallSub",

"stepName" => "Step1"});

ectool
syntax: ectool getActualParameter <actualParameterName> ...

Example
getActualParameter "Extra Parm" --projectName "Sample Project"
--procedureName "CallSub" --stepName "Step1"

Back to Top

getActualParameters
Retrieves all actual parameters from a job, job step, schedule, or step. For more information about parameters,
click here.

You must specify object locators to find the parameter. If finding parameters on a step, you must use
projectName,
procedureName, and stepName to specify a step.

Arguments Descriptions

applicationName The name of the application, if the actual parameter is on an
application process step; must be unique among all projects.

componentName The name of the component, if the actual parameter is on a
component process step.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a
job name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

projectName The name of the project containing these parameters.

procedureName The name of the procedure containing these parameters.

processName The name of the process, if the actual parameter is on a process
step.

processStepName The name of the process step, if the actual parameter is on a
process step.

API Commands - Parameter Management

193

Arguments Descriptions

scheduleName The name of the schedule containing parameters.

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step containing parameters.

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

Positional arguments
Arguments to locate the parameter, beginning with the top-level object locator.

Response
Zero or more actualParameter elements.

ec-perl
syntax: $cmdr->getActualParameters{{...});

Example
$cmdr-> getActualParameters({"projectName" => "Sample Project",
"procedureName" => "CallSub",

"stepName" => "Step1"});

ectool
syntax: ectool getActualParameters ...

Example
ectool getActualParameters --projectName "Sample Project"
--procedureName "CallSub" --stepName "Step1"

Back to Top

getFormalParameter
Retrieves a formal parameter by its name.

You must specify projectName and formalParameterName.

ElectricCommander

194

Arguments Descriptions

formalParameterName The name of the formal parameter.

procedureName

The name of the procedure containing the formal parameter.

Note: In releases earlier than ElectricCommander 5.0,
procedureName is required. In ElectricCommander 5.0 and
later and in ElectricFlow 5.0 and later, procedureName is
optional.

projectName The name of the project containing the procedure.

stateDefinitionName The name of the state definition.

stateName The name of the state.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

Positional arguments
In ElectricCommander 5.0 and later and in ElectricFlow 5.0 and later, projectName and
formalParameterName.

In releases earlier than ElectricCommander 5.0, projectName, procedureName, and
formalParameterName.

Response
One formalParameter element.

ec-perl
syntax: $cmdr->getFormalParameter(<projectName>, <formalParameterName>);

For backward compatibility with releases earlier than ElectricCommander 5.0, you can also enter:

syntax:$cmdr->getFormalParameter(<projectName>, <procedureName>,
<formalParameterName>);

Example
$cmdr->getFormalParameter("Test", "Get Sources");

ectool
syntax: ectool getFormalParameter<projectName> <formalParameterName>

For backward compatibility with releases earlier than ElectricCommander 5.0, you can also enter:

syntax:ectool getFormalParameter<projectName> <procedureName> <formalParameterName>

Example
ectool getFormalParameter Test "Get Sources"

Back to Top

API Commands - Parameter Management

195

getFormalParameters
Retrieves all formal parameters from a procedure, schedule, or step.

You must specify locator arguments to identify a procedure, schedule, or subprocedure step. If the locators
identify a schedule or step, the formal parameters of the called procedure are returned.

Arguments Descriptions

procedureName The name of the procedure.
Also requires the projectName

projectName The name of the project containing the object whose parameters
are being retrieved.

scheduleName The name of the schedule.
Also requires the projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step.
Also requires the projectName and procedureName

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

Positional arguments
Arguments to locate the formal parameter, beginning with the top-level object locator.

Response
An XML stream containing zero or more formalParameter elements.

ec-perl
syntax: $cmdr->getFormalParameters(<projectName>, {<optionals>});

Example
$cmdr->getFormalParameters("Test", {procedureName => "Build"});

ectool
syntax: ectool getFormalParameters <projectName> ...

Example
getFormalParameters Test --procedureName Build

Back to Top

ElectricCommander

196

modifyActualParameter
Modifies an existing actual parameter. An actual parameter is a name/value pair passed to a subprocedure.
This command supports renaming the actual parameter and setting its value.
For more information about parameters, click here.

Arguments Descriptions

actualParameterName The name of the actual parameter to modify.

newName Supply a name of your choice to rename the parameter.

procedureName The name of the procedure containing the step with this
parameter.

projectName The name of the project containing this parameter.

scheduleName The name of the schedule.

stateDefinitionName The name of the state definition.

stepName The name of the step containing this parameter.

transitionDefinitionName The name of the transition definition.

value
Changes the current value on an actual parameter. This value is
passed to the subprocedure as the value of the matching formal
parameter.

workflowDefinitionName The name of the workflow definition.

Response
None or a status OK message.

ec-perl
syntax: $cmdr->modifyActualParameter(<projectName>, <procedureName>, <stepName>,
 <actualParameterName>, {<optionals>});

Example
$cmdr->modifyActualParameter("Sample Project", "CallSub", "Step1", "Extra Parm",

{newName => "myParm"});

ectool
syntax: ectool modifyActualParameter <projectName> <procedureName> <stepName>
 <actualParameterName> ...

API Commands - Parameter Management

197

Example
ectool modifyActualParameter "Sample Project" "CallSub" "Step1" "Extra Parm"

--newName "Different Parm"

Back to Top

modifyFormalParameter
Modifies an existing formal parameter.

Arguments Descriptions

defaultValue This value is used for he formal parameter if one is not supplied by
the caller.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

expansionDeferred <Boolean flag - 0|1|true|false> Default is "false," which
means the formal parameter is expanded immediately.

formalParameterName The name for this formal parameter. Used when the procedure is
invoked to specify a value for the parameter.

newName Supply any name of your choice to rename the parameter.

procedureName

The name of the procedure containing this parameter.

Note: In releases earlier than ElectricCommander 5.0,
procedureName is required. In ElectricCommander 5.0 and
later and in ElectricFlow 5.0 and later, procedureName is
optional.

projectName The name of the project containing this parameter.

required
<Boolean flag - 0|1|true|false> If set to 1, this value indicates
whether a non-blank value must be supplied when calling the
procedure.

stateDefinitionName The name of the state definition.

type

type can be any string value. Used primarily by the web interface
to represent custom form elements. However, if "credential" is the
string value, the server will expect a credential as the parameter
value.

workflowDefinitionName The name of the workflow definition.

ElectricCommander

198

Positional arguments
In ElectricCommander 5.0 and later and in ElectricFlow 5.0 and later, for procedure parameters:
projectName and formalParameterName.

In releases earlier than ElectricCommander 5.0, for procedure parameters: projectName,
procedureName, and formalParameterName.

For workflow state parameters: projectName, formalParameterName, workflowDefinitionName
and stateDefinitionName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->modifyFormalParameter(<projectName>, <formalParameterName>,
{<optionals>});

For backward compatibility with releases earlier than ElectricCommander 5.0, you can also enter:

syntax:$cmdr->modifyFormalParameter(<projectName>, <procedureName>,
<formalParameterName>, {<optionals>});

Example
$cmdr->modifyFormalParameter("Sample Project", "Branch Name",

{defaultValue => "main"});

ectool
For procedure parameters:

syntax: ectool modifyFormalParameter <projectName> <formalParameterName> ...

For backward compatibility with releases earlier than ElectricCommander 5.0, you can also enter:

syntax: ectool modifyFormalParameter <projectName> <procedureName>
<formalParameterName> ...

Example
ectool modifyFormalParameter "Sample Project" "Branch Name"

--defaultValue main

For workflow state parameters:

syntax: ectool modifyFormalParameter --formalParameterName <name>
--projectName <name> --workflowDefinitionName <name> --stateDefinitionName <name>

Back to Top

API Commands - Plugin Management

199

API Commands - Plugin Management

deletePlugin
getPlugin
getPlugins
installPlugin
modifyPlugin
promotePlugin
uninstallPlugin

deletePlugin
Deletes an existing plugin object without deleting the associated project or files.

You must specify a pluginName.

Arguments Descriptions

pluginName The name of the plugin you want to delete.

Positional arguments
pluginName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deletePlugin(<pluginName>);

Example
$cmdr->deletePlugin("TheWidget-1.0");

ectool
syntax: ectool deletePlugin <pluginName>

Example
ectool deletePlugin TheWidget-1.0

Back to Top

getPlugin
Retrieves an installed plugin.

You must specify the pluginName.

ElectricCommander

200

Arguments Descriptions

pluginName
The name of the plugin to find. If the name is specified without a
version number, the currently promoted version is returned if
possible.

Positional arguments
pluginName

Response
One plugin element, which includes the plugin ID, name, time created, label, owner, key,
version, and more.

ec-perl
syntax: $cmdr->getPlugin(<pluginName>);

Example
$cmdr->getPlugin("TheWidget");

ectool
syntax: ectool getPlugin <pluginName>

Example
ectool getPlugin TheWidget

Back to Top

getPlugins
Retrieves all installed plugins.

Arguments Descriptions

None

Positional arguments
None

Response
Zero or more plugin elements.

ec-perl
syntax: $cmdr->getPlugins();

Example
$cmdr->getPlugins();

API Commands - Plugin Management

201

ectool
syntax: ectool getPlugins

Example
ectool getPlugins

Back to Top

installPlugin
Installs a plugin from a JAR file. Extracts the JAR contents on the server and creates a project and a plugin.

You must specify the url.

Arguments Descriptions

force
<Boolean flag - 0|1|true|false> Specifying false causes an
existing plugin with the same key and version to be overwritten
with the new plugin contents, otherwise an error is returned.

url

The location of the plugin JAR file to install. If the location refers to
a file on the client machine, the file will be uploaded to the server.
If the location refers to a remote accessible file (for example, via an
http://url), the server will download it. If the location is a file:
reference, the file will be read directly from the specified location
on the server’s file system.

Positional arguments
url

Response
One plugin element.

ec-perl
syntax: $cmdr->installPlugin(<url>, {...});

Example
$cmdr->installPlugin("./myPlugin.jar")

ectool
syntax: ectool installPlugin <url> ...

Example
ectool installPlugin ./myPlugin.jar

Back to Top

ElectricCommander

202

modifyPlugin
Modifies an existing plugin.

Note: Some plugin attributes available on the Plugins web page are not available in any of the plugin-related
APIs.
Because some plugin meta data comes from the plugin.xml file, the web server can access this data, but the
Commander
server cannot. Thus, the Plugin Manager, run in the web server context, provides additional information and
functionality.

You must specify the pluginName.

Arguments Descriptions

author The author of the plugin.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

label The name of the plugin as displayed on the Plugins web page.

pluginName
The name of the plugin to modify. If the name is specified without a
version number, the currently promoted version is used if possible.

Positional arguments
pluginName

Response
One plugin element.

ec-perl
syntax: $cmdr->modifyPlugin(<pluginName>, {...});

Example
$cmdr->modifyPlugin('TheWidget', {description => "new description"});

ectool
syntax: ectool modifyPlugin <pluginName> ...

Example
ectool modifyPlugin TheWidget --description "new description"

Back to Top

API Commands - Plugin Management

203

promotePlugin
Sets the promoted flag on a plugin. Only one version of a plugin can be promoted at a time, so setting the
promoted flag to "true" on one version sets the flag to false on all other plugins with the same key. The
promoted version is the one resolved by an indirect reference of the form $[/plugins/<key>] or a plugin
name argument without a specified version.

You must specify the pluginName.

Arguments Descriptions

pluginName
The name of the plugin to promote. If the name is specified without
a version number, the currently promoted version is used if
possible.

promoted

<Boolean flag - 0|1|true|false> The new value of the
promoted flag for the specified plugin. Default is "true", which
means the plugin will be promoted. If you want to demote the
plugin, use the value of "0" or false.

Positional arguments
pluginName

Response
One plugin element, which includes the plugin ID, name, time created, label, owner, key, version,
project name, and more.

ec-perl
syntax: $cmdr->promotePlugin(<pluginName>, {<optionals});

Example
$cmdr->promotePlugin("TheWidget-1.0");

ectool
syntax: ectool promotePlugin <pluginName> ...

Example
ectool promotePlugin TheWidget-1.0

Back to Top

uninstallPlugin
Uninstalls a plugin, deleting the associated project and any installed files.

You must specify the pluginName.

ElectricCommander

204

Arguments Descriptions

pluginName
The name of the plugin to uninstall. If the name is specified without
a version number, the currently promoted version is used if
possible.

timeout The maximum amount of time to spend waiting for this operation to
complete.

Positional arguments
pluginName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->uninstallPlugin(<pluginName>, {<optionals>});

Example
$cmdr->uninstallPlugin("TheWidget-1.0");

ectool
syntax: ectool uninstallPlugin <pluginName> ...

Example
ectool uninstallPlugin TheWidget-1.0

Back to Top

API Commands - Procedure Management

205

API Commands - Procedure Management

createProcedure
createStep
deleteProcedure
deleteStep
getProcedure
getProcedures
getStep
getSteps
modifyProcedure
modifyStep
moveStep

createProcedure
Creates a new procedure for an existing project.

You must specify projectName and procedureName.

Arguments Descriptions

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

jobNameTemplate Template used to determine the default name of jobs launched
from a procedure.

procedureName The name you define for this procedure. You can use any name of
your choice.

projectName The name of the project that contains this procedure.

resourceName The name of a resource or pool to use as the default for steps run
by this procedure.

ElectricCommander

206

Arguments Descriptions

timeLimit

If no time limit was specified on the calling step, time limits are
copied to the calling step from the procedure. If the procedure is
called from runProcedure (or a schedule), the time limit acts as a
global job timeout.
The "timer" for the procedure starts as soon as the calling step/job
becomes runnable (all preconditions are satisfied).

timeLimitUnits Time limit units are hours|minutes|seconds

workspaceName The name of the workspace to use as the default for steps run by
this procedure.

Positional arguments
projectName, procedureName

Response
None or status OK message.

ec-perl
syntax: $cmdr->createProcedure(<projectName>, <procedureName>, {<optionals>});

Example
$cmdr->createProcedure("Test Proj", "Run Build", {resourceName => "Test Resourc
e"});

ectool
syntax: ectool createProcedure <projectName> <procedureName> ...

Example
ectool createProcedure "Test Proj" "Run Build" --resourceName "Test Resource"

Back to Top

createStep
Use this command to create a new procedure step.

Fundamentally, ElectricCommander supports three types of steps:

l Command Step - the step executes a command or script under the control of a shell program.

l Subprocedure Step - the step invokes another Commander procedure. In this case, the step will not
complete
until all subprocedure steps have completed.

l Custom Step

You must specify a projectName, procedureName, and stepName.

API Commands - Procedure Management

207

Arguments Descriptions

actualParameter

Specifies the values to pass as parameters to the called
procedure. Each parameter value is specified with an
actualParameterName and a value. The
actualParameterNamemust match the name of a formal
parameter on the called procedure.
For more information about parameters, click here.

alwaysRun

If set to 1, indicates this step will run even if the job is aborted
before the step completes. A useful argument for running a
"cleanup" step that should run whether the job is successful or not.
The value for alwaysRun is a <Boolean flag -0|1|true|false>.
Defaults to "false".

broadcast

Use this flag to run the same step on several resources at the
same time. The step is "broadcast" to all resources listed in the
resourceName argument.
The broadcast value = <Boolean flag -0|1|true|false>. This
argument is applicable only to command steps. Defaults to "false".

command The command to run. This argument is applicable to command
steps only.

commandFile

This option is supported only in Perl and ectool bindings - it is
not a part of the XML protocol.
Contents of the command file is read and stored in the "command"
field. This is an alternative argument for command and is useful if
the "command" field spans multiple lines. The commandFile value
is the actual command file text. This argument is applicable to
command steps only.

condition

If empty or non-zero, the step will run. If set to "0", the step is
skipped. A useful setting during procedure development or when
re-running a job that has already completed some of the steps.
Also, this argument is useful for conditional execution of steps
based on properties set by earlier steps.

credentialName

The credential to use for impersonation on the agent.
credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

ElectricCommander

208

Arguments Descriptions

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

errorHandling

Determines what happens to the procedure if the step fails:

l failProcedure - The current procedure continues, but the
overall
status is error (default).

l abortProcedure - Aborts the current procedure, but
allows
already-running steps in the current procedure to complete.

l abortProcedureNow - Aborts the current procedure and
terminates running steps in the current procedure.

l abortJob - Aborts the entire job, terminates running steps,
but allows alwaysRun steps to run.

l abortJobNow - Aborts the entire job and terminates all
running steps, including alwaysRun steps.

l ignore - Continues as if the step succeeded.

exclusive

If set to 1, indicates this step should acquire and retain this
resource exclusively. The value for exclusive is a <Boolean flag
-0|1|true|false>. Defaults to "false".
Note: Setting exclusive, sets exclusiveMode to "job".

exclusiveMode

Use one of the following options:

l None - the "default", which does not retain a resource.

l Job - keeps the resource for the duration of the job. No
other job can use this resource, regardless of its step limit,
until this job completes or "Release Exclusive" is used in a
step. Future steps for this job will use this resource in
preference to other resources--if this resource meets the
needs of the steps and its step limit is not exceeded.

l Step - keeps the resource for the duration of the step.

l Call - keeps the resource for the duration of the procedure
that called this step, which is equivalent to 'job' for top level
steps.

logFileName A custom log file name produced by running the step. By default,
ElectricCommander assigns a unique name for this file.

parallel
If set, indicates this step should run at the same time as adjacent
steps marked to run as parallel also. The value for parallel is a
<Boolean flag -0|1|true|false>. Defaults to "false".

API Commands - Procedure Management

209

Arguments Descriptions

postProcessor

The name of a program to run after a step completes. This program
looks at the step output to find errors and warnings. Commander
includes a customizable program called "postp" for this purpose.
The value for postProcessor is a command string for invoking a
post-processor program in the platform shell for the resource (cmd
for Windows, sh for UNIX).

precondition

By default, if the step has no precondition, it will run when
scheduled. Set this property to make a step wait until one or more
dependent conditions are met. When a job step is eligible to
transition from pending to runnable, a precondition is evaluated.
A precondition is a fixed text or text embedding property reference
that is evaluated to TRUE or FALSE. An empty string, a \"0\" or
\"false\" is interpreted as FALSE. Any other result string is
interpreted as TRUE. The step will block until the precondition is
TRUE.

Precondition example:
Assume we defined these 4 steps:

1. Build object files and executables

2. Build installer

3. Run unit tests

4. Install bits on test system

Step 1 is an ordinary serial step.
Steps 2 and 3 can run in parallel because they depend only on
step 1's completion.
Step 4 depends on step 2, but not step 3.

You can achieve optimal step execution order with
preconditions:

l Make steps 2-4 run in parallel.

l Step 2 needs a job property set at the end of its step to
indicate step 2 is completing
(/myJob/buildInstallerCompleted=1).

l Set a precondition in step 4:
$[/myJob/buildInstallerCompleted]

procedureName The name of the procedure that will contain this step.

projectName The name of the project that contains the procedure where you are
adding a new step.

releaseExclusive

<Boolean flag - 0|1|true|false> Declares whether or not this
step will release its resource, which is currently held exclusively.
Note: Setting this flag to "true" is the same as setting
releaseMode to release.

ElectricCommander

210

Arguments Descriptions

releaseMode

Use one of the following options:

l None - the "default" - no action if the resource was not
previously marked as "retain".

l Release - releases the resource at the end of this step. If
the resource for the step was previously acquired with
"Retain exclusive" (either by this step or some preceding
step), the resource exclusivity is canceled at the end of this
step. The resource is released in the normal way so it may
be acquired by other jobs.

l Release to job - allows a step to promote a "step
exclusive" resource to a Job exclusive resource.

resourceName The name of the resource you want this step to use.

shell

Where shell is the name of a program used to execute commands
contained in the "command" field. The name of a temporary file
containing commands will be appended to the end of this
invocation line. Normally, this file is a command shell, but it can be
any other command line program. The default is to use the
standard shell for the platform it runs on (cmd for Windows, sh for
UNIX). This is applicable to command steps only.

stepName The name of the new step you are creating. You can use any
name of your choice.

subprocedure
The name of the nested procedure to call when this step runs. If a
subprocedure is specified, do not include the command or
commandFile options.

subproject
If a subprocedure argument is used, this is the name of the
project where that subprocedure is found. By default, the current
project is used.

timeLimit

The maximum length of time the step is allowed to run. After the
time specified, the step will be aborted.
The time limit is specified in units that can be hours, minutes, or
seconds.

timeLimitUnits Specify hours|minutes|seconds for time limit units.

workingDirectory

The Commander agent sets this directory as the “current working
directory,” when running the command contained in the step. If no
working directory is specified in the step, Commander uses the
directory it created for the job in the Commander workspace as the
working directory.
Note: If running a step on a proxy resource, this directory must
exist on the proxy target.

API Commands - Procedure Management

211

Arguments Descriptions

workspaceName The name of the workspace where this step's log files will be
stored.

Positional arguments
projectName, procedureName, stepName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->createStep(<projectName>, <procedureName>, <stepName>,
{<optionals>});

Specifying most arguments to the Perl createStep API is fairly intuitive. Similar to any other API, key-value
pairs are specified in a hash argument for all optional parameters. However, specifying actual parameters is
a little
different because they are not arbitrary key-values characterizing the step. Actual parameters are key-
values
characterizing actual parameters to the step. See the following createStep request in XML:

<createStep>
 <projectName>MyProject</projectName>
 <procedureName>MyProcedure</procedureName>
 <stepName>Step1</stepName>
 <actualParameter>
 <actualParameterName>parm1</actualParameterName>
 <value>myval</value>
 </actualParameter>
 <actualParameter>
 <actualParameterName>parm2</actualParameterName>
 <value>val2</value>
 </actualParameter>
</createStep>

Each actual parameter key-value is under an <actualParameter> element, which is codified in the
optional
arguments hash in the Perl API like this:

{... => ..., actualParameter => [{actualParameterName => 'parm1', value =>
'myval'},

{actualParameterName => 'parm2', value => 'val2'}], ... => ...}

In other words, the value of the actualParameter key in the optional arguments hash is a list of hashes,
each
representing one actual parameter. If the subprocedure call only takes one actual parameter, the value of
the
actualParameter key can be specified as just the hash representing the one parameter:

actualParameter => {actualParameterName => 'parm1', value => 'myval'}

Example
$cmdr->createStep("Test Proj", "Run Build", "Common Cleanup", {subprocedure => "Del
ay",

ElectricCommander

212

actualParameter => {actualParameterName => 'Delay Time', value => '5'}});

ectool
syntax: ectool createStep <projectName> <procedureName> <stepName> ...

Specifying actual parameters in an ectool call is also different than specifying other arguments.
Specify each key-value as an equal-sign delimited value:

ectool createStep ... --actualParameter "Delay Time=5" "parm2=val2"

Note: If the parameter name or value contains spaces, quotes are needed.

Examples
ectool createStep "Test Proj" "Run Build" "Compile" --command "make all"

ectool createStep "Test Proj" "Run Build" "Common Cleanup" --subprocedure "Delay"
--actualParameter "Delay Time=5"

Back to Top

deleteProcedure
Deletes a procedure, including all steps.

You must specify a projectName and procedureName.

Arguments Descriptions

procedureName The name of the procedure you want to delete.

projectName The name of the project that contains this procedure.

Positional arguments
projectName, procedureName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteProcedure(<projectName>, <procedureName>);

Example
$cmdr->deleteProcedure("Test Proj", "Run Build");

ectool
syntax: ectool deleteProcedure <projectName> <procedureName>

Example
ectool deleteProcedure "Test Proj" "Run Build"

Back to Top

API Commands - Procedure Management

213

deleteStep
Deletes a step from a procedure.

You must specify projectName, procedureName, and stepName.

Arguments Descriptions

procedureName The name of the procedure that contains this step.

projectName The name of the project that contains this procedure/step.

stepName The name of the step you want to delete.

Positional arguments
projectName, procedureName, stepName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteStep(<projectName>, <procedureName>, <stepName>);

Example
$cmdr->deleteStep("Test Proj", "Run Build", "Compile");

ectool
syntax: ectool deleteStep <projectName> <procedureName> <stepName>

Example
ectool deleteStep "Test Proj" "Run Build" "Compile"

Back to Top

getProcedure
Finds a procedure by its name.

You must specify a projectName and a procedureName.

Arguments Descriptions

procedureName The name of the procedure you are retrieving.

projectName The name of the project containing the procedure to retrieve.

Positional arguments
projectName, procedureName

ElectricCommander

214

Response
One procedure element, which includes the procedure ID, name, time created, job name
template, owner, resource name, workspace name, project name, and more.

ec-perl
syntax: $cmdr->getProcedure(<projectName>, <procedureName>);

Example
$cmdr->getProcedure("Test Proj", "Run Build");

ectool
syntax: ectool getProcedure <projectName> <procedureName>

Example
ectool getProcedure "Test Proj" "Run Build"

Back to Top

getProcedures
Retrieves all procedures in one project.

You must specify the projectName.

Arguments Descriptions

projectName The name of the project containing the procedures to retrieve.

Positional arguments
projectName

Response
One or more procedure elements.

ec-perl
syntax: $cmdr->getProcedures(<projectName>);

Example
$cmdr->getProcedures("Test Proj");

ectool
syntax: ectool getProcedures <projectName>

Example
ectool getProcedures "Test Proj"

Back to Top

API Commands - Procedure Management

215

getStep
Retrieves a step from a procedure.

You must specify projectName, procedureName, and stepName.

Arguments Descriptions

procedureName The name of the procedure that contains the step.

projectName The name of the project where you want to find a step.

stepName The name of the step.

Positional arguments
projectName, procedureName, stepName

Response
One step element.

ec-perl
syntax: $cmdr->getStep(<projectName>, <procedureName>, <stepName>);

Example
$cmdr->getStep("Test Proj", "Run Build", "Compile");

ectool
syntax: ectool getStep <projectName> <procedureName> <stepName>

Example
ectool getStep "Test Proj" "Run Build" "Compile"

Back to Top

getSteps
Retrieves all steps in a procedure.

You must specify the projectName and procedureName.

Arguments Descriptions

procedureName The name of the procedure that contains the steps.

projectName The name of the project containing the procedure for the steps you
want to find.

ElectricCommander

216

Positional arguments
projectName, procedureName

Response
Zero or more step elements.

ec-perl
syntax: $cmdr->getSteps(<projectName>, <procedureName>);

Example
$cmdr->getSteps("Test Proj", "Run Build");

ectool
syntax: ectool getSteps <projectName> <procedureName>

Example
ectool getSteps "Test Proj" "Run Build"

Back to Top

modifyProcedure
Modifies an existing procedure.

You must specify projectName and procedureName.

Arguments Descriptions

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

jobNameTemplate Job name format for jobs created by running this procedure.

newName Supply any name of your choice to rename the procedure.

procedureName The name of the procedure to modify.

API Commands - Procedure Management

217

Arguments Descriptions

projectName The name of the project to modify.
Also requires procedureName

resourceName The name of the default resource where steps belonging to this
procedure will run. This name may be a resource pool name.

timeLimit

If no time limit was specified on the calling step, time limits are
copied to the calling step from the procedure. If the procedure is
called from runProcedure (or a schedule), the time limit acts as a
global job timeout.
The "timer" for the procedure starts as soon as the calling step/job
becomes runnable (all preconditions are satisfied).

timeLimitUnits Time limit units are hours|minutes|seconds

workspaceName The name of the default workspace where job output is stored.

Positional arguments
projectName, procedureName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->modifyProcedure(<projectName>, <procedureName>, {...});

Example
$cmdr->modifyProcedure("Test Proj", "Run Build", {resourceName =>

"Windows - Bldg. 11"});

ectool
syntax: ectool modifyProcedure <projectName> <procedureName> ...

Example
ectool modifyProcedure "Test Proj" "Run Build"

--resourceName "Windows - Bldg. 11"

Back to Top

modifyStep
Modifies an existing step.

You must specify projectName, procedureName, and stepName.

ElectricCommander

218

Arguments Descriptions

actualParameter

Specifies the values to pass as parameters to the called
procedure. Each parameter value is specified with an
actualParameterName and a value. The
actualParameterNamemust match the name of a formal
parameter on the called procedure.

alwaysRun

<Boolean flag - 0|1|true|false> If set to 1, indicates this step
will run even if the job is aborted before the step completes. A
useful argument for running a "cleanup" step that should run
whether the job is successful or not.

broadcast
<Boolean flag - 0|1|true|false> Use this flag to run the same
step on several resources at the same time. The step is
"broadcast" to all resources listed in the resourceName.

clearActualParameters <Boolean flag - 0|1|true|false> If set to true, all actual
parameters will be removed from the step.

command The step command.

commandFile

This option is supported only in Perl and ectool bindings - it is
not part of the XML protocol. The contents of the command file is
read and stored in the "command" field. This is an alternative
argument for command and is useful if the "command" field spans
multiple lines.

condition

If empty or non-zero, the step will run. If set to "0", the step is
skipped. A useful setting during procedure development or when
re-running a job that has already completed some of the steps.
Also, this argument is useful for conditional execution of steps
based on properties set by earlier steps.

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object's project.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

API Commands - Procedure Management

219

Arguments Descriptions

errorHandling

Determines what happens to the procedure if the step fails:
failProcedure - The current procedure continues, but the overall
status is error (default).

l abortProcedure - Aborts the current procedure, but
allows already-running steps in the current procedure to
complete.

l abortProcedureNow - Aborts the current procedure and
terminates running steps in the current procedure.

l abortJob - Aborts the entire job, terminates running steps,
but allows alwaysRun steps to run.

l abortJobNow - Aborts the entire job and terminates all
running steps, including alwaysRun steps.

l ignore - Continues as if the step succeeded.

exclusive

If set to 1, indicates this step should acquire and retain this
resource exclusively. The value for exclusive is a <Boolean flag
-0|1|true|false>. Defaults to "false".
Note: Setting exclusive, sets exclusiveMode to "job".

exclusiveMode

Use one of the following options:

l None - the "default", which does not retain a resource.

l Job - keeps the resource for the duration of the job. No
other job can use this resource, regardless of its step limit,
until this job completes or "Release Exclusive" is used in a
step. Future steps for this job will use this resource in
preference to other resources--if this resource meets the
needs of the steps and its step limit is not exceeded.

l Step - keeps the resource for the duration of the step.

l Call - keeps the resource for the duration of the procedure
that called this step, which is equivalent to 'job' for top level
steps.

logFileName A custom log file name produced by running the step. By default,
ElectricCommander assigns a unique name to this file.

newName Supply any name of your choice to rename the step.

parallel
<Boolean flag - 0|1|true|false> Indicates if this step should
run at the same time as adjacent steps marked to run as parallel
also.

ElectricCommander

220

Arguments Descriptions

precondition

By default, if the step has no precondition, it will run when
scheduled. Set this property to make a step wait until one or more
dependent conditions are met. When a job step is eligible to
transition from pending to runnable, a precondition is evaluated.
A precondition is a fixed text or text embedding property reference
that is evaluated to TRUE or FALSE. An empty string, a \"0\" or
\"false\" is interpreted as FALSE. Any other result string is
interpreted as TRUE. The step will block until the precondition is
TRUE.

Precondition example:
Assume we defined these 4 steps:

1. Build object files and executables

2. Build installer

3. Run unit tests

4. Install bits on test system

Step 1 is an ordinary serial step.
Steps 2 and 3 can run in parallel because they depend only on
step 1's completion.
Step 4 depends on step 2, but not step 3.

You can achieve optimal step execution order with
preconditions:

l Make steps 2-4 run in parallel.

l Step 2 needs a job property set at the end of its step to
indicate step 2 is completing
(/myJob/buildInstallerCompleted=1).

l Set a precondition in step 4:
$[/myJob/buildInstallerCompleted]

procedureName The name of the procedure containing the step to modify.
Also requires projectName

projectName The name of the project containing the step to modify.
Also requires procedureName

postProcessor

The name of a program to run (script) after a step completes. This
program looks at the step output to find errors and warnings.
ElectricCommander includes a customizable program called
"postp" for this purpose.

releaseExclusive

<Boolean flag - 0|1|true|false> Declares whether or not this
step will release its resource, which is currently held exclusively.
Note: Setting this flag to "true" is the same as setting
releaseMode to "release".

API Commands - Procedure Management

221

Arguments Descriptions

releaseMode

Use one of the following options:

l None - the "default" - no action if the resource was not
previously marked as "retain".

l Release - releases the resource at the end of this step. If
the resource for the step was previously acquired with
"Retain exclusive" (either by this step or some preceding
step), the resource exclusivity is canceled at the end of this
step. The resource is released in the normal way so it may
be acquired by other jobs.

l Release to job - allows a step to promote a Step
exclusive resource to a Job exclusive resource.

resourceName The name of the resource used by this step.

shell

Where shell is the name of a program used to execute commands
contained in the "command" field. The name of a temporary file
containing commands will be appended to the end of this
invocation line.
Normally, this file is a command shell, but it could be any other
command line program. The default is to use the standard shell for
the platform it runs on.

stepName The name of the step.
Also requires projectName and procedureName

subprocedure
The name of the nested procedure to call when this step runs. If a
subprocedure is specified, do not include the command or
commandField.

subproject
If a subprocedure argument is used, this is the name of the
project where that subprocedure is found.
By default, the current project is used.

timeLimit The maximum length of time the step is allowed to run. After the
time specified, the step will be aborted.

timeLimitUnits <hours|minutes|seconds>

workingDirectory

The Commander agent sets this directory as the "current working
directory," running the command contained in the step. If no
working directory is specified in the step, Commander uses the
directory it created for the job in the Commander workspace.

workspaceName The name of the workspace used by this step.

Positional arguments
projectName, procedureName, stepName

ElectricCommander

222

Response
None or a status OK message.

ec-perl
syntax: $cmdr->modifyStep(<projectName>, <procedureName>, <stepName>,
{<optionals>});

Example
$cmdr->modifyStep("Test Proj", "Run Build", "Compile", {commandFile => "tempfile.tx
t"});

ectool
syntax: ectool modifyStep <projectName> <procedureName> <stepName> ...

Example
ectool modifyStep "Test Proj" "Run Build" "Compile" --commandFile tempfile.txt

Back to Top

moveStep
Moves a step within a procedure.

You must specify projectName, procedureName, and stepName.

Arguments Descriptions

beforeStep
Moves the step (stepName) to position before the step "named" by
this option. If omitted, stepName is moved to the end of the list of
steps.

procedureName The name of the procedure containing the step to move.

projectName The name of the project containing the step to move.
Also requires procedureName

stepName The name of the step to move.
Also requires projectName and procedureName

Positional arguments
projectName, procedureName, stepName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->moveStep(<projectName>, <procedureName>, <stepName>, {<optionals>});

API Commands - Procedure Management

223

Example
$cmdr->moveStep("Test Proj", "Run Build", "Get Sources", {beforeStep => "Compil
e"});

ectool
syntax: ectool moveStep <projectName> <procedureName> <stepName> ...

Example
ectool moveStep "Test Proj" "Run Build" "Get Sources"

--beforeStep "Compile"

Back to Top

ElectricCommander

224

API Commands - Process
createProcess

deleteProcess

getProcess

getProcesses

modifyProcess

runProcess

createProcess
Creates a new process for an application or component.

Required Arguments

projectName

Description: Name of the project; must be unique among all projects.

Argument Type: String

processName

Description: Name of the process.

Argument Type: String

Optional Arguments

applicationName

Description: Name of the application, if the process is owned by an application; must be unique among
all projects.

Argument Type: String

componentApplicationName

Description: If specified, the component is scoped to this application, not the project.

Argument Type: String

componentName

Description: Name of the component, if the process is owned by a component.

Argument Type: String

credentialName

Description: Name of a credential to attach to this process.

Argument Type: String

description

API Commands - Process

225

Description: Comment text describing this object; not interpreted at all by the ElectricCommander
platform.

Argument Type: String

processType

Description: Defines the type of action performed by the process.

Argument Type: ProcessType

timeLimit

Description: Maximum amount of time that the step can execute; abort if it exceeds this time.

Argument Type: String

timeLimitUnits

Description: Units for the step- time limit: seconds, minutes, or hours.

Argument Type: TimeLimitUnits

workspaceName

Description: Name of the default workspace for this process.

Argument Type: String

Response
Returns a process component element.

ec-perl
Syntax:

$<object>->createProcess(<projectName>, <processName>, {<optionals>});

Example:

$ec->createProcess("default", "process1", {componentName => "VCScomponent"});

ectool
Syntax:

ectool createProcess <projectName> <processName> [optionals...]

Example:

ectool createProcess default newProcess --componentName VCScomponent

deleteProcess
Deletes an application or component process.

Required Arguments

projectName

Description: Name of the project; must be unique among all projects.

Argument Type: String

ElectricCommander

226

processName

Description: Name of the process.

Argument Type: String

Optional Arguments

applicationName

Description: Name of the application, if the process is owned by an application; must be unique among
all projects.

Argument Type: String

componentApplicationName

Description: If specified, the component is scoped to this application, not the project.

Argument Type: String

componentName

Description: Name of the component, if the process is owned by a component.

Argument Type: String

Response
None or a status OK message.

ec-perl
Syntax:

$<object>->deleteProcess(<projectName>, <processName>, {<optionals>});

Example:

$ec->deleteProcess("default", "newProcess",
{componentName => "Component1"});

ectool
Syntax:

ectool deleteProcess <projectName> <processName> [optionals...]

Example:

ectool deleteProcess default newProcess --componentName Component1

getProcess
Retrieves an application or component process.

Required Arguments

projectName

Description: Name of the project; must be unique among all projects.

Argument Type: String

processName

API Commands - Process

227

Description: Name of the process.

Argument Type: String

Optional Arguments

applicationName

Description: Name of the application, if the process is owned by an application; must be unique among
all projects.

Argument Type: String

componentApplicationName

Description: If specified, the component is scoped to this application, not the project.

Argument Type: String

componentName

Description: Name of the component, if the process is owned by a component.

Argument Type: String

Response
Retrieves the specified process element.

ec-perl
Syntax:

$<object>->getProcess(<projectName>, <processName>, {<optionals>});

Example:

$ec->getProcess("default", "newProcess", {componentName => "VCS"});

ectool
Syntax:

ectool getProcess <projectName> <processName> [optionals...]

Example:

ectool getProcess default newProcess --componentName VCScomponent

getProcesses
Retrieves all processes in an application or component.

Required Arguments

projectName

Description: Name of the project; must be unique among all projects.

Argument Type: String

Optional Arguments

applicationName

ElectricCommander

228

Description: Name of the application, if the process is owned by an application; must be unique among
all projects.

Argument Type: String

componentApplicationName

Description: Application name of the component, if the component is scoped to application.

Argument Type: String

componentName

Description: Name of the component, if the process is owned by a component.

Argument Type: String

Response
Retrieves zero or more process elements.

ec-perl
Syntax:

$<object>->getProcesses(<projectName>, {<optionals>});

Example:

$ec->getProcesses("default", {componentName => "VCS"});

ectool
Syntax:

ectool getProcesses <projectName> [optionals...]

Example:

ectool getProcesses default --componentName VCScomponent

modifyProcess
Modifies an existing process.

Required Arguments

projectName

Description: Name of the project; must be unique among all projects.

Argument Type: String

processName

Description: Name of the process.

Argument Type: String

Optional Arguments

applicationName

Description: Name of the application, if the process is owned by an application; must be unique among
all projects.

API Commands - Process

229

Argument Type: String

componentApplicationName

Description: If specified, the component is scoped to this application, not the project.

Argument Type: String

componentName

Description: Name of the component, if the process is owned by a component.

Argument Type: String

credentialName

Description: Name of a credential to attach to this process.

Argument Type: String

description

Description: Comment text describing this object; not interpreted at all by the ElectricCommander
platform.

Argument Type: String

newName

Description: New name for an existing object that is being renamed.

Argument Type: String

processType

Description: Defines the type of action performed by the process.

Argument Type: ProcessType

timeLimit

Description: Maximum amount of time that the step can execute; abort if it exceeds this time.

Argument Type: String

timeLimitUnits

Description: Units for step time limit: seconds, minutes, or hours.

Argument Type: TimeLimitUnits

workspaceName

Description: Name of the default workspace for this process.

Argument Type: String

Response
Retrieves an updated process element.

ec-perl
Syntax:

$<object>->modifyProcess (<projectName>, <processName>, {<optionals>});

ElectricCommander

230

Example:

$ec->modifyProcess("default", "newProcess", {componentName => "VCS",
newName => "VCScomponent", description => "An updated description"});

ectool
Syntax:

ectool modifyProcess <projectName> <processName> [optionals...]

Example:

ectool modifyProcess default newProcess --componentName VCScomponent
--newName VCS --description "A description"

runProcess
Runs the specified process.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

applicationName

Description: Name of the application that owns the process; must be unique among all applications in
the project.

Argument Type: String

processName

Description: Name of the application process.

Argument Type: String

tierMapName

Description: Name of the tier map used to determine where to run the process.

Argument Type: String

Optional Arguments

actualParameter

Description: Parameters passed as arguments to the process.

Argument Type: Map

destinationProject

Description: Project that will own the job.

Argument Type: String

priority

API Commands - Process

231

Description: Priority of the job.

Argument Type: JobPriority

validate

Description: Validates that the application process, tier map, and environment are well-defined and
valid before the running the application process. This argument defaults to true.

Argument Type: Boolean

Response
Returns new job ID.

ec-perl
Syntax:

$<object>->runProcess(<projectName>, <applicationName>, <processName>,
<tierMapName>, {<optionals>});

Example:

$ec->runProcess("default", "NewApp", "newProcess", "TierMap2",
{destinationProject => "deploy1"});

ectool
Syntax:

ectool runProcess <projectName> <applicationName> <processName> <tierMapName>
[optionals...]

Example:

ectool runProcess default NewApp newProcess TierMap2 --destinationProject
deploy1

ElectricCommander

232

API Commands - Process Dependency
createProcessDependency

deleteProcessDependency

getProcessDependencies

modifyProcessDependency

createProcessDependency
Creates a dependency between two process steps.

Required Arguments

projectName

Description: Name of the project; must be unique among all projects.

Argument Type: String

processName

Description: Name of the process.

Argument Type: String

processStepName

Description: Name of the process step.

Argument Type: String

targetProcessStepName

Description: Name of the target process step.

Argument Type: String

Optional Arguments

applicationName

Description: Name of the application, if the process is owned by an application; must be unique among
all projects.

Argument Type: String

branchCondition

Description: Condition of the branch.

Argument Type: String

branchConditionName

Description: Name of the branch condition.

Argument Type: String

branchConditionType

API Commands - Process Dependency

233

Description: Type of the branch condition.

Argument Type: BranchConditionType

branchType

Description: Type of the branch.

Argument Type: BranchType

componentApplicationName

Description: If specified, the component is scoped to this application not the project.

Argument Type: String

componentName

Description: Name of the component, if the process is owned by a component.

Argument Type: String

Response
Returns a process dependency element.

ec-perl
Syntax:

$<object>->createProcessDependency(<projectName>, <processName>,
<processStepName>, <targetProcessStepName>, {<optionals>});

Example:

$ec->createProcessDependency("default", "newProcess", "Step C", "Step D",
{componentName => "VCScomponent"});

ectool
Syntax:

ectool createProcessDependency <projectName> <processName> <processStepName>
<targetProcessStepName> [optionals...]

Example:

ectool createProcessDependency default newProcess "Step A" "Step "B"
--componentName VCScomponent

deleteProcessDependency
Deletes a dependency between two process steps.

Required Arguments

projectName

Description: Name of the project; must be unique among all projects.

Argument Type: String

processName

ElectricCommander

234

Description: Name of the process.

Argument Type: String

processStepName

Description: Name of the process step.

Argument Type: String

targetProcessStepName

Description: Name of the target process step.

Argument Type: String

Optional Arguments

applicationName

Description: Name of the application, if the process is owned by an application; must be unique among
all projects.

Argument Type: String

componentApplicationName

Description: If specified, the component is scoped to this application, not the project.

Argument Type: String

componentName

Description: Name of the component, if the process is owned by a component.

Argument Type: String

Response
None or a status OK message.

ec-perl
Syntax:

$<object>->deleteProcessDependency(<projectName>, <processName>,
<processStepName>, <targetProcessStepName>, {<optionals>});

Example:

$ec->deleteProcessDependency("default", "newProcess", "Step B", "Step C",
{componentName => "VCScomponent"});

ectool
Syntax:

ectool deleteProcessDependency <projectName> <processName> <processStepName>
<targetProcessStepName> [optionals...]

Example:

ectool deleteProcessDependency default newProcess "Step B" "Step C"
--componentName VCScomponent

API Commands - Process Dependency

235

getProcessDependencies
Retrieves all dependencies for a process.

Required Arguments

projectName

Description: Name of the project; must be unique among all projects.

Argument Type: String

processName

Description: Name of the process.

Argument Type: String

Optional Arguments

applicationName

Description: Name of the application, if the process is owned by an application; must be unique among
all projects.

Argument Type: String

componentApplicationName

Description: If specified, the component is scoped to this application, not the project.

Argument Type: String

componentName

Description: Name of the component, if the process is owned by a component.

Argument Type: String

Response
Retrieves zero or more process dependency elements.

ec-perl
Syntax:

$<object>->getProcessDependencies(<projectName>, <processName>,
{<optionals>});

Example:

$ec->getProcessDependencies("default", "newProcess",
{componentName => "VCScomponent"});

ectool
Syntax:

ectool getProcessDependencies <projectName> <processName> [optionals...]

Example:

ectool getProcessDependencies default newProcess --componentName VCScomponent

ElectricCommander

236

modifyProcessDependency
Modifies a dependency between two process steps.

Required Arguments

projectName

Description: Name of the project; must be unique among all projects.

Argument Type: String

processName

Description: Name of the process.

Argument Type: String

processStepName

Description: Name of the process step.

Argument Type: String

targetProcessStepName

Description: Name of the target process step.

Argument Type: String

Optional Arguments

applicationName

Description: Name of the application, if the process is owned by an application.

Argument Type: String

branchCondition

Description: Condition of the branch.

Argument Type: String

branchConditionName

Description: Name of the branch condition.

Argument Type: String

branchConditionType

Description: Type of the branch condition.

Argument Type: BranchConditionType

branchType

Description: Type of the branch.

Argument Type: BranchType

componentApplicationName

API Commands - Process Dependency

237

Description: If specified, the component is scoped to this application, not the project.

Argument Type: String

componentName

Description: Name of the component, if the process is owned by a component.

Argument Type: String

ec-perl
Syntax:

$<object>->modifyProcessDependency(<projectName>, <processName>, <processStep
Name>,
<targetProcessStepName>, {<optionals>});

Example:

$ec->modifyProcessDependency("default", "newProcess", "Step1", "StepA",
{componentName => "VCScomponent"});

ectool
Syntax:

ectool modifyProcessDependency <projectName> <processName> <processStepName>
<targetProcessStepName> [optionals...]

Example:

ectool modifyProcessDependency default newProcess Step1 StepA --componentName
VCScomponent

ElectricCommander

238

API Commands - Process Step
createProcessStep

deleteProcessStep

getProcessStep

getProcessSteps

modifyProcessStep

Note: Several of the following API commands contain context type optional arguments. For example, a step
command may reference either a procedure or component.

createProcessStep
Creates a new process step.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

processName

Description: Name of the process.

Argument Type: String

processStepName

Description: Name of the process step.

Argument Type: String

Optional Arguments

actualParameters

Description: Actual parameters (<var1>=<val1> [<var2>=<val2> ...) passed to an invoked subprocedure
or process.

Argument Type: Map

afterProcessStep

Description: If specified, the process step will be placed after the named process step.

Argument Type: String

applicationName

Description: Name of the application, if the process is owned by an application; must be unique among
all projects.

Argument Type: String

API Commands - Process Step

239

applicationTierName

Description: Application tier on which to run the step.

Argument Type: String

beforeProcessStep

Description: If specified, the process step will be placed before the named process step.

Argument Type: String

componentName

Description: Name of the component, if the process is owned by a component.

Argument Type: String

credentialName

Description: Name of the credential object.

Argument Type: String

description

Description: Comment text describing this object; not interpreted at all by the ElectricCommander
platform.

Argument Type: String

errorHandling

Description: Specifies error handling for this step.

Argument Type: ErrorHandling

includeCompParameterRef

Description: True if the actual parameters should be generated from component properties. Works for
artifact components only.

Argument Type: Boolean

processStepType

Description: Defines type of the process step.

Argument Type: ProcessStepType

subcomponent

Description: If referencing a component process, the name of the component.

Argument Type: String

subcomponentProcess

Description: If referencing a component process, the name of the component process.

Argument Type: String

subprocedure

Description: If referencing a procedure, the name of the procedure.

ElectricCommander

240

Argument Type: String

subproject

Description: If referencing a procedure, the name of the procedure's project.

Argument Type: String

timeLimit

Description: Maximum amount of time that the step can execute; abort if it exceeds this time.

Argument Type: String

timeLimitUnits

Description: Units for the step time limit: seconds, minutes, or hours.

Argument Type: TimeLimitUnits

workspaceName

Description: Name of the workspace.

Argument Type: String

Response
Returns a process step element.

ec-perl
Syntax:

$<object>->createProcessStep(<projectName>, <processName>,
<processStepName>, {<optionals>});

Example:

$ec->createProcessStep("default", "newProcess", "Step 1",
{componentName => "VCScomponent"});

ectool
Syntax:

ectool createProcessStep <projectName> <processName> <processStepName>
[optionals...]

Example:

ectool createProcessStep default newProcess "Step A"
--componentName VCScomponent

deleteProcessStep
Deletes an application or component process step.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

API Commands - Process Step

241

Argument Type: String

processName

Description: Name of the process.

Argument Type: String

processStepName

Description: Name of the process step.

Argument Type: String

Optional Arguments

applicationName

Description: Name of the application, if the process is owned by an application; must be unique among
all projects.

Argument Type: String

componentApplicationName

Description: If specified, the component is scoped to this application, not the project.

Argument Type: String

componentName

Description: Name of the component, if the process is owned by a component.

Argument Type: String

Response
None or a status OK message.

ec-perl
Syntax:

$<object>->deleteProcessStep (<projectName>, <processName>,
<processStepName>, {<optionals>});

Example:

$ec->deleteProcessStep ("default", "newProcess", "stepToDelete",
{componentName=> "VCScomponent"});

ectool
Syntax:

ectool deleteProcessStep <projectName> <processName> <processStepName>
[optionals...]

Example:

ectool deleteProcessStep default newProcess "stepToDelete"
--componentName VCScomponent

getProcessStep

ElectricCommander

242

Gets an application or component process step.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

processName

Description: The name of the process.

Argument Type: String

processStepName

Description: The name of the process step.

Argument Type: String

Optional Arguments

applicationName

Description: Name of the application, if the process is owned by an application; must be unique among
all projects.

Argument Type: String

componentApplicationName

Description: If specified, the component is scoped to this application, not the project.

Argument Type: String

componentName

Description: Name of the component, if the process is owned by a component.

Argument Type: String

Response
Retrieves the specified process step element.

ec-perl
Syntax:

$<object>->getProcessStep(<projectName>, <processName>, <processStepName>,
{<optionals>});

Example:

$ec->getProcessStep("default", "newProcess", "Step 1",
{componentName => "VCScomponent"});

ectool
Syntax:

ectool getProcessStep <projectName> <processName> <processStepName>
[optionals...]

Example:

API Commands - Process Step

243

ectool getProcessStep default newProcess "Step A"
--componentName VCScomponent

getProcessSteps
Retrieves all the process steps in an application or component process.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

processName

Description: Name of the process.

Argument Type: String

Optional Arguments

applicationName

Description: Name of the application, if the process is owned by an application; must be unique among
all projects.

Argument Type: String

componentApplicationName

Description: If specified, the component is scoped to this application, not the project.

Argument Type: String

componentName

Description: Name of the component, if the process is owned by a component.

Argument Type: String

Response
Retrieves zero or more process step elements.

ec-perl
Syntax:

$<object>->getProcessSteps(<projectName>, <processName>, {<optionals>});

Example:

$ec->getProcessSteps("default", "newProcess",
{componentName=> "VCScomponent"});

ectool
Syntax:

ectool getProcessSteps <projectName> <processName> [optionals...]

Example:

ElectricCommander

244

ectool getProcessSteps default newProcess --componentName VCScomponent

modifyProcessStep
Modifies an existing process step.

Required Arguments

projectName

Description: Name of the project; must be unique among all projects.

Argument Type: String

processName

Description: Name of the process.

Argument Type: String

processStepName

Description: Name of the process step.

Argument Type: String

Optional Arguments

actualParameters

Description: Actual parameters passed to an invoked subprocedure or process.

Argument Type: Map

afterProcessStep

Description: If specified, the process step will be placed after the named process step.

Argument Type: String

applicationName

Description: Name of the application, if the process is owned by an application; must be unique among
all projects.

Argument Type: String

applicationTierName

Description: Name of the application tier on which to run the step.

Argument Type: String

beforeProcessStep

Description: If specified, the process step will be placed before the named process step.

Argument Type: String

clearActualParameters

Description: True if the step should remove all actual parameters.

API Commands - Process Step

245

Argument Type: Boolean

componentApplicationName

Description: If specified, the component is scoped to this application not the project.

Argument Type: String

componentName

Description: Name of the component, if the process is owned by a component.

Argument Type: String

credentialName

Description: Name of the credential object.

Argument Type: String

description

Description: Comment text describing this object; not interpreted at all by the ElectricCommander
platform.

Argument Type: String

errorHandling

Description: Specifies error handling for this step.

Argument Type: ErrorHandling

includeCompParameterRef

Description: True if the actual parameters should be generated from component properties. Works for
artifact components only.

Argument Type: Boolean

newName

Description: New name for an existing object that is being renamed.

Argument Type: String

processStepType

Description: Defines type of the process step.

Argument Type: ProcessStepType

subcomponent

Description: If referencing a component process, the name of the component.

Argument Type: String

subcomponentApplicationName

Description: If referencing a component process, the name of the component application (if it has not
been scoped to a project).

Argument Type: String

ElectricCommander

246

subcomponentProcess

Description: If referencing a component process, the name of the component process.

Argument Type: String

subprocedure

Description: If referencing a procedure, the name of the procedure.

Argument Type: String

subproject

Description: If referencing a procedure, the name of the procedure's project.

Argument Type: String

timeLimit

Description: Maximum amount of time that the step can execute; abort if it exceeds this time.

Argument Type: String

timeLimitUnits

Description: Units for the step time limit: seconds, minutes, or hours.

Argument Type: TimeLimitUnits

workspaceName

Description: Name of the workspace.

Argument Type: String

Response
Retrieves an updated process step element.

ec-perl
Syntax:

$<object>->modifyProcessStep(<projectName>, <processName>,
<processStepName>, {<optionals>});

Example:

$ec->modifyProcessStep ("default", "newProcess", "Step 1",
{componentName => "VCScomponent", newName => "Step 2",
description => "A description"};

ectool
Syntax:

ectool modifyProcessStep <projectName> <processName> <processStepName>
[optionals...]

Example:

ectool modify ProcessStep newProcess "Step A"
--componentName VCScomponent --newName "Step B"
--description "A description"

API Commands - Project Management

247

API Commands - Project Management

createProject
deleteProject
getProject
getProjects
modifyProject

createProject
Creates a new project.

You must specify a projectName.

Arguments Descriptions

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

projectName This is any name of your choice for your new project.

resourceName The name of the resource to use as the default for steps run by
procedures in this project.

workspaceName The name of a workspace to use as the default for steps run by
procedures in this project.

Positional arguments
projectName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->createProject(<projectName>, {<optionals>});

ElectricCommander

248

Example
$cmdr->createProject("Test Proj", {workspaceName => "Test_WS"});

ectool
syntax: ectool createProject <projectName> ...

Example
ectool createProject "Test Proj" --workspaceName "Test WS"

Back to Top

deleteProject
Deletes a project, including all procedures, procedure steps, and jobs within that project.

You must specify a projectName.

Arguments Descriptions

projectName The name of the project you want to delete.

Positional arguments
projectName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteProject(<projectName>);

Example
$cmdr->deleteProject("Test Proj");

ectool
syntax: ectool deleteProject <projectName>

Example
ectool deleteProject "Test Proj"

Back to Top

getProject
Finds a project by its name.

You must specify a projectName.

API Commands - Project Management

249

Arguments Descriptions

projectName The name of the project you need to retrieve.

Positional arguments
projectName

Response
One project element.

ec-perl
syntax: $cmdr->getProject(<projectName>);

Example
$cmdr->getProject("Test Proj");

ectool
syntax: ectool getProject <projectName>

Example
ectool getProject "Test Proj"

Back to Top

getProjects
Retrieves all projects.

Arguments Descriptions

None

Positional arguments
None

Response
Zero or more project elements.

Note: This response includes all projects in the system, including plugin projects, which are not
 displayed on the Projects page in the web UI.

ec-perl
syntax: $cmdr->getProjects();

Example
$cmdr->getProjects();

ElectricCommander

250

ectool
syntax: ectool getProjects

Example
ectool getProjects

Back to Top

modifyProject
Modifies an existing project.

You must specify a projectName.

Arguments Descriptions

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

newName Supply any name of your choice to rename the project.

projectName The name of the project you want to modify.

resourceName The name of the resource used as the default for steps run by
procedures in this project.

workspaceName The name of the default workspace where job output is stored.

Positional arguments
projectName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->modifyProject(<projectName>, {...});

API Commands - Project Management

251

Example
$cmdr->modifyProject("Test Proj", {description => "A very simple project"});

ectool
syntax: ectool modifyProject <projectName> ...

Example
ectool modifyProject "Test Proj" --description "A very simple project"

Back to Top

ElectricCommander

252

API Commands - Property Management

createProperty
deleteProperty
evalScript
expandString
getProperties
getProperty
incrementProperty
modifyProperty
setProperty

createProperty
Creates a regular string or nested property sheet using a combination of property path and context.

You must specify a propertyName and locator arguments to define where (or on which object) you are creating
this property.

Note: The name "properties" is NOT a valid property name.

Arguments Descriptions

propertyName
The name of the property to create. It may be a relative or absolute
property path, including "my" paths such as
"/myProject/prop1".

applicationName The name of the application container of the property sheet which
owns the property; must be unique among all projects.

applicationTierName The name of the application tier container of the property sheet
which owns the property.

artifactName The name of the artifact container of the property sheet which
owns the property.

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name—the Commander server interprets
either name form correctly.

componentName The name of the component container of the property sheet which
owns the property.

configName The name of the emailConfig container that owns the property.

API Commands - Property Management

253

Arguments Descriptions

credentialName

The name of the credential container of the property sheet which
owns the property.

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

environmentName The name of the environment container of the property sheet
which owns the property; must be unique among all projects

environmentTierName The name of the environment tier container of the property sheet
which owns the property.

expandable

Whether or not the property is recursively expandable.

<Boolean flag - 0|1|true|false> Determines whether the
property value will undergo property expansion when it is fetched.
Default is "true".

extendedContextSearch For simple property names, whether or not to search objects in the
hierarchy to find the desired property.

gatewayName The name of the gateway.

groupName The name of the group where you want to create a property.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName The name of the email notifier.

objectId This is an object identifier returned by findObjects and
getObjects.

pluginName The name of the plugin where you want to create a property.

ElectricCommander

254

Arguments Descriptions

procedureName The name of the procedure.Must be combined with its
projectName.

processName The name of the process, if the container is a process or process
step

processStepName The name of the process step, if the container is a process step.

projectName The name of the project container of the property sheet which
owns the property; must be unique among all projects.

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

propertyType <string|sheet> Indicates whether to create a string property or
a sub-sheet. Default is "string".

repositoryName The name of the repository for artifact management.

resourceName The name of the resource where you want to define the new
property.

resourcePoolName The name of a pool containing one or more resources.

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName
The name of the step. If you are using a step name to define the
location for the new property, you must use projectName and
procedureName also.

scheduleName
The name of the schedule. If you re using a schedule name to
define the location for the new property, you must use
projectName also.

stateDefinitionName The name of the state definition container of the property sheet
which owns the property.

stateName The name of the state container of the property sheet which owns
the property.

stepName The name of the step container of the property sheet which owns
the property.

systemObjectName The name of the special system object. In this context, only server
is legal.

transitionDefinitionName The name of the transition definition.

API Commands - Property Management

255

Arguments Descriptions

transitionName The name of the transition.

userName The user name where you want to add a property.

value For a string property (see propertyType above), this is the value
of the property. For a sheet property, this argument is invalid.

valueFile

This option is supported only in Perl and ectool bindings - it is
not a part of the XML protocol.
The contents of the valuefile is read and stored in the "value" field
for a string property. This is an alternative argument for value and
is useful if the “value” field spans multiple lines.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of the workspace where you want to add a property.

zoneName The name of the zone.

Positional arguments
propertyName

Response
An XML stream that echoes the new property, including its ID, which is assigned by the ElectricCommander
server.

ec-perl
syntax: $cmdr->createProperty(<propertyName>, {<optionals>});

Examples
$cmdr->createProperty('/myJob/Runtime Env/PATH', {value => 'c:\bin'});

$cmdr->createProperty('Runtime Env/PATH', {value => 'c:\bin', …});

ectool
syntax: ectool createProperty <propertyName> ...

Examples
ectool createProperty "/myJob/Runtime Env/PATH" --value "c:\bin"

ectool createProperty "Runtime Env/PATH" --value "c:\bin" --jobId 4fa765dd-73f1-11e
3-b67e-b0a420524153

ectool createProperty "Saved Variables" --propertyType sheet --jobId 4fa765dd-73f1-
11e3-b67e-b0a420524153

Back to Top

ElectricCommander

256

deleteProperty
Deletes a property from a property sheet.

You must specify a propertyName and you must specify locator arguments to find the property you want to
delete.

Arguments Descriptions

propertyName The name of the property to delete.

applicationName The name of the application container of the property sheet which
owns the property; must be unique among all projects.

applicationTierName The name of the application tier container of the property sheet
which owns the property.

artifactName The name of the artifact container of the property sheet which
owns the property.

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name—the Commander server interprets
either name form correctly.

componentName The name of the component container of the property sheet which
owns the property.

configName The name of the emailConfig container that owns the property.

credentialName

Whether or not the property is recursively expandable.

credentialName can be one of two forms:
relative
(for example, "cred1>") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example,
"/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

environmentName The name of the environment container of the property sheet
which owns the property; must be unique among all projects

environmentTierName The name of the environment tier container of the property sheet
which owns the property.

API Commands - Property Management

257

Arguments Descriptions

extendedContextSearch

For simple property names, whether or not to search objects in the
hierarchy to find the desired property.

<Boolean flag -0|1|true|false> If set, and there is an object
specifier in the command, ElectricCommander first looks for the
property in that object specifier, but also searches in other
locations if not found, according to the following rules:
1. If the object specifier is a procedure, ElectricCommander looks
for the property in the project where the procedure resides.
2. If the object specifier is a job step, Commander looks in the
actual parameters of the procedure to which it belongs, and then
looks at the job properties.
Default setting is "true."

gatewayName The name of the gateway.

groupName The name of a group that contains this property.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName The name of the email notifier.

objectId This is an object identifier returned by findObjects and
getObjects.

pluginName The name of a plugin that may contain a property you want to
delete.

procedureName
The name of the procedure containing the property you want to
delete.
Also requires projectName

processName The name of the process, if the container is a process or process
step

processStepName The name of the process step, if the container is a process step.

projectName The name of the project that contains the property you want to
delete.

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

repositoryName The name of the repository for artifact management.

ElectricCommander

258

Arguments Descriptions

resourceName The name of the resource that contains the property you want to
delete.

resourcePoolName The name of a pool containing one or more resources.

scheduleName
The name of the schedule containing the property you want to
delete.
Also requires projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step containing the property you want to delete.
Also requires projectName and procedureName

systemObjectName The name of a special system object. Only 'sever' is legal in this
context.

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

userName The user name that contains this property.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of the workspace containing this property.

zoneName The name of the zone.

Positional arguments
propertyName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteProperty(<propertyName>, { ... });

Example
$cmdr->deleteProperty("/projects/Sample project/Changeset ID");

ectool
syntax: ectool deleteProperty <propertyName> ...

API Commands - Property Management

259

Example
ectool deleteProperty "/projects/Sample project/Changeset ID"

Back to Top

evalScript
Evaluates a script in a given context.This API is similar to expandString except that it evaluates the value
argument as a Javascript block, without performing any property substitution on either the script or the result.
The string value of the final expression in the script is returned as the value element of the response.

You must specify a value to evaluate.

Arguments Descriptions

value The script to evaluate.

applicationName The name of the application container of the property sheet which
owns the property; must be unique among all projects.

applicationTierName The name of the application tier container of the property sheet
which owns the property.

artifactName The name of the artifact.

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name--the Commander server interprets
either name form correctly.

componentName The name of the component container of the property sheet which
owns the property.

configName The name of the emailConfig container that owns the property.

credentialName

The name of the credential container of the property sheet which
owns the property.
credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object's project.

environmentName The name of the environment container of the property sheet
which owns the property; must be unique among all projects.

ElectricCommander

260

Arguments Descriptions

environmentTierName The name of the environment tier container of the property sheet
which owns the property.

gatewayName The name of the gateway.

groupName The name of a group where you might evaluate a script.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName The name of the email notifier.

objectId This is an object identifier returned by findObjects and
getObjects.

path Property path string.

pluginName The name of a plugin where you might evaluate a script.

procedureName
The name of a procedure where you might need to evaluate a
script.
Also requires projectName

processName The name of the process, if the container is a process or process
step.

processStepName The name of the process step, if the container is a process step.

projectName The name of the project that contains the script to evaluate.

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

repositoryName The name of the repository for artifact management.

resourceName The name of a resource where you might evaluate a script.

resourcePoolName The name of a pool containing one or more resources.

scheduleName The name of a schedule within this project.
Also requires projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

API Commands - Property Management

261

Arguments Descriptions

stepName The name of the step whose script you might evaluate.
Also requires projectName and procedureName

systemObjectName
System object names include:
admin|directory|log|priority|projects|resources|
server|session|workspaces

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

userName The name of the user where you may need to evaluate a script.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of a workspace where you may need to evaluate a
script.

zoneName The name of the zone.

Positional arguments
value

Response
The string value of the final expression in the Javascript block inside a value element.

ec-perl
syntax: $cmdr->evalScript (<value>);

Examples
my $result = $ec->evalScript (q{"ip=" + server.hostIP+", name=" + server.hostName})
->findvalue("//value");

my $result = $ec->evalScript (q{myProject.projectName}, {jobId => '4fa765dd-73f1-11
e3-b67e-b0a420524153'});

ectool
syntax: ectool evalScript <value>

Examples
ectool evalScript '"ip=" + server.hostIP+", name=" + server.hostName'

ectool evalScript 'myProject.projectName' --jobId 4fa765dd-73f1-11e3-b67e-b0a420524
153

--jobStepId 5da765dd-73f1-11e3-b67e-b0a420524153

Back to Top

ElectricCommander

262

expandString
Expands property references in a string, in the current context.

You must specify a value and a context in which to perform the expansion or a valueFile option.

Arguments Descriptions

value The string value to expand in the given context.

applicationName The name of the application container of the property sheet which
owns the property; must be unique among all projects.

applicationTierName The name of the application tier container of the property sheet
which owns the property.

artifactName The name of the artifact.

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name--the Commander server interprets
either name form correctly.

componentName The name of the component container of the property sheet which
owns the property.

configName The name of the emailConfig container that owns the property.

credentialName

The name of the credential container of the property sheet which
owns the property.
credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object's project.

environmentName The name of the environment container of the property sheet
which owns the property; must be unique among all projects.

environmentTierName The name of the environment tier container of the property sheet
which owns the property.

gatewayName The name of the gateway.

groupName The name of a group where you might expand a string.

API Commands - Property Management

263

Arguments Descriptions

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName The name of the email notifier.

objectId This is an object identifier returned by findObjects and
getObjects.

path Property path string.

pluginName The name of a plugin where you might expand a string.

procedureName
The name of a procedure where you might need to expand a
string.
Also requires projectName

processName The name of the process, if the container is a process or process
step.

processStepName The name of the process step, if the container is a process step.

projectName The name of the project that contains the string to expand.

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

repositoryName The name of the repository for artifact management.

resourceName The name of a resource where you might expand a string.

resourcePoolName The name of a pool containing one or more resources.

scheduleName The name of a schedule within this project.
Also requires projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step whose string you might be expanding.
Also requires projectName and procedureName

systemObjectName
System object names include:
admin|directory|log|priority|projects|resources|
server|session|workspaces

ElectricCommander

264

Arguments Descriptions

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

userName The name of the user where you may need to expand the string.

valueFile

This option is supported only in Perl and ectool bindings - it is
not part of the XML protocol.
Contents of the valuefile is read and stored in the "value" field. This
is an alternative argument for value and is useful if the value field
spans multiple lines.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of a workspace where you may need to expand the
string.

zoneName The name of the zone.

Positional arguments
value

Response
The expanded string value.

ec-perl
syntax: $cmdr->expandString(<value>, {<optionals>});

Examples
$cmdr->expandString('$[fullUserName]', {userName => "admin"})->findvalue('//value')
->value();

$cmdr->expandString('$[/myWorkspace/agentUncPath]/$[logFileName]',
{jobStepId => 5da765dd-73f1-11e3-b67e-b0a420524153})->findvalue('//value')->valu

e();

ectool
syntax: ectool expandString <value> ...

Examples
ectool expandString '$[fullUserName]' --userName admin

ectool expandString '$[/myWorkspace/agentUncPath]/$[logFileName]'
--jobStepId 5da765dd-73f1-11e3-b67e-b0a420524153

Back to Top

API Commands - Property Management

265

getProperties
Retrieves all properties associated with an object, along with the property sheet identifier for the object's
property sheet.

You must specify object locators for the properties you want to retrieve.

Arguments Descriptions

applicationName The name of the application container of the property sheet which
owns the property; must be unique among all projects.

applicationTierName The name of the application tier container of the property sheet
which owns the property.

artifactName The name of the artifact container of the property sheet which
owns the property.

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name--the Commander server interprets
either name form correctly.

componentName The name of the component container of the property sheet which
owns the property.

configName The name of the emailConfig container that owns the property.

credentialName

The name of the credential containing the properties to retrieve.
credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object's project.
Also requires projectName

environmentName The name of the environment container of the property sheet
which owns the property; must be unique among all projects.

environmentTierName The name of the environment tier container of the property sheet
which owns the property.

expand

<Boolean flag - 0|1|true|false> Default value=1 (true), which
means the value of each property will be expanded. A value of "0"
(false) will cause the unexpanded value of each property to be
returned.

ElectricCommander

266

Arguments Descriptions

gatewayName The name of the gateway.

groupName The name of the group containing the properties to retrieve.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName The name of the email notifier.

objectId This is an object identifier returned by findObjects and
getObjects.

path
The path to the property sheet containing the properties to retrieve.
If the full path to the property sheet is specified, no additional
object locators are needed.

pluginName The name of the plugin containing the properties to retrieve.

procedureName The name of the procedure containing the properties to retrieve.
Also requires projectName

processName The name of the process, if the container is a process or process
step.

processStepName The name of the process step, if the container is a process step.

projectName The name of the project containing the properties to retrieve.

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

recurse

<Boolean flag - 0|1|true|false> Default value=0 (false),
which means properties of nested sheets will not be included in
the response. If you want the properties from all nested sheets to
be retrieved, use the value of "1" for true.

repositoryName The name of the repository for artifact management.

resourceName The name of the resource containing the properties to retrieve.

resourcePoolName The name of a pool containing one or more resources.

scheduleName The name of the schedule containing the properties to retrieve.
Also requires projectName

API Commands - Property Management

267

Arguments Descriptions

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step containing the properties to retrieve.
Also requires projectName and procedureName

systemObjectName The name of the system object containing the properties to
retrieve. Only "server" is supported.

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

userName The name of the user containing the properties to retrieve.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.
Also requires projectName

workspaceName The name of the workspace containing the properties to retrieve.

zoneName The name of the zone.

Positional arguments
Arguments to locate the property, beginning with the top-level object.

Response
A propertySheet element, which contains zero or more property elements and nested propertySheet
elements.

ec-perl
syntax: $cmdr->getProperties({<optionals>});

Examples
$cmdr->getProperties({resourceName => "r2"});

ectool
syntax: ectool getProperties ...

Examples
ectool getProperties --resourceName "r2"

Back to Top

ElectricCommander

268

getProperty
Retrieves the specified property value.

You must specify a propertyName.

Note: This specification can be the full path to the property or it can be relative to an object, which then requires
appropriate object locators.

Arguments Descriptions

propertyName The name or path for the property to retrieve.

applicationName The name of the application container of the property sheet which
owns the property; must be unique among all projects.

applicationTierName The name of the application tier container of the property sheet
which owns the property.

artifactName The name of the artifact.

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name—the Commander server
interprets either name form correctly.

componentName The name of the component container of the property sheet which
owns the property.

configName The name of the emailConfig container that owns the property.

credentialName

The name of the credential containing the property to retrieve.
credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object's project.
Also requires projectName

environmentName The name of the environment container of the property sheet
which owns the property; must be unique among all projects.

environmentTierName The name of the environment tier container of the property sheet
which owns the property.

API Commands - Property Management

269

Arguments Descriptions

expand

<Boolean flag - 0|1|true|false> Default value=1 (true), which
means the value of each property will be expanded. A value of "0"
(false) will cause the unexpanded value of each property to be
returned.

extendedContextSearch

For simple property names, whether or not to search objects in the
hierarchy to find the desired property.

<Boolean flag - 0|1|true|false> If set, and there is an object
locator in the command, Commander first looks for the property in
that object locator, but also searches in other locations if not found,
according to the following rules:

If the object locator is a procedure, Commander looks for the
property in the project where the procedure resides.

If the object locator is a job step, Commander looks in the actual
parameters of the procedure to which it belongs, and then looks at
the job properties.
Default setting is "true."

gatewayName The name of the gateway.

groupName The name of the group containing the property to retrieve.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName The name of the email notifier.

objectId This is an object identifier returned by findObjects and
getObjects.

pluginName The name of the plugin containing the property to retrieve.

procedureName The name of the procedure containing the property to retrieve.
Also requires projectName

processName The name of the process, if the container is a process or process
step.

processStepName The name of the process step, if the container is a process step.

projectName The name of the project containing the property to retrieve.

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

ElectricCommander

270

Arguments Descriptions

repositoryName The name of the repository for artifact management.

resourceName The name of the resource containing the property to retrieve.

resourcePoolName The name of a pool containing one or more resources.

scheduleName The name of the schedule containing the property to retrieve.
Also requires projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step containing the property to retrieve.
Also requires projectName and procedureName

systemObjectName The name of the system object containing the property to retrieve.
Only "server" is supported.

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

userName The name of the user containing the property to retrieve.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of the workspace containing the property to retrieve.

zoneName The name of the zone.

Positional arguments
propertyName

Response
A property sheet or a text string containing the value of the property.
Property value example: 35491

ec-perl
syntax: $cmdr->getProperty(<propertyName>, {<optionals>});

Examples
use XML::XPath;
$cmdr->getProperty("/myProject/changeset ID")->findvalue('//value')->value();

API Commands - Property Management

271

$cmdr->getProperty("Changeset ID", {projectName => "Sample Project"})->findvalue('/
/value')->value();

ectool
syntax: ectool getProperty <propertyName> ...

Examples
ectool getProperty "/myProject/changeset ID"

ectool getProperty "Changeset ID" --projectName "Sample Project"

Retrieve the /users/<userName>/providerName property.

ectool getProperty --objectID <ID> --propertyName "/users/<userName>/providerName"

Back to Top

incrementProperty
Atomically increments the specified property value by the incrementBy amount. If the property does not exist, it
will be created with an initial value of the incrementBy amount.

You must specify a propertyName and incrementBy.

Arguments Descriptions

propertyName The name of the property to increment.

incrementBy This is positive or negative integer.

applicationName The name of the application container of the property sheet which
owns the property; must be unique among all projects.

applicationTierName The name of the application tier container of the property sheet
which owns the property.

artifactName The name of the artifact.

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name--the Commander server interprets
either name form correctly.

componentName The name of the component container of the property sheet which
owns the property.

configName The name of the emailConfig container that owns the property.

ElectricCommander

272

Arguments Descriptions

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

environmentName The name of the environment container of the property sheet
which owns the property; must be unique among all projects.

environmentTierName The name of the environment tier container of the property sheet
which owns the property.

extendedContextSearch

For simple property names, whether or not to search objects in the
hierarchy to find the desired property.

<Boolean flag - 0|1|true|false> If set, and there is an object
specified in the command, ElectricCommander first looks for the
property in that object specifier, but also searches in other
locations if not found, according to the following rules:
1) If the object specifier is a procedure, ElectricCommander looks
for the property in the project where the procedure resides.
2) If the object specifier is a job step, ElectricCommander looks in
the actual parameters of the procedure to which it belongs, and
then looks at the job properties.
Default setting is "true."

gatewayName The name of the gateway.

groupName The name of the group containing the property to increment.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName The name of the email notifier.

objectId This is an object identifier returned by findObjects and
getObjects.

pluginName The name of the plugin containing a property to increment.

procedureName The name of the procedure containing this property.
Also requires projectName

API Commands - Property Management

273

Arguments Descriptions

processName The name of the process, if the container is a process or process
step.

processStepName The name of the process step, if the container is a process step.

projectName The name of the project containing this property.
Also requires procedureName

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

repositoryName The name of the repository for artifact management.

resourceName The name of the resource containing this property.

resourcePoolName The name of a pool containing one or more resources.

scheduleName The name of the schedule containing this property.
Also requires projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step containing this property.
Also requires projectName and procedureName

systemObjectName Only server is a valid system object for this API.

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

userName The name of the user containing this property.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of the workspace containing this property.

zoneName The name of the zone.

Positional arguments
propertyName, incrementBy

Response
A text string containing the updated numeric property value.

ElectricCommander

274

ec-perl
syntax: $cmdr->incrementProperty(<propertyName> <incrementBy> ...);

Examples
$cmdr->incrementProperty("Build Number", 1, {procedureName => "Delay", projectName
=> "Sample Project");

$cmdr->incrementProperty("/projects/Sample Project/procedures/Delay/Build Number",
1);

$cmdr->incrementProperty("procedures/Delay/Build Number", 1,{projectName => "Sample
Project"});

ectool
syntax: ectool incrementProperty <propertyName> <incrementBy> ...

Examples
ectool incrementProperty "Build Number" 1 --procedureName "Delay" --projectName "Sa
mple Project"

ectool incrementProperty "/projects/Sample Project/procedures/Delay/Build Number" 1

ectool incrementProperty "procedures/Delay/Build Number" 1 --projectName "Sample Pr
oject"

Back to Top

modifyProperty
Modifies a regular string or nested property sheet using a combination of property path and context.

You must specify a propertyName.

Note: The name "properties" is NOT a valid property name.

Arguments Descriptions

propertyName

The name of the property to be modified; must be unique within the
property sheet.

This argument can be a path.

applicationName The name of the application container of the property sheet which
owns the property; must be unique among all projects.

applicationTierName The name of the application tier container of the property sheet
which owns the property.

artifactName The name of the artifact.

API Commands - Property Management

275

Arguments Descriptions

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name--the Commander server interprets
either name form correctly.

componentName The name of the component container of the property sheet which
owns the property.

configName The name of the emailConfig container that owns the property.

componentName The name of the component container of the property sheet which
owns the property.

configName The name of the emailConfig container that owns the property.

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the target
object's project.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are:
<a>
 <div> <dl> <i> <p>
<pre>
<style> <table> <tc> <td> <th> <tr>

environmentName The name of the environment container of the property sheet which
owns the property; must be unique among all projects.

environmentTierName The name of the environment tier container of the property sheet
which owns the property.

expandable
<Boolean flag -0|1|true|false> - Determines whether the
property value will undergo property expansion when it is fetched.
Default is "true".

ElectricCommander

276

Arguments Descriptions

extendedContextSearch

For simple property names, whether or not to search objects in the
hierarchy to find the desired property.

<Boolean flag - 0|1|true|false> If set, and there is an object
specified in the command, ElectricCommander first looks for the
property in that object specifier, but also searches in other locations
if not found, according to the following rules:
1) If the object specifier is a procedure, ElectricCommander looks
for the property in the project where the procedure resides.
2) If the object specifier is a job step, ElectricCommander looks in
the actual parameters of the procedure to which it belongs, and
then looks at the job properties.
Default setting is "true."

gatewayName The name of the gateway.

groupName The name of the group containing the property to be modified.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

newName Supply any name of your choice to rename the property.

notifierName The name of the email notifier.

objectId This is an object identifier returned by findObjects and
getObjects.

pluginName The name of the plugin containing the property to be modified.

procedureName The name of the procedure containing the property to be modified.
Also requires projectName

projectName
The name of the project containing the property to be modified.
Note that the property may be on the project itself or on a contained
object, indicated by other arguments.

processName The name of the process, if the container is a process or process
step.

processStepName The name of the process step, if the container is a process step.

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

API Commands - Property Management

277

Arguments Descriptions

propertyType <string|sheet> Indicates whether to create a string property or
a sub-sheet. Default is "string".

repositoryName The name of the repository for artifact management.

resourceName The name of the resource containing the property to be modified.

resourcePoolName The name of a pool containing one or more resources.

scheduleName The name of the schedule containing the property to be modified.
Also requires projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step containing the property to be modified.
Also requires projectName and procedureName

systemObjectName
System objects include:
admin|artifactVersions|directory|emailConfigs|
log|plugins|server|session|workspaces

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

userName The name of the user containing the property to be modified.

value This can be any string you choose to add to a property.

valueFile

This option is supported only in Perl and ectool bindings - it is not
part of the XML protocol.
The contents of the valuefile is read and stored in the "value" field.
This is an alternative argument for value and is useful if the "value"
field spans multiple lines.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of the workspace containing the property to be modified.

zoneName The name of the zone.

Positional arguments
propertyName

ElectricCommander

278

Response
An XML stream that echoes the modified property.

ec-perl
syntax: $cmdr->modifyProperty(<propertyName>, {...});

Example
$cmdr->modifyProperty("Saved Variables", {description =>

"Starting configuration of name/value pairs", jobId => 4fa765dd-73f1-11e3-b67
e-b0a420524153});

ectool
syntax: ectool modifyProperty <propertyName> ...

Example
ectool modifyProperty "Saved Variables" --description "Starting configuration

of name/value pairs" --jobId 4fa765dd-73f1-11e3-b67e-b0a420524153

Back to Top

setProperty
Sets the value for the specified property.

You must specify a propertyName and value. The property name can be the full path to the property or it can
be relative to an object, which then means you must use object locators to specify the property.

Arguments Descriptions

propertyName

The name or path of the property you want to set; must be unique
within the property sheet.

This argument can be a path.

value The value of the property.

applicationName The name of the application container of the property sheet which
owns the property; must be unique among all projects.

applicationTierName The name of the application tier container of the property sheet
which owns the property.

artifactName The name of the artifact container of the property sheet which
owns the property.

API Commands - Property Management

279

Arguments Descriptions

artifactVersionName

The name of the artifact version.
Note: An artifact version name is interpreted by the server as the
artifactVersionName attribute for the artifactVersion in
question. This name is parsed and interpreted as
"groupId:artifactKey:version" and the object is searched
either way you specify its name--the Commander server interprets
either name form correctly.

componentName The name of the component container of the property sheet which
owns the property.

configName The name of the emailConfig container that owns the property.

credentialName

The name of the credential containing the property you want to set.
credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.
Also requires projectName

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

environmentName The name of the environment container of the property sheet
which owns the property; must be unique among all projects.

environmentTierName The name of the environment tier container of the property sheet
which owns the property.

expandable
<Boolean flag - 0|1|true|false> Default is "1" (true), which
means the property value will be expanded when referenced. If
you do not want the property to expand, use the value of "0"(false).

ElectricCommander

280

Arguments Descriptions

extendedContextSearch

<Boolean flag - 0|1|true|false> If set, and there is an object
specified in the command, ElectricCommander first looks for the
property in the object specified, but also searches in other
locations if not found, according to the following rules:

1) If the object specified is a procedure, ElectricCommander looks
for the property in the project where the procedure resides.

2) If the object specified is a job step, Commander looks in the
actual parameters of the procedure to which it belongs, and then
looks at the job properties.

Default setting is "false."

gatewayName The name of the gateway.

groupName The name of the group containing the property you want to set.

jobId

The name of the job containing the property you want to set. The
unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId
The name of the job step containing the property you want to set.
The unique identifier for a job step, assigned automatically when
the job step is created.

objectId This is an object identifier returned by findObjects and
getObjects.

notifierName The name of the email notifier.

pluginName The name of the plugin containing the property you want to set.

procedureName
The name of the procedure containing the property you want to
set.
Also requires projectName

processName The name of the process, if the container is a process or process
step.

processStepName The name of the process step, if the container is a process step.

projectName The name of the project containing the property you want to set.

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

repositoryName The name of the repository for artifact management.

API Commands - Property Management

281

Arguments Descriptions

resourceName The name of the resource containing the property you want to set.

resourcePoolName The name of a pool containing one or more resources.

scheduleName The name of the schedule containing the property you want to set.
Also requires projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step containing the property you want to set.
Also requires projectName and procedureName

systemObjectName

The name of the system object containing the property you want to
set. System objects include:
admin|artifactVersions|directory|emailConfigs|
log|plugins|server|session|workspaces

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

userName The name of the user containing the property you want to set.

valueFile

This option is supported only in Perl and ectool bindings - it is
not part of the XML protocol.
Contents of the valuefile is read and stored in the "value" field. This
is an alternative argument for value and is useful if the value field
spans multiple lines.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of the workspace containing the property you want to
set.

zoneName The name of the zone.

Positional arguments
propertyName, value

Response
An XML stream that echoes the property.

ec-perl
syntax: $cmdr->setProperty(<propertyName>, <value>, {<optionals>});

ElectricCommander

282

Examples
$cmdr->setProperty("Changeset ID", "14992", {projectName => "Sample Project"});

$cmdr->setProperty("/myResource/Application Path", "c:\Program Files\Application");

$cmdr->setProperty("Application Path", "c:\Program Files\Application",
{resourceName => "r2"});

ectool
syntax: ectool setProperty <propertyName> <value> ...

Examples
ectool setProperty "Changeset ID" "14992" --projectName "Sample Project"

ectool setProperty "/myResource/Application Path" "c:\Program Files\Application"

ectool setProperty "Application Path" "c:\Program Files\Application"
--resourceName "r2"

Back to Top

API Commands - Resource Management

283

API Commands - Resource Management
addResourcesToPool

addResourceToEnvironmentTier

createResource

createResourcePool

deleteResource

deleteResourcePool

getResource

getResources

getResourcesInEnvironmentTier

getResourcesInPool

getResourcePool

getResourcePools

getResourceUsage

modifyResource

pingAllResources

pingResource

removeResourceFromEnvironmentTier

removeResourcesFromPool

addResourcesToPool
Adds resources to a specific resource pool. A resource pool is a named group of resources.

You must specify a resourcePoolName and one or more resource names.

Arguments Descriptions

resourceNames The list of resources to add to the pool.

resourcePoolName The name of a pool containing one or more resources.

Positional arguments
resourcePoolName, resourceName(s)

ElectricCommander

284

Response
None or status OK message.

ec-perl
syntax:$cmdr->addResourcesToPool(<resourcePoolName>, {resourceName => [...]});

Example
$cmdr->addResourcesToPool("pool1", { resourceName => ["resource1",

"resource2", "resource3"]});

ectool
syntax:ectool addResourcesToPool <resourcePoolName> --resourceNames <resourceName1>
...
(Note the plural form for the resourceNames option)

Example
ectool addResourcesToPool "Test Pool" --resourceNames Test1 Test2 Test3

Back to Top

addResourceToEnvironmentTier
Adds the given resource to the given environment tier.

You must specify the resourceName, projectName, environmentName. and
environmentTierNamearguments.

Arguments Descriptions

resourceName
Name for the resource; must be unique among all resources.

Argument Type: String

projectName

Name for the project; must be unique among all projects; must be
unique among all projects.

Argument Type: String

environmentName
Name of the environment; must be unique among all projects.

Argument Type: String

environmentTierName

Name for the environment tier; must be unique among all tiers for
the environment.

Argument Type: String

Response
None or a status OK message.

API Commands - Resource Management

285

ec-perl
Syntax:

$<object>->addResourceToEnvironmentTier(<resourceName>, <projectName>,
<environmentName>, <environmentTierName>);

Example:

$ec->addResourceToEnvironmentTier("Resource1", "default", "newEnv",
"envTier1");

ectool
Syntax:

addResourceToEnvironmentTier <resourceName> <projectName> <environmentName>
<environmentTierName>

Example:

ectool addResourceToEnvironmentTier Resource1 default newEnv envTier1

Back to Top

createResource
Creates a new resource.

Important Note: For a proxy resource, proxyHostName and proxyPort arguments refer to the proxying
Commander agent.
hostName and port refer to the proxy target.

You must specify a resourceName.

Arguments Descriptions

artifactCacheDirectory The directory on the agent host where retrieved artifacts are
stored.

block
<Boolean flag - 0|1|true|false> A newly created resource will
be pinged. The "block" argument makes the createResource call
block until the result of the ping is known. Default is "false".

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

hostName

The name or IP address of the computer containing the
ElectricCommander agent for this resource if it's an ordinary
resource. If this is a proxy resource, this is the name or IP address
of the proxy target.

ElectricCommander

286

Arguments Descriptions

pools
A space-separated list of one or more pool names where this
resource is a member. Steps defined to run on a resource pool will
run on any available member (resource) in the pool.

port

The Commander agent port number for an ordinary resource. If a
port number is not specified, the default agent port is used. The
default agent port can be configured on the Server Settings page
in the Commander Web Interface.
For a proxy resource, this is the port number for the service
running on the proxy target that will run commands on behalf of the
Commander agent. For ssh, the default is 22.

proxyCustomization
Perl code customizing how the proxy resource communicates with
the proxy target. This argument is applicable only for proxy
resources.

proxyHostName The name or IP address of the computer containing the
Commander Agent used for a proxy resource.

proxyPort The Commander agent port number for a proxy resource. See the
port argument description for more details.

proxyProtocol
Protocol for communicating with the proxy target. Defaults to ssh.
(This argument is not exposed in the Commander Web Interface at
this time.)

resourceDisabled <Boolean flag - 0|1|true|false> If set to 1, Commander will not
start new steps on this resource. Defaults to "false".

repositoryNames A list of one or more repository names—each repository name
listed on a "new line".

resourceName The name of the new resource you are creating.

shell

This sets a default shell for running step commands on this
resource.
The default is "cmd /q /c" for a Windows agent and "sh -e"
for a UNIX agent.

stepLimit Limits the number of steps that can run on the resource at one
time. Setting the limit to 1 enforces serial access to the resource.

API Commands - Resource Management

287

Arguments Descriptions

trusted

<Boolean flag - 0|1|true|false> If "true", the resource is
trusted. A trusted agent is one that has been "certificate verified."

Agents can be either trusted or untrusted:

l trusted - the Commander server verifies the agent's
identity using SSL certificate verification.

l untrusted - the Commander server does not verify
agent identity. Potentially, an untrusted agent is a
security risk.

useSSL

<Boolean flag - 0|1|true|false> Use this flag to define
whether or not SSL is used for server-agent communication, or if
you need to use SSL to communicate with your Active Directory
servers. Default is "true".

workspaceName The name of the workspace this resource will use.

zoneName The name of the zone where this resource resides.

Positional arguments
resourceName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->createResource(<resourceName>, {<optionals>});

Example
$cmdr->createResource("Test Resource 1", {hostName => "localhost", pools => "P1 P
2"});

ectool
syntax: ectool createResource <resourceName> ...

Example
ectool createResource "Test Resource 1" --hostName localhost --pools "P1 P2"

Back to Top

createResourcePool
Creates a new pool for resources.

You must specify a resourcePoolName.

ElectricCommander

288

Arguments Descriptions

autoDelete
<Boolean flag - 0|1|true|false> - If true, the resource pool will
be deleted automatically when the last resource is removed from
the pool.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

resourceNames

A list of resource names to add to the pool. This value does not
need to refer to an existing resource. Any names that do not
resolve to an existing resource will be skipped when assigning
resources to steps.

orderingFilter
A Javascript block invoked when scheduling resources for a pool.
Note: A Javascript block is not required unless you need to
override the default resource ordering behavior.

resourcePoolDisabled <Boolean flag - 0|1|true|false> - If true, any runnable steps
that refer to the pool will block until the pool is re-enabled.

resourcePoolName Choose any unique name for your resource pool.

Positional arguments
resourcePoolName

Response
Returns a resourcePool object.

ec-perl
syntax: $cmdr->createResourcePool(<resourcePoolName>, {<optionals>});

Example
$cmdr->createResourcePool ("aPool", {resourceName => ["resource1", "resource2"]});

ectool
syntax: ectool createResourcePool <resourcePoolName> ...

Example
ectool createResourcePool aPool --resourceNames resource1 resource2

Back to Top

deleteResource
Deletes a resource.

API Commands - Resource Management

289

You must supply a resourceName.

Arguments Descriptions

resourceName The name of the resource to delete.

Positional arguments
resourceName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteResource(<resourceName>);

Example
$cmdr->deleteResource("Test Resource 1");

ectool
syntax: ectool deleteResource <resourceName>

Example
ectool deleteResource "Test Resource 1"

Back to Top

deleteResourcePool
Deletes a resource pool.

You must supply a resourcePoolName.

Arguments Descriptions

resourcePoolName The name of a pool (containing one or more resources) to delete.

Positional arguments
resourcePoolName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteResourcePool(<resourcePoolName>);

Example
$cmdr->deleteResourcePool("Test Resource 1");

ElectricCommander

290

ectool
syntax: ectool deleteResourcePool <resourcePoolName>

Example
ectool deleteResourcePool "Test Resource 1"

Back to Top

getResource
Retrieves a resource by its name.

You must specify resourceName.

Arguments Descriptions

resourceName The name of the resource to retrieve.

Positional arguments
resourceName

Response
One resource element, which includes the resource ID, name, agent state, time created, host name,
owner, port, disabled flag, shell, step limit, workspace name, and more. If using zones and gateways,
getResource returns a list of gateways where this resource participates.

ec-perl
syntax: $cmdr->getResource(<resourceName>);

Example
$cmdr->getResource("Test Resource 1");

ectool
syntax: ectool getResource <resourceName>

Example
ectool getResource "Test Resource 1"

Back to Top

getResources
Retrieves all resources.

Arguments Descriptions

None

API Commands - Resource Management

291

Positional arguments
None

Response
Zero or more resource elements.

ec-perl
syntax: $cmdr->getResources();

Example
$cmdr->getResources();

ectool
syntax: ectool getResources

Example
ectool getResources

Back to Top

getResourcesInEnvironmentTier
Returns the list of resources in an environment tier.

You must specify the projectName, environmentName. and environmentTierNamearguments.

Arguments Descriptions

projectName

Name for the project; must be unique among all projects; must be
unique among all projects.

Argument Type: String

environmentName
Name of the environment; must be unique among all projects.

Argument Type: String

environmentTierName

Name for the environment tier; must be unique among all tiers for
the environment.

Argument Type: String

Response
Retrieves zero or more resource elements in the specified environment tier.

ec-perl
Syntax:

$<object>->getResourcesInEnvironmentTier(<projectName>, <environmentName>,
<environmentTierName>);

ElectricCommander

292

Example:

$ec->getResourcesInEnvironmentTier("default", "newEnv", "envTier1");

ectool
Syntax:

getResourcesInEnvironmentTier <projectName> <environmentName>
<environmentTierName>

Example:

ectool getResourcesInEnvironmentTier default newEnv envTier1

Back to Top

getResourcesInPool
Retrieves a list of resources in a pool.

You must specify a pool (name).

Arguments Descriptions

jobStepId The ID number of the job step related to this pool.

pool The name of a pool containing one or more resources.

resourcePoolName The name of a pool containing one or more resources.

Positional arguments
pool

Response
An XML stream containing zero or more resource elements.

ec-perl
syntax: $cmdr->getResourcesInPool(<pool>);

Example
$cmdr->getResourcesInPool("WindowsPool");

ectool
syntax: ectool getResourcesInPool <pool>

Example
ectool getResourcesInPool WindowsPool

Back to Top

API Commands - Resource Management

293

getResourcePool
Retrieves a specified resource pool by name.

You must specify a resourcePoolName.

Arguments Descriptions

resourcePoolName The name of a pool containing one or more resources.

Positional arguments
resourcePoolName

Response
An XML stream containing one resourcePool element.

ec-perl
syntax: $cmdr->getResourcePool(<resourcePoolName>);

Example
$cmdr->getResourcePool("WindowsPool");

ectool
syntax: ectool getResourcePool <resourcePoolName>

Example
ectool getResourcePool WindowsPool

Back to Top

getResourcePools
Retrieves a list of resource pools.

Arguments Descriptions

None

Positional arguments
None

Response
An XML stream containing zero or more resourcePoolelements.

ec-perl
syntax: $cmdr->getResourcePools;

ElectricCommander

294

Example
$cmdr->getResourcePools;

ectool
syntax: ectool getResourcePools

Example
ectool getResourcePools

Back to Top

getResourceUsage
Retrieves resource usage information.

Arguments Descriptions

None

Positional arguments
None

Response
An XML stream containing zero or more resourceUsage elements.

ec-perl
syntax: $cmdr->getResourceUsage;

Example
$cmdr->getResourceUsage;

ectool
syntax: ectool getResourceUsage

Example
ectool getResourceUsage

Back to Top

modifyResource
Modifies an existing resource.

You must specify a resourceName.

Important note: For a proxy resource, proxyHostName and proxyPort arguments refer to the proxying
Commander agent. hostName and port refer to the proxy target.

API Commands - Resource Management

295

Arguments Descriptions

artifactCacheDirectory The directory on the agent host where retrieved artifacts are
stored.

block

<Boolean flag - 0|1|true|false> A newly modified resource
will be pinged. The "block" argument makes the
modifyResource call "block" until the result of the ping is known.
Default is "false".

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

hostName The name or IP address for the ElectricCommander machine
containing the agent for this resource.

newName Supply any name of your choice to rename the resource.

pools

A space-separated list of one or more pool names where this
resource is a member. The pool name can be used in place of a
single resource name. ElectricCommander chooses a resource
from the pool when it executes the job step.

port

The port number for the ElectricCommander agent. Default is to
the default agent port, but you can change this port number
because of port conflicts or multiple agents running on the same
machine.

proxyCustomization Perl code customizing how the proxy resource communicates with
the proxy target. Only applicable for proxy resources.

proxyHostName The IP address of the computer containing the ElectricCommander
Agent used for a proxy resource.

proxyPort The Commander agent port number for a proxy resource. See the
port argument for more details.

proxyProtocol
Protocol for communicating with the proxy target. Defaults to ssh.
This argument is not exposed in the Commander web interface at
this time.

repositoryNames A list of repository names with each repository name listed on a
"new line".

resourceDisabled <Boolean flag - 0|1|true|false> If set to 1, ElectricCommander
will not start new steps on this resource.

resourceName The name of the resource being modified.

ElectricCommander

296

Arguments Descriptions

shell
This sets a default shell for running step commands on this
resource. The default is "cmd /q /c" for a Windows agent and
"sh -e" for a UNIX agent.

stepLimit
This limits the number of steps that can be running on the resource
at one time. Setting this value to "1" is a good way to enforce serial
access to the resource.

trusted

<Boolean flag - 0|1|true|false> If "true", the resource is
trusted. A trusted agent is one that has been "certificate verified."

Agents can be either trusted or untrusted:

l trusted - the Commander server verifies the agent's
identity using SSL certificate verification.

l untrusted - the Commander server does not verify
agent identity. Potentially, an untrusted agent is a
security risk.

useSSL

<Boolean flag - 0|1|true|false> Use this flag to define
whether or not SSL is used for server-agent communication, or if
you need to use SSL to communicate with your Active Directory
servers.
Default is "true".

workspaceName The name of the default workspace where job output is stored.

zoneName The name of the zone where this resource resides.

Positional arguments
resourceName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->modifyResource(<resourceName>, {...});

Example
$cmdr->modifyResource("Test Resource 1", {stepLimit => 5, shell => "bash"});

ectool
syntax: ectool modifyResource <resourceName> ...

Example
ectool modifyResource "Test Resource 1" --stepLimit 5 --shell "bash"

Back to Top

API Commands - Resource Management

297

modifyResourcePool
Modifies an existing resource pool.

You must specify a resourcePoolName.

Arguments Descriptions

autoDelete
<Boolean flag - 0|1|true|false> - If true, the resource pool will
be deleted automatically when the last resource is removed form
the pool.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

newName Any new unique name you choose to rename this resource pool.

resourceNames

A list of resource names to add to the pool. This value does not
need to refer to an existing resource. Any names that do not
resolve to an existing resource will be skipped when assigning
resources to steps.

orderingFilter
A Javascript block invoked when scheduling resources for a pool.
Note: A Javascript block is not required unless you need to
override the default resource ordering behavior.

resourcePoolDisabled <Boolean flag - 0|1|true|false> - If true, any runnable steps
that refer to the pool will block until the pool is re-enabled.

resourcePoolName The name of a pool containing one or more resources.

Positional arguments
resourcePoolName

Response
The modified resourcePool object.

ec-perl
syntax: $cmdr->modifyResourcePool(<resourcePoolName>, {<optionals>});

Example
$cmdr->modifyResourcePool("WindowsPool", { resourcePoolDisabled => 1});

ectool
syntax: ectool modifyResourcePool <resourcePoolName> ...

ElectricCommander

298

Example
ectool modifyResourcePool WindowsPool --resourcePoolDisabled 1

Back to Top

pingAllResources
Pings all resources.

Arguments Description

block

<Boolean flag - 0|1|true|false> Default value="0" (false),
which means the call will return immediately. If you want the call to
wait for responses from every resource before returning, use the
value of "1"(true).

Positional arguments
None

Response
None or a status OK message.

ec-perl
syntax: $cmdr->pingAllResources({<optionals>});

Example
$cmdr->pingAllResources();

ectool
syntax: ectool pingAllResources...

Example
ectool pingAllResources

Back to Top

pingResource
Pings one resources.

You must specify a resourceName.

Arguments Descriptions

resourceName The name of the resource to ping.

API Commands - Resource Management

299

Positional arguments
resourceName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->pingResource(<resourceName>);

Example
$cmdr->pingResource("Test Resource 1");

ectool
syntax: ectool pingResource <resourceName> ...

Example
ectool pingResource "Test Resource 1"

Back to Top

removeResourceFromEnvironmentTier
Removes the given resource from the given environment tier.

You must specify the resourceName, projectName, environmentName. and
environmentTierNamearguments.

Arguments Descriptions

resourceName
Name for the resource; must be unique among all resources.

Argument Type: String

projectName

Name for the project; must be unique among all projects; must be
unique among all projects.

Argument Type: String

environmentName
Name of the environment; must be unique among all projects.

Argument Type: String

environmentTierName

Name for the environment tier; must be unique among all tiers for
the environment.

Argument Type: String

Response
None or a status OK message.

ElectricCommander

300

ec-perl
Syntax:

$<object>->removeResourceFromEnvironmentTier(<resourceName>, <projectName>,
<environmentName>, <environmentTierName>);

Example:

$ec->removeResourceFromEnvironmentTier("Resource"1, "default", "newEnv",
"envTier1");

ectool
Syntax:

removeResourceFromEnvironmentTier <resourceName> <projectName>
<environmentName> <environmentTierName>

Example:

ectool removeResourceFromEnvironmentTier Resource1 default newEnv envTier1

Back to Top

removeResourcesFromPool
Removes resources from a specified resource pool.

You must specify a resourcePoolName.

Arguments Descriptions

resourceNames The list of resources to remove from this pool.

resourcePoolName The name of a pool containing one or more resources.

Positional arguments
resourcePoolName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->removeResourcesFromPool(<resourcePoolName>, {<optionals>});

Example
$cmdr->removeResourcesFromPool("Test Pool", {resourceNames => ["Test1", "Test2", "T
est3"]});

ectool
syntax: ectool removeResourcesFromPool <resourcePoolName> ...

API Commands - Resource Management

301

Example
ectool removeResourcesFromPool "Test Pool" --resourceNames Test1 Test2 Test3

Back to Top

ElectricCommander

302

API Commands - Schedule Management

createSchedule
deleteSchedule
getSchedule
getSchedules
modifySchedule

createSchedule
Creates a new schedule.

Note: If both startTime and stopTime are specified, intervalUnits and interval are used to specify
an interval time to repeat running the procedure.

You must specify a projectName and scheduleName.

Arguments Descriptions

actualParameter

Specifies the values to pass as parameters to the called
procedure. Each parameter value is specified with an
actualParameterName and a value.
The actualParameterNamemust match the name of a formal
parameter on the called procedure.

beginDate <yyyy-mm-dd> The date you want the schedule to begin.

credentialName

The name of the credential to use for user impersonation when
running the procedure. credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object's project.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

endDate <yyyy-mm-dd> The date you want this schedule to end.

interval Determines the repeat interval for starting new jobs.

API Commands - Schedule Management

303

Arguments Descriptions

intervalUnits

Specifies the units for the interval argument
<hours|minutes|seconds|continuous> If set to continuous,
Commander creates a new job as soon as the previous job
completes.

misfirePolicy

<ignore|runOnce> Specifies the misfire policy. A schedule may
not fire at the allotted time because a prior job is still running, the
server is running low on resources and there is a delay, or the
server is down. When the underlying issue is resolved, the server
will schedule the next job at the next regularly scheduled time slot
if the policy is 'ignore', otherwise it will run the job immediately.
Defaults to "ignore".

monthDays Restricts the schedule to specified days of the month. Specify
numbers from 1-31, separating multiple numbers with a space.

priority

<low|normal|high|highest>
Priorities take effect when two or more job steps in different jobs
are waiting for the same resource. When the resource is available,
it will be used by the job step that belongs to the job with the
highest priority. If the priority level is the same, the resource will be
used by the job step that belongs to the job with the lowest job ID
number. If the job steps are in the same job, the resource will be
used first by the step with the lowest job step ID number.

procedureName The procedure to run when the schedule is invoked.

projectName The name of the project that contains the procedure this schedule
will run.

scheduleDisabled <Boolean flag - 0|1|true|false> If set to 1, Commander will not
start any new jobs from the schedule. Defaults to "false".

scheduleName This is any name of your choice for this schedule.

startTime
Enter hours and minutes, formatted hh:mm, using the 24-hour
clock. Using this schedule, ElectricCommander starts creating jobs
at this time on the specified days.

stopTime

Enter hours and minutes, formatted hh:mm, using the 24-hour
clock. Commander stops creating new jobs at this time, but a job in
progress will continue to run. If stopTime is not specified,
ElectricCommander creates one job only on each specified day.

timeZone Supply the time zone (string) you want to use for this schedule.

weekDays
Restricts the schedule to specified days of the week. Specify days
of the week separated by spaces. Use English names "Monday",
"Tuesday", and so on.

ElectricCommander

304

Positional arguments
projectName, scheduleName

Response
None or status OK message.

ec-perl
syntax: $cmdr->createSchedule(<projectName>, <scheduleName>, {<optionals>});

Example
$cmdr->createSchedule('Sample Project', 'Weekend', {startTime => '00:00',

stopTime => '23:59',
weekDays => 'Saturday Sunday',
interval => 1,

intervalUnits => 'hours',
actualParameter => [{actualParameterName => 'param1', value => 'value1'}] });

ectool
syntax: ectool createSchedule <projectName> <scheduleName> ...

Example
ectool createSchedule "Sample Project" "Weekend" --startTime 00:00
--stopTime 23:59 --weekDays "Saturday Sunday" --interval 1 --intervalUnits hours

Back to Top

deleteSchedule
Deletes a schedule.

You must specify a projectName and scheduleName.

Arguments Descriptions

projectName The schedule you want to delete belongs to this project.

scheduleName The name of the schedule you want to delete.

Positional arguments
projectName, scheduleName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteSchedule(<projectName>, <scheduleName>);

Example
$cmdr->deleteSchedule("Sample Project","Weekend");

API Commands - Schedule Management

305

ectool
syntax: ectool deleteSchedule <projectName> <scheduleName>

Example
ectool deleteSchedule "Sample Project" "Weekend"

Back to Top

getSchedule
Retrieves a schedule by its name.

You must specify a projectName and scheduleName.

Arguments Descriptions

projectName The name of the project that contains the schedule to retrieve.

scheduleName The name of the schedule to retrieve.

Positional arguments
projectName, scheduleName

Response
One schedule element.

ec-perl
syntax: $cmdr->getSchedule(<projectName>, <scheduleName>);

Example
$cmdr->getSchedule("Sample Project", "Build Schedule");

ectool
syntax: ectool getSchedule <projectName> <scheduleName>

Example
ectool getSchedule "Sample Project" "Build Schedule"

Back to Top

getSchedules
Retrieves all schedules.

You must specify a projectName.

ElectricCommander

306

Arguments Descriptions

projectName The name of the project containing the schedules to retrieve.

Positional arguments
projectName

Response
Zero or more schedule elements for all schedules within the named project.

ec-perl
syntax: $cmdr->getSchedules(<projectName >);

Example
$cmdr->getSchedules("Sample Project");

ectool
syntax: ectool getSchedules <projectName>

Example
ectool getSchedules "Sample Project"

Back to Top

modifySchedule
Modifies an existing schedule.

You must specify a projectName and a scheduleName.

Note: If both startTime and stopTime are specified, intervalUnits and interval are used to
specify an interval to repeat running the procedure.

Arguments Descriptions

actualParameter

Specifies the values to pass as parameters to the called
procedure. Each parameter value is specified with an
actualParameterName and a value. The
actualParameterNamemust match the name of a formal
parameter on the called procedure.

beginDate <yyyy-mm-dd> The date you want the schedule to begin.

clearActualParameters <Boolean flag - 0|1|true|false> If set to true, all actual
parameters will be removed from the schedule.

API Commands - Schedule Management

307

Arguments Descriptions

credentialName

The name of the credential to use for user impersonation when
running the procedure.
credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

endDate <yyyy-mm-dd> The date you want this schedule to end.

interval Determines the repeat interval for starting new jobs.

intervalUnits

Specifies the units for the interval argument
<hours|minutes|seconds|continuous>. If set to continuous,
Commander creates a new job as soon as the previous job
completes.

misfirePolicy

<ignore|runOnce> Specifies the misfire policy. A schedule may
not fire at the allotted time because a prior job is still running, the
server is running low on resources and there is a delay, or the
server is down.
When the underlying issue is resolved, the server will schedule the
next job at the next regularly scheduled time slot if the policy is
'ignore', otherwise it will run the job immediately.
Defaults to "ignore".

monthDays Restricts the schedule to specified days of the month. Specify
numbers from 1-31, separating multiple numbers with a space.

newName Supply any name of your choice to rename the schedule.

priority

<low|normal|high|highest>
Priorities take effect when two or more job steps in different jobs
are waiting for the same resource. When the resource is available,
it will be used by the job step that belongs to the job with the
highest priority. If the priority level is the same, the resource will be
used by the job step that belongs to the job with the lowest job ID
number. If the job steps are in the same job, the resource will be
used first by the step with the lowest job step ID number.

procedureName The name of the procedure to run when the schedule is invoked.

ElectricCommander

308

Arguments Descriptions

projectName The name of the project containing the schedule to modify.

scheduleDisabled <Boolean flag - 0|1|true|false> If set to 1, Commander will not
start any new jobs from the schedule.

scheduleName The name of the schedule to modify.

startTime
Enter hours and minutes, formatted hh:mm, using the 24-hour
clock. Commander starts creating jobs at this time on the days
specified.

stopTime

Enter hours and minutes, formatted hh:mm, using the 24-hour
clock. Commander stops creating new jobs at this time, but a job in
progress will continue to run. If stopTime is not specified,
Commander creates one job only on each specified day.

timeZone Supply the time zone you want to use for this schedule.

weekDays
Restricts the schedule to specified days of the week. Specify days
of the week separated by spaces. Use English names "Monday",
"Tuesday", and so on.

Positional arguments
projectName, scheduleName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->modifySchedule(<projectName>, <scheduleName>, {...});

Example
$cmdr->modifySchedule("Sample Project", "Weekend",

{procedureName => "Delay",
actualParameter => {actualParameterName => "Delay Time",

value => "5"}});

ectool
syntax: ectool modifySchedule <projectName> <scheduleName> ...

Example
ectool modifySchedule "Sample Project" "Weekend" --procedureName "Delay"

--actualParameter "Delay Time=5"

Back to Top

API Commands - Server Management

309

API Commands - Server Management

getVersions
shutdownServer
importLicenseData
getAdminLicense
getLicense
getLicenses
getLicenseUsage
deleteLicense
getServerStatus

getVersions
Retrieves server version information.

Arguments Descriptions

None

Positional arguments
None

Response
A serverVersion element.

ec-perl
syntax: $cmdr->getVersions();

Example
$cmdr->getVersions();

ectool
syntax: ectool getVersions

Example
ectool getVersions

Back to Top

shutdownServer
Shuts down the ElectricCommander server. Shutting down the server can take as long as a couple of
minutes, depending on the server activity level at the time the shutdown command is issued.

The Commander server is composed of two processes. The main process is a Java Virtual Machine (JVM).
The second process, called the "wrapper", is responsible for interacting with the native operating system as
a service. This wrapper process is responsible for starting and stopping the main JVM process.

ElectricCommander

310

Arguments Descriptions

force

<Boolean flag - 0|1|true|false> The "1" flag tells the
Commander server to exit immediately, without performing any of
the usual associated cleanup activities. This action "kills" all
running jobs.

restart
<Boolean flag - 0|1|true|false> The "1" flag tells the
Commander server to shut down normally and immediately start
again.

Positional arguments
None

Response
None or a status OK message.

ec-perl
syntax: $cmdr->shutdownServer({<optionals>});

Example
$cmdr->shutdownServer({restart => 1});

ectool
syntax: ectool shutdownServer ...

Example
ectool shutdownServer --restart 1

Back to Top

importLicenseData
Imports one or more licenses.

You must specify licenseData.

Arguments Descriptions

licenseData The content of a license file (perl|XML API).

licenseFile
<localFileName> The license fie to import. This is a local file that
will be read by ectool. The contents is sent as the licenseData
argument (ectool only).

Positional arguments
licenseData

API Commands - Server Management

311

Response
None or a status OK message.

ec-perl
syntax: $cmdr->importLicenseData(<licenseData>)

Example
my $data = 'cat license.xml';
$cmdr->importLicenseData ($data);

ectool
syntax: ectool importLicenseData <licenseData>

Example
ectool importLicenseData license.xml

Back to Top

getAdminLicense
Retrieves the admin license, which can be used when all concurrent user licenses are in use.

Arguments Descriptions

None

Positional arguments
None

Response
You can receive one or more responses, depending on how you are licensed and actual license usage at
the time of your query.

Response examples:

When the user does not have the necessary permission to use the Administrator license:

<error requestId="1">
<code>AccessDenied</code>
<where></where>
<message>Principal 'bob@company.com' does not have execute privileges on

systemObject[name=licensing,id=10]</message>
<details></details>

</error>

When the user has permission to get/use the Administrator license, but already has a User license:

 <result>User 'bob@company.com@192.168.17.217' already has an active
license.</result>

When the user has permission to use/get the Administrator license, has no
other license, and the Administrator license is not currently assigned:

ElectricCommander

312

 <result>User 'bob@company.com@192.168.17.217' was given the admin
license.</result>

When the user has permission to get/use the Administrator license, has no license, and the
Administrator
license is currently assigned to someone else:

 <result>User 'joedoe@company.com@192.168.17.217' was given the admin license
that
 previously belonged to 'bob@company.com@192.168.17.217'. </result>

ec-perl
syntax: $cmdr->getAdminLicense();

Example
$cmdr->getAdminLicense();

ectool
syntax: ectool getAdminLicense

Example
ectool getAdminLicense

Back to Top

getLicense
Retrieves information for one license.

You must specify the productName and featureName.

Arguments Descriptions

featureName The name of the licensed feature.
Possible features include: Server

productName The name of the product with the licensed feature. Possible
products include: ElectricCommander

Positional arguments
productName, featureName

Response
One license element.

ec-perl
syntax: $cmdr->getLicense(<productName>, <featureName>);

Example
$cmdr->getLicense('ElectricCommander', 'Server');

API Commands - Server Management

313

ectool
syntax: ectool getLicense <productName> <featureName>

Example
ectool getLicense ElectricCommander Server

Back to Top

getLicenses
Retrieves all license data.

Arguments Descriptions

None

Positional arguments
None

Response
Zero or more license elements.

ec-perl
syntax: $cmdr->getLicenses();

Example
$cmdr->getLicenses();

ectool
syntax: ectool getLicenses

Example
ectool getLicenses

Back to Top

getLicenseUsage
Retrieves the current license usage.

Arguments Descriptions

None

Positional arguments
None

ElectricCommander

314

Response
You may receive one or more responses for licenseUsage, depending on how you are licensed and
actual license
usage at the time of your query.

ec-perl
syntax: $cmdr->getLicenseUsage();

Example
$cmdr->getLicenseUsage();

ectool
syntax: ectool getLicenseUsage

Example
ectool getLicenseUsage

Back to Top

deleteLicense
Deletes a license.

You must specify a productName and featureName.

Arguments Descriptions

featureName The name of the licensed feature. Possible features include:
Server

productName The name of the product with the licensed feature.
Possible products include: ElectricCommander

Positional arguments
productName, featureName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteLicense(<productName>, <featureName>);

Example
$cmdr->deleteLicense("ElectricCommander", "Server");

ectool
syntax: ectool deleteLicense <productName> <featureName>

API Commands - Server Management

315

Example
ectool deleteLicense ElectricCommander Server

Back to Top

getServerStatus
Retrieves the current status of the ElectricCommander server.

Arguments Descriptions

block
<Boolean flag - 0|1|true|false> A "1" flag causes the API to
wait until the server reaches a "terminal state". Terminal states
include running, failed, stopping, and importFailed.

diagnostics

<Boolean flag - 0|1|true|false> This argument supplies the
following diagnostics" information in your output:

l threadDump - stack dumps of all threads in the server

l statistics - output from all system timers

l systemProperties - values of all java system properties

l environmentVariables - values of all environment
variables

l settings - values of all server settings

l serverInfo - output from getServerInfo call.

serverStateOnly

<Boolean flag - 0|1|true|false> A "1" flag causes the API to
limit the response to the short form, and causes ectool to return
only the value of the serverStatus element as a simple string
value.

timeout This flag specifies the timeout for the element flag. The default
value is 120 seconds.

Positional arguments
None

Response
Returns the current status of the server, including the log message generated during
the startup sequence.

This command returns different information depending on when and how it is called.

Note: You will get a lengthy response if you connect with a session that has admin privileges or if the server
is still in a bootstrap state. After the server enters the "running" state, it is able to perform access checks but
displays only the short form until you log in.

A simple response:

<serverState>running</serverState>

ElectricCommander

316

For more detailed server status response information, click here.

ec-perl
syntax: $cmdr->getServerStatus({<optionals>});

Examples
$cmdr->getServerStatus();

$cmdr->getServerStatus({diagnostics=>1});

ectool
syntax:ectool getServerStatus

Examples
ectool getServerStatus

ectool getServerStatus --diagnostics 1

Back to Top

API Commands - Tier Map

317

API Commands - Tier Map
createTierMap

deleteTierMap

deleteTierMapping

getTierMaps

modifyTierMap

createTierMap
Creates a new tier map for an application.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

applicationName

Description: Name of the application; must be unique among all applications in the project.

Argument Type: String

environmentProjectName

Description: Name of the environment's project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment; must be unique among all applications in the project.

Argument Type: String

Optional Arguments

tierMapName

Description: The name of the tier map. If not specified, the operation will generate a name of the form as
follows: <applicationName>-<environmentName>.

Argument Type: String

tierMapping

Description: List of mappings between the application tiers and the environment tiers. The list shows
the mappings as <applicationTier>=<environmentTier>.

Argument Type: Map

Response
Returns a tier-map element.

ElectricCommander

318

ec-perl
Syntax:

$<object>->createTierMap(<projectName>, <applicationName>,
<environmentProjectName>, <environmentName>), {<optionals>});

Example:

$ec->createTierMap("default", "newApp", "defaultEnv", "Env1",
{tierMapping => [{applicationTier => "AppTier1",
environmentTier => "EnvTier1"}, {applicationTier => "AppTier2",
environmentTier => "EnvTier2"}], tierMapName => "TierMap1"});

ectool
Syntax:

ectool createTierMap <projectName> <applicationName>
<environmentProjectName> <environmentName> [optionals...]

Example:

ectool createTierMap default newApp defaultEnv Env1 --tierMapName TierMap1
--tierMapping AppTier1=EnvTier1 AppTier2=EnvTier2

deleteTierMap
Deletes a tier map from an application.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

applicationName

Description: Name of the application; must be unique among all applications in the project.

Argument Type: String

environmentProjectName

Description: Name of the environment's project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment; must be unique among all applications in the project.

Argument Type: String

Optional Arguments

None

Response
None or a status OK message.

API Commands - Tier Map

319

ec-perl
Syntax:

$<object>->deleteTierMap(<projectName>, <applicationName>,
<environmentProjectName>, <environmentName>);

Example:

$ec->deleteTierMap("default", "App1", "MyProj", "Env1");

ectool
Syntax:

ectool deleteTierMap <projectName> <applicationName>
<environmentProjectName> <environmentName>

Example:

ectool deleteTierMap default TierMapToDelete defaultEnv Env1

deleteTierMapping
Deletes a tier mapping from a tier map.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

applicationName

Description: Name of the application; must be unique among all applications in the project.

Argument Type: String

environmentProjectName

Description: Name of the environment's project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment; must be unique among all applications in the project.

Argument Type: String

applicationTierName

Description: Name of the application tier.

Argument Type: String

Optional Arguments

None

Response
Deletes the specified tier mapping.

ElectricCommander

320

ec-perl
Syntax:

$<object>->deleteTierMapping(<projectName>, <applicationName>,
<environmentProjectName>, <environmentName>, <applicationTierName>);

Example:

$ec->deleteTierMap("default", "App1", "MyProj", "Env1",
"InstallTier");

ectool
Syntax:

ectool deleteTierMapping <projectName> <applicationName>
<environmentProjectName> <environmentName> <applicationTierName>

Example:

ectool deleteTierMapping default TierMapToDelete defaultEnv Env1 InstallTier

getTierMaps
Retrieves all tier maps that are used by the given application.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

applicationName

Description: Name of the application; must be unique among all projects.

Argument Type: String

Optional Arguments

None

Response
Returns a list of tier maps.

ec-perl
Syntax:

$<object>->getTierMaps(<projectName>, <applicationtName>);

Example:

$ec->getTierMaps("default", "NewApp");

ectool
Syntax:

ectool getTierMaps <projectName> <applicationtName>

Example:

API Commands - Tier Map

321

ectool getTierMaps default NewApp

modifyTierMap
Modifies an existing tier map.

Required Arguments

projectName

Description: Name for the project; must be unique among all projects.

Argument Type: String

applicationName

Description: Name of the application; must be unique among all applications in the project.

Argument Type: String

environmentProjectName

Description: Name of the environment's project; must be unique among all projects.

Argument Type: String

environmentName

Description: Name of the environment; must be unique among all applications in the project.

Argument Type: String

Optional Arguments

tierMapName

Description: New name of the tier map, if specified.

Argument Type: String

tierMapping

Description: List of mappings between the application tiers and the environment tiers. The list shows
the mappings as <applicationTier>=<environmentTier>.

If you use this argument, new tier mappings are added or existing mappings are updated for the
specified application tiers. This argument does not replace all the mappings and thus does not remove
the mappings that were not specified in the API call. To remove mappings, use the deleteTierMapping
command.

Argument Type: Map

Response
Retrieves the updated tier map.

ec-perl
Syntax:

ElectricCommander

322

$<object>->modifyTierMap(<projectName>, <applicationName>,
<environmentProjectName>, <environmentName>), {<optionals>});

Example:

$ec->modifyTierMap("default", "newApp", "defaultEnv", "Env1",
{tierMapping => [{applicationTier => "AppTier1",
environmentTier => "EnvTier1"}, {applicationTier => "AppTier2",
environmentTier => "EnvTier2"}], tierMapName => "TierMap1"});

ectool
Syntax:

ectool modifyTierMap <projectName> <applicationName>
<environmentProjectName> <environmentName> [optionals...]

Example:

ectool modifyTierMap default newApp defaultEnv Env1 --tierMapName TierMap1
--tierMapping AppTier1=EnvTier1 AppTier2=EnvTier2

API Commands - User/Group Management

323

API Commands - User/Group Management

login
logout
createGroup
deleteGroup
getGroup
getGroups
modifyGroup

addUsersToGroupcreateUser
deleteUser
getUser
getUsers
modifyUser
removeUsersFromGroup

addUsersToGroup
Adds ones or more specified users to a particular group.

You must specify a groupName and one or more user names.

Arguments Descriptions

groupName The name of the group you are modifying.

userNames The list of user names to add to this group.

Positional arguments
groupName, userNames

Response
None or status OK message.

ec-perl
syntax: $cmdr->addUsersToGroup(<groupName>, {userName=>[<userName1>, ...]});

Example
$cmdr->addUsersToGroup("Developers", {userName => ["John", "Jim", "Joey"]});

ectool
syntax: ectool addUsersToGroup <groupName> --userNames <userName1> ...
(Note the plural form for the userNames option)

Example
ectool addUsersToGroup Developers --userNames John Jim Joey

Back to Top

ElectricCommander

324

createGroup
Creates a new local group of users.

You must specify a groupName.

Arguments Descriptions

groupName A name you choose for the new group you are creating.

userNames One or more user names to add to the group.

Positional arguments
groupName

Response
None or status OK message.

ec-perl
syntax: $cmdr->createGroup(<groupName>, {<optionals>});

Example
$cmdr->createGroup("Build Users", {userName => ["aallen", "Betty Barker", "cclar
k"]});

ectool
syntax: ectool createGroup <groupName> --userNames <user1> ...
(Note the plural form of userNames.)

Example
ectool createGroup "Build Users" --userNames "aallen" "Betty Barker" "cclark"

Back to Top

createUser
Creates a new local user.

Note: This API does not apply to non-local users.

User or Group Lists

The commands createUser and modifyUser can have an optional argument called groupNames. The
commands
createGroup and modifyGroup can have an optional argument named userNames. In each case, the
optional
argument is followed by a list of groups or names.

Using ectool, your command string would be:

ectool createGroup "New Group Name" --userNames "A Adams" "B Barker"

API Commands - User/Group Management

325

To make this call via the Perl API, create a list of names and then pass a reference to the list as an optional
parameter.
Note: The name of the optional parameter is singular, "userName" or "userGroup," not the plural form used by
ectool.

Here is an example using the Perl API:

Run the procedure - pass a reference to the list of names
$xPath = $cmdr->createGroup("New Group Name", {
"userName" => ['A Adams', 'B Burns'] });

You must specify a userName.

Arguments Descriptions

email The new user's email address.

fullUserName The user's full name - not his or her nickname.

groupNames <group1 group2> Any group name containing spaces must be
enclosed in double-quotes.

password The new user's password.

userName
This could be the user's full name, but more commonly it is the
shortened name, first initial and last name, or nickname used for
email.

Positional arguments
userName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->createUser(<userName>, {<optionals>});

Example
$cmdr->createUser("aallen", {fullUserName => "Albert Allen"});

ectool
syntax: ectool createUser <userName> ...

Examples
ectool createUser "aallen" --fullUserName "Albert Allen"

ectool createUser "Betty Barker"

Back to Top

ElectricCommander

326

deleteGroup
Deletes a local group.

You must specify a groupName.

Arguments Descriptions

groupName The name of the group you want to delete.

Positional arguments
groupName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteGroup(<groupName>);

Example
$cmdr->deleteGroup("Build Users");

ectool
syntax: ectool deleteGroup <groupName>

Example
ectool deleteGroup "Build Users"

Back to Top

deleteUser
Deletes a local user.

You must specify the userName.

Arguments Descriptions

userName The name of the user you want to delete.

Positional arguments
userName

Response
None or a status OK message.

API Commands - User/Group Management

327

ec-perl
syntax: $cmdr->deleteUser(<userName>);

Example
$cmdr->deleteUser("Betty Barker");

ectool
syntax: ectool deleteUser <userName>

Example
ectool deleteUser "Betty Barker"

Back to Top

getGroup
Retrieves a group by its name.

You must specify the groupName.

Arguments Descriptions

groupName The name of the group to retrieve.

providerName Using this option allows you to search only the specified provider
for group information. (LDAP or Active Directory)

Positional arguments
groupName

Response
One group element.

ec-perl
syntax: $cmdr->getGroup(<groupName>, {<optionals>});

Example
$cmdr->getGroup("myGroup", {providerName => "LDAP"});

ectool
syntax: ectool getGroup <groupName> ...

Example
ectool getGroup myGroup --providerName LDAP

Back to Top

ElectricCommander

328

getGroups
Retrieves all groups.

Arguments Descriptions

filter A string used to filter the returned groups by their names.

includeAll

<Boolean flag - 0|1|true|false> When enabled, this argument
returns ALL matching groups, including LDAP or non-LDAP
groups that may or may not be in the Commander database
already. A group is added to the Commander database when a
user [who is a member of that group] logs in to Commander for the
first time.

maximum Specifies the maximum number of groups you want to see.

Positional arguments
None

Response
Zero or more group elements, each containing summary information only.

ec-perl
syntax: $cmdr->getGroups({ <optionals>});

Example
$cmdr->getGroups({filter => " dev*", maximum => 3,});

ectool
syntax: ectool getGroups ...

Example
ectool getGroups --filter dev* --maximum 3

Back to Top

getUser
Retrieves a user by name.

You must specify the userName.

Arguments Descriptions

providerName The name of the directory provider. If specified, this option limits
the search to the specified directory provider.

userName The name of the user.

API Commands - User/Group Management

329

Positional arguments
userName

Response
One user element.

ec-perl
syntax: $cmdr->getUser(<userName>, {<optionals>});

Example
$cmdr->getUser("Betty Barker");

ectool
syntax: ectool getUser <userName> ...

Example
ectool getUser "Betty Barker"

Back to Top

getUsers
Retrieves users. By default, this command returns users who have been added to the Commander database,
which means they have logged in previously.

Note:When calling getUsers, the default limit is 100 user records. Use the maximum option to specify a
larger number, but this may inhibit performance, or you could define a search pattern to filter your search
and conduct multiple queries.

Arguments Descriptions

filter
<filter pattern> Supply a filter pattern to match user names. The
filter is not case sensitive and can include the "*" wildcard
character.

includeAll

<Boolean flag - 0|1|true|false> When enabled, this argument
returns ALL matching groups, including LDAP or non-LDAP
groups that may or may not be in the Commander database. A
group is added to the Commander database when a user who is a
member of that group logs in to Commander for the first time.

maximum <number of users> Specify a larger number of user records to
retrieve. The default limit is 100 user records.

Positional arguments
None

Response
Zero or more user elements with summary information only.

ElectricCommander

330

ec-perl
syntax: $cmdr->getUsers({<optionals>});

Examples
$cmdr->getUsers();

$cmdr->getUsers({filter => '*Betty*', maximum => 25});

ectool
syntax: ectool getUsers ...

Examples
ectool getUsers

ectool getUsers --filter *Betty* --maximum 25

Back to Top

login
Logs into the server and saves the session ID for subsequent ectool use. The user name provided
determines the permissions for commands that can be run during the session.

You must specify the userName and password.

Arguments Descriptions

password The password for the user who is "logging in".

userName The name of a user who has login privileges.

Positional arguments
userName, password

Response
One session element containing the session ID.

ec-perl
syntax:$cmdr->login(<userName>,<password>);

Example
$cmdr->login("Ellen Ernst", "ee123");

ectool
syntax:ectool login <userName> <password>

Note: ectool will prompt for the password if not supplied.

API Commands - User/Group Management

331

Example
ectool --server EAVMXP login "Ellen Ernst" "ee123"

Back to Top

logout
Logs out of the client session.

Arguments Descriptions

None

Positional arguments
None

Response
None or a status OK message.

ec-perl
Example
$cmdr->logout();

ectool
Example
ectool logout

Back to Top

modifyGroup
Modifies an existing group.

You must specify groupName.

Arguments Descriptions

groupName The name of the group to modify.

migrateSettings <targetGroupName> Use this argument to specify the new name to
which the settings need to be moved.

newName Supply any name of your choice to rename the group.

removeAllUsers <Boolean flag - 0|1|true|false>

ElectricCommander

332

Arguments Descriptions

userNames
user1 [user2...] Provide a complete list of names for the
group. These names will replace existing names in the group. Any
name with spaces must be enclosed in double-quotes.

Positional arguments
groupName

Response
None or a status OK message.

ec-perl
syntax:$cmdr->modifyGroup(<groupName>, {...});

Examples
$cmdr->modifyGroup("Build Users", {userName => "dduncan"});

$cmdr->modifyGroup("Build Users", {userName => ["dduncan", "jack"]});

ectool
syntax:ectool modifyGroup <groupName> ...

Examples
ectool modifyGroup "Build Users" --userNames dduncan

ectool modifyGroup "Build Users" --userNames dduncan jack

Back to Top

modifyUser
Modifies an existing local user.
Note: This API does not apply to non-local users.

User or Group Lists

The commands createUser and modifyUser can have an optional argument called groupNames.
The commands createGroup and modifyGroup can have an optional argument named userNames.
In each case, the optional argument is followed by a list of groups or names.

Using ectool, your command string would be:

ectool createGroup "New Group Name" --userNames "A Adams" "B Barker"

To make this call via the Perl API, create a list of names and then pass a reference to the list as
an optional parameter.
Note: The name of the optional parameter is singular, "userName" or "userGroup," not the plural
form used by ectool.

Here is an example using the Perl API:

Run the procedure - pass a reference to the list of names

API Commands - User/Group Management

333

$xPath = $cmdr->createGroup("New Group Name", {

"userName" => ['A Adams', 'B Burns'] });

You must specify a userName.

Arguments Descriptions

email The user's email address.

fullUserName The user's full name. For example, "John Smith".

groupNames group1 [group2 ...] Assigns the user to one or more groups and
removes the user from any groups not included in the list.

migrateSettings <targetUserName> Use this option to specify the new name to
which the settings need to be moved.

newName The user's new name (for example, if changing an existing user's
surname).

password Supply a new password to set for the user.

removeFromAllGroups <Boolean flag - 0|1|true|false> If set to 1, this user will be
removed from all groups.

sessionPassword If changing the user's password, you must supply the password
used in the "login" command also.

userName The name used by the user to login and/or receive email.
For example, "jsmith".

Positional arguments
userName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->modifyUser(<userName>, {<optionals>});

Example
$cmdr->modifyUser("Betty Barker", {email => "bbarker@abc.com"});

ectool
syntax: ectool modifyUser <userName> ...

Example
ectool modifyUser "Betty Barker" --email "bbarker@abc.com"

Back to Top

ElectricCommander

334

removeUsersFromGroup
Removes one or more users from a particular group.

You must specify a groupName and one or more user names.

Arguments Descriptions

groupName The name of the group from which to remove users.

userNames The list of users to remove from the group.

Positional arguments
groupName, userNames

Response
None or a status OK message.

ec-perl
syntax: $cmdr->removeUsersFromGroup(<groupName>, {<optionals>});

Example
$cmdr->removeUsersFromGroup("Developers", {userName => ["John", "Jim", "Joey"]});

ectool
syntax: ectool removeUsersFromGroup <groupName> <userNames> ...

Example
ectool removeUsersFromGroup Developers --userNames John Jim Joey

Back to Top

API Commands - Workflow Management

335

API Commands - Workflow Management

completeWorkflow
deleteWorkflow
getState
getStates
getTransition
getTransitions
getWorkflow
getWorkflows
runWorkflow
transitionWorkflow

completeWorkflow
Marks a workflow as completed. When completed, transitions are no longer evaluated.

You must specify projectName and workflowName.

Arguments Descriptions

projectName The name of the project.

workflowName The name of the workflow.

Positional arguments
projectName, workflowName

Response
None or status OK message.

ec-perl
syntax: $cmdr->completeWorkflow (<projectName>, <workflowName>{...});

Example
$cmdr->completeWorkflow ("projectA", "workflow_26_201010121647");

ectool
syntax: ectool completeWorkflow <projectName> <workflowName>

Example
ectool completeWorkflow projectA workflow_26_201010121647

Back to Top

deleteWorkflow
Deletes a workflow, including all states and transitions.

ElectricCommander

336

You must specify a projectName and a workflowName.

Arguments Descriptions

deleteProcesses <Boolean flag - 0|1|true|false>

projectName The name of the project containing the workflow to delete.

workflowName The name of the workflow.

Positional arguments
projectName, workflowName

Response
None or status OK message.

ec-perl
syntax: $cmdr->deleteWorkflow (<projectName>, <workflowName>);

Example
$cmdr->deleteWorkflow ("projectA", "workflow_26_201010121647");

ectool
syntax: ectool deleteWorkflow <projectName> <workflowName> ...

Example
ectool deleteWorkflow projectA workflow_26_201010121647

Back to Top

getState
Finds a state by name.

You must specify projectName, workflowName, and stateName.

Arguments Descriptions

projectName The name of the project containing the state.

stateName The name of the state.

workflowName The name of the workflow.

Positional arguments
projectName, workflowName, stateName

API Commands - Workflow Management

337

Response
One state element.

ec-perl
syntax: $cmdr->getState (<projectName>, <workflowName>, <stateName>);

Example
$cmdr->getState ("projectA", "workflow_26_201010121647", "build");

ectool
syntax: ectool getState <projectName> <workflowName> <stateName>

Example
ectool getState projectA workflow_26_201010121647 build

Back to Top

getStates
Retrieves all states in a workflow.

You must specify projectName and workflowName.

Arguments Descriptions

projectName The name of the project containing the state.

workflowName The name of the workflow.

Positional arguments
projectName, workflowName

Response
One or more state elements.

ec-perl
syntax: $cmdr->getStates (projectName>, <workflowName>);

Example
$cmdr->getStates ("projectA", "workflow_26_201010121647");

ectool
syntax: ectool getStates <projectName> <workflowName>

Example
ectool getStates projectA workflow_26_201010121647

Back to Top

ElectricCommander

338

getTransition
Finds a transition by name.

You must specify projectName, workflowName, stateName, and transitionName.

Arguments Descriptions

projectName The name of the project containing the transition.

stateName The name of the state.

transitionName The name of the transition.

workflowName The name of the workflow.

Positional arguments
projectName, workflowName, stateName, transitionName

Response
One transition element.

ec-perl
syntax: $cmdr->getTransition (projectName>, <workflowName>, <stateName>,
<transitionName>);

Example
$cmdr->getTransition ("projectA", "workflow_26_201010121647", "build", "build2tes
t");

ectool
syntax: ectool getTransition <projectName> <workflowName> <stateName>
<transitionName>

Example
ectool getTransition projectA workflow_26_201010121647 build build2test

Back to Top

getTransitions
Retrieves all transitions in a workflow.

You must specify projectName, workflowName, and stateName.

Arguments Descriptions

projectName The name of the project containing the transition.

API Commands - Workflow Management

339

Arguments Descriptions

stateName The name of the state.

targetState The target state for the transition definition.

workflowName The name of the workflow.

Positional arguments
projectName, workflowName, stateName

Response
One or more transition elements.

ec-perl
syntax: $cmdr->getTransitions (<projectName>, <workflowName>, <stateName>);

Example
$cmdr->getTransitions ("projectA", "workflow_26_201010121647", "build");

ectool
syntax: ectool getTransitions <projectName> <workflowName> <stateName>

Example
ectool getTransitions projectA workflow_26_201010121647 build

Back to Top

getWorkflow
Finds a workflow by name.

You must specify a projectName and workflowName.

Arguments Descriptions

projectName The name of the project containing the workflow.

workflowName The name of the workflow.

Positional arguments
projectName, workflowName

Response
One workflow element.

ElectricCommander

340

ec-perl
syntax: $cmdr->getWorkflow (<projectName>, <workflowName>);

Example
$cmdr->getWorkflow ("projectA", "BTD");

ectool
syntax: ectool getWorkflow <projectName> <workflowName>

Example
ectool getWorkflow projectA BTD

Back to Top

getWorkflows
Retrieves all workflow instances in a project.

You must specify a projectName.

Arguments Descriptions

projectName The name of the project containing the workflows.

Positional arguments
projectName

Response
Zero or more workflow elements.

ec-perl
syntax: $cmdr->getWorkflows (<projectName>);

Example
$cmdr->getWorkflows ("projectA");

ectool
syntax: ectool getWorkflows <projectName>

Example
ectool getWorkflows projectA

Back to Top

runWorkflow
Runs the specified workflow definition and returns the workflow name.

API Commands - Workflow Management

341

You must specify the projectName and workflowDefinitionName.

Arguments Descriptions

actualParameter

Specifies the values to pass as parameters to the workflow starting
state. Each parameter value is specified with an
actualParameterName and a value. The
actualParameterNamemust match the name of a formal
parameter on the starting state.

projectName The name of the project containing the workflow definition.

startingState The initial state of the workflow.

workflowDefinitionName The name of the workflow definition.

Positional arguments
projectName, workflowDefinitionName

Response
The workflow name is returned.

ec-perl
syntax: $cmdr->runWorkflow (<projectName>, <workflowDefinitionName>, {<optionals>});

Example
$cmdr->runWorkflow ("projectA", "BTD", {startingState => "build"});

ectool
syntax: ectool runWorkflow <projectName> <workflowDefinitionName> ...

Example
ectool runWorkflow projectA BTD --startingState build

Back to Top

transitionWorkflow
Manually transition from the active workflow state.

You must specify projectName, workflowName, stateName, and transitionName.

Arguments Descriptions

actualParameter

Specifies the values to pass as parameters to the transition's target
state. Each parameter value is specified with an
actualParameterName and a value. The
actualParameterNamemust match the name of a formal
parameter on the target state.

ElectricCommander

342

Arguments Descriptions

projectName The name of the project containing the workflow to transition.

stateName The name of the state.

transitionName The name of the transition.

workflowName The name of the workflow to transition.

Positional arguments
projectName, workflowName, stateName, transitionName

Response
None or status OK message.

ec-perl
syntax: $cmdr->transitionWorkflow (<projectName>, <workflowName>, <stateName,
 <transitionName>,{<optionals>});

Example
$cmdr->transitionWorkflow ("projectA", "workflow_26_201010121647", "build", "build2
test");

ectool
syntax: ectool transitionWorkflow <projectName> <workflowName> <stateName>
<transitionName> ...

Example
ectool transitionWorkflow projectA workflow_26_201010121647 build build2test

Back to Top

API Commands - Workflow Definition Management

343

API Commands - Workflow Definition Management

createStateDefinition
createTransitionDefinition
createWorkflowDefinition
deleteStateDefinition
deleteTransitionDefinition
deleteWorkflowDefinition
getStateDefinition
getStateDefinitions
getTransitionDefinition

getTransitionDefinitions
getWorkflowDefinition
getWorkflowDefinitions
modifyStateDefinition
modifyTransitionDefinition
modifyWorkflowDefinition
moveStateDefinition
moveTransitionDefinition

createStateDefinition
Creates a new state definition for a workflow definition. Optionally, a state may launch either a procedure or a
sub-workflow as its "process" when the state is entered.

You must specify projectName, workflowDefinitionName, and stateDefinitionName.

Arguments Descriptions

actualParameter

Specifies the values to pass as parameters to the process. Each
parameter value is specified with an actualParameterName and
a value.
The actualParameterNamemust match the name of a formal
parameter on the process. For more information about parameters,
click here.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

projectName The name of the project.

startable <Boolean flag - 0|1|true|false> "True" means this state
definition can be the initial state of an instantiated workflow.

stateDefinitionName Choose any unique name of your choice for the state definition.
This name must be unique within the workflow definition.

subprocedure Name of the procedure launched when the state is entered.
Also requires subproject

subproject Name of the project containing the procedure or workflow
launched when the state is entered.

ElectricCommander

344

Arguments Descriptions

substartingState
Name of the starting state for the workflow launched when the
state is entered.
Also requires subproject and subworkflowDefinition

subworkflowDefinition
Name of the workflow definition launched when the state is
entered.
Also requires subproject

workflowDefinitionName The name of the workflow definition.

Positional arguments
projectName, workflowDefinitionName, stateDefinitionName

Response
One stateDefinition element.

ec-perl
syntax: $cmdr->createStateDefinition (<projectName>, <workflowDefinitionName>,
<stateDefinitionName>, {<optionals>});

Example
$cmdr->createStateDefinition ("ProjectA", "BTD", "build", {startable => 1,

subproject => "product",
subprocedure => "Master",
description => "free text"});

ectool
syntax: ectool createStateDefinition <projectName> <workflowDefinitionName>
<stateDefinitionName> ...

Example
ectool createStateDefinition ProjectA BTD build --startable 1 --subproject product

--subprocedure Master --description "free text"

Back to Top

createTransitionDefinition
Creates a new transition definition for workflow definition.

You must specify projectName, workflowDefinitionName, stateDefinitionName,
transitionDefinitionName, and targetState.

API Commands - Workflow Definition Management

345

Arguments Descriptions

actualParameter

Specifies the values to pass as parameters to the target state.
Each parameter value is specified with an
actualParameterName and a value.
The actualParameterNamemust match the name of a formal
parameter on the target state. For more information about
parameters, click here.

condition

A fixed text or text embedding property references that are
evaluated into a logical TRUE or FALSE. An empty string, a "0" or
"false" is interpreted as FALSE. Any other result string is
interpreted as TRUE. This field is ignored by the server if trigger
is set to manual.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

projectName The name of the project.

stateDefinitionName The name of the state definition.

targetState Target state for the transition definition.

transitionDefinitionName Choose any unique name of your choice for the transition
definition. This name must be unique within the state definition.

trigger Possible values are: onEnter|onStart|onCompletion|manual

workflowDefinitionName The name of the workflow definition.

Positional arguments
projectName, workflowDefinitionName, stateDefinitionName,
transitionDefinitionName, targetState

Response
One transitionDefinition element.

ec-perl
syntax: $cmdr->createTransitionDefinition (<projectName>, <workflowDefinitionName>,
 <stateDefinitionName>, <transitionDefinitionName>, <targetState>,

{<optionals>});

Example
$cmdr->createTransitionDefinition ("ProjectA", "BTD", "build", "build2test", "tes
t",

{trigger => "manual", description => "free text"});

ElectricCommander

346

ectool
syntax: ectool createTransitionDefinition <projectName> <workflowDefinitionName>
 <stateDefinitionName> <transitionDefinitionName> <targetState> ...

Example
ectool createTransitionDefinition ProjectA BTD build build2test test --trigger manu
al

--description "free text"

Back to Top

createWorkflowDefinition
Creates a new workflow definition for a project.

You must supply a projectName and a workflowDefinitionName.

Arguments Descriptions

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

projectName The name of the project containing the workflow.

workflowDefinitionName Choose any unique name of your choice for the workflow
definition. This name must be unique within the project.

workflowNameTemplate The name of the workflow template.

Positional arguments
projectName, workflowDefinitionName

Response
One workflowDefinition element.

ec-perl
syntax: $cmdr->createWorkflowDefinition (projectName>, <workflowDefinitionName>,

{<optionals>});

Example
$cmdr->createWorkflowDefinition ("projectA", "BTD", {description => "free text"});

ectool
syntax: ectool createWorkflowDefinition <projectName> <workflowDefinitionName> ...

API Commands - Workflow Definition Management

347

Example
ectool createWorkflowDefinition projectA BTD --description "free text"

Back to Top

deleteStateDefinition
Deletes a state definition.

You must specify a projectName, workflowDefinitionName, and stateDefinitionName.

Arguments Descriptions

projectName The name of the project containing the state definition.

workflowDefinitionName The name of the workflow definition.

stateDefinitionName The name of the state definition.

Positional arguments
projectName, workflowDefinitionName, stateDefinitionName

Response
None or status OK message.

ec-perl
syntax: $cmdr->deleteStateDefinition (<projectName>, <workflowDefinitionName>,
 <stateDefinitionName>);

Example
$cmdr->deleteStateDefinition ("projectA", "BTD", "build");

ectool
syntax: ectool deleteStateDefinition <projectName> <workflowDefinitionName>
<stateDefinitionName>

Example
ectool deleteStateDefinition projectA BTD build

Back to Top

deleteTransitionDefinition
Deletes a transition definition.

You must specify a projectName, workflowDefinitionName, stateDefinitionName, and
transitionDefinitionName.

ElectricCommander

348

Arguments Descriptions

projectName The name of the project containing the transition definition.

stateDefinitionName The name of the state definition.

transitionDefinitionName The name of the transition definition.

workflowDefinitionName The name of the workflow definition.

Positional arguments
projectName, workflowDefinitionName, stateDefinitionName, transitionDefinitionName

Response
None or status OK message.

ec-perl
syntax: $cmdr->deleteTransitionDefinition (<projectName>, <workflowDefinitionName>,
 <stateDefinitionName>, <transitionDefinitionName>);

Example
$cmdr->deleteTransitionDefinition ("projectA", "BTD", "build", "build2test");

ectool
syntax: ectool deleteTransitionDefinition <projectName> <workflowDefinitionName>
 <stateDefinitionName> <transitionDefinitionName>

Example
ectool deleteTransitionDefinition projectA BTD build build2test

Back to Top

deleteWorkflowDefinition
Deletes a workflow definition, including all state and transition definitions.

You must specify a projectName and a workflowDefinitionName

Arguments Descriptions

projectName The name of the project containing the workflow definition to
delete.

workflowDefinitionName The name of the workflow definition.

Positional arguments
projectName, workflowDefinitionName

API Commands - Workflow Definition Management

349

Response
None or status OK message.

ec-perl
syntax: $cmdr->deleteWorkflowDefinition (<projectName>, <workflowDefinitionName>);

Example
$cmdr->deleteWorkflowDefinition ("projectA", "BTD");

ectool
syntax: ectool deleteWorkflowDefinition <projectName> <workflowDefinitionName>

Example
ectool deleteWorkflowDefinition projectA BTD

Back to Top

getStateDefinition
Finds a state definition by name.

You must specify projectName, workflowDefinitionName, and stateDefinitionName.

Arguments Descriptions

projectName The name of the project containing the state definition.

stateDefinitionName The name of the state definition.

workflowDefinitionName The name of the workflow definition.

Positional arguments
projectName, workflowDefinitionName, stateDefinitionName

Response
One stateDefinition element.

ec-perl
syntax: $cmdr->getStateDefinition (<projectName>, <workflowDefinitionName>,
<stateDefinitionName>);

Example
$cmdr->getStateDefinition ("projectA", "BTD", "build");

ectool
syntax: ectool getStateDefinition <projectName> <workflowDefinitionName>
<stateDefinitionName>

ElectricCommander

350

Example
ectool getStateDefinition projectA BTD build

Back to Top

getStateDefinitions
Retrieves all state definitions in a workflow definition.

You must specify projectName and workflowDefinitionName.

Arguments Descriptions

includeFormalParameters <Boolean flag - 0|1|true|false>

projectName The name of the project containing the state definition.

startableOnly <Boolean flag - 0|1|true|false>

workflowDefinitionName The name of the workflow definition.

Positional arguments
projectName, workflowDefinitionName

Response
One or more stateDefinition elements.

ec-perl
syntax: $cmdr->getStateDefinitions (<projectName>, <workflowDefinitionName>,
{<optionals>});

Example
$cmdr->getStateDefinitions ("projectA", "BTD", {startableOnly => 1});

ectool
syntax: ectool getStateDefinitions <projectName> <workflowDefinitionName> ...

Example
ectool getStateDefinitions projectA BTD --startableOnly 1

Back to Top

getTransitionDefinition
Finds a transition definition by name.

You must specify projectName, workflowDefinitionName, stateDefinitionName,
transitionDefinitionName.

API Commands - Workflow Definition Management

351

Arguments Descriptions

projectName The name of the project containing the transition definition.

stateDefinitionName The name of the state definition.

transitionDefinitionName The name of the transition definition.

workflowDefinitionName The name of the workflow definition.

Positional arguments
projectName, workflowDefinitionName, stateDefinitionName, transitionDefinitionName

Response
One transitionDefinition element.

ec-perl
syntax: $cmdr->getTransitionDefinition (<projectName>, <workflowDefinitionName>,
 <stateDefinitionName>, <transitionDefinitionName>);

Example
$cmdr->getTransitionDefinition ("projectA", "BTD", "build", "build2test");

ectool
syntax: ectool getTransitionDefinition <projectName> <workflowDefinitionName>
 <stateDefinitionName> <transitionDefinitionName>

Example
ectool getTransitionDefinition projectA BTD build build2test

Back to Top

getTransitionDefinitions
Retrieves all transition definitions in a workflow definition.

You must specify projectName, stateDefinitionName, workflowDefinitionName.

Arguments Descriptions

projectName The name of the project containing the transition definitions.

stateDefinitionName The name of the state definition.

targetState The name of the target state.

workflowDefinitionName The name of the workflow definition.

ElectricCommander

352

Positional arguments
projectName, stateDefinitionName, workflowDefinitionName

Response
Zero or more transitionDefinition elements.

ec-perl
syntax: $cmdr->getTransitionDefinitions (<projectName>, <stateDefinitionName>,
 <workflowDefinitionName>, {<optionals>});

Example
$cmdr->getTransitionDefinitions ("projectA", "build", "BTD");

ectool
syntax: ectool getTransitionDefinitions <projectName> <stateDefinitionName>
 <workflowDefinitionName> ...

Example
ectool getTransitionDefinitions projectA build BTD

Back to Top

getWorkflowDefinition
Finds a workflow definition by name.

You must specify a projectName and a workflowDefinitionName.

Arguments Descriptions

projectName The name of the project containing the workflow definition.

workflowDefinitionName The name of the workflow definition.

Positional arguments
projectName, workflowDefinitionName

Response
One workflowDefinition element.

ec-perl
syntax: $cmdr->getWorkflowDefinition (<projectName>, <workflowDefinitionName>);

Example
$cmdr->getWorkflowDefinition ("projectA", "BTD");

ectool
syntax: ectool getWorkflowDefinition <projectName> <workflowDefinitionName>

API Commands - Workflow Definition Management

353

Example
ectool getWorkflowDefinition projectA BTD

Back to Top

getWorkflowDefinitions
Retrieves all workflow definitions in a project.

You must specify a projectName.

Arguments Descriptions

projectName The name of the project containing the workflow definitions.

Positional arguments
projectName

Response
Zero or more workflowDefinition elements.

ec-perl
syntax: $cmdr->getWorkflowDefinitions (<projectName>);

Example
$cmdr->getWorkflowDefinitions ("projectA");

ectool
syntax: ectool getWorkflowDefinitions <projectName>

Example
ectool getWorkflowDefinitions projectA

Back to Top

modifyStateDefinition
Modifies an existing state definition.

You must specify projectName, workflowDefinitionName, and stateDefinitionName.

Arguments Descriptions

actualParameter

Specifies the values to pass as parameters to the process. Each
parameter value is specified with an actualParameterName and
a value. The actualParameterNamemust match the name of a
formal parameter on the called process.

ElectricCommander

354

Arguments Descriptions

clearActualParameters <Boolean flag - 0|1|true|false>

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

newName The new name of your choice for the state definition.

projectName The name of the project containing the state definition.

startable <Boolean flag - 0|1|true|false>

stateDefinitionName The name of the state definition to modify.

subprocedure The name of the procedure launched when the state is entered.
Also requires subproject

subproject The name of the project containing the procedure or workflow
launched when the state is entered.

substartingState
The name of the workflow starting state that is launched when the
state is entered.
Also requires subproject and subworkflowDefinition

subworkflowDefinition
The name of the workflow definition launched when the state is
entered.
Also requires subproject

workflowDefinitionName The name of the workflow definition.

Positional arguments
projectName, workflowDefinitionName, stateDefinitionName

Response
One stateDefinition element.

ec-perl
syntax: $cmdr->modifyStateDefinition (<projectName>, <workflowDefinitionName>,
<stateDefinitionName>);

Example
$cmdr->modifyStateDefinition ("projectA", "BTD", "build",

{startable => 1,
subproject => "factory",

API Commands - Workflow Definition Management

355

subprocedure => "Master",
description => "sample text"});

ectool
syntax: ectool modifyStateDefinition <projectName> <workflowDefinitionName>
 <stateDefinitionName> ...

Example
ectool modifyStateDefinition projectA BTD build --startable 1 --subproject factory

--subprocedure Master --description "sample text"

Back to Top

modifyTransitionDefinition
Modifies an existing transition definition.

You must specify projectName, workflowDefinitionName, stateDefinitionName, and
transitionDefinitionName.

Arguments Descriptions

actualParameter

Specifies the values to pass as parameters to the target state.
Each parameter value is specified with an
actualParameterName and a value. The
actualParameterNamemust match the name of a formal
parameter on the target state.

clearActualParameters <Boolean flag - 0|1|true|false>

condition

A fixed text or text embedded property references that are
evaluated into a logical "true" or "false". An empty string, a "0" or
"false" is interpreted as "false". Any other result string is interpreted
as "true". This field is ignored by the server if trigger is set to
manual.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

newName A new name of your choice for the transition definition--must be a
unique name within the workflow.

projectName The name of the project containing the transition definition to
modify.

stateDefinitionName The name of the state definition.

ElectricCommander

356

Arguments Descriptions

targetState The target state for the transition definition.

transitionDefinitionName The name of the transition definition to modify.

trigger Possible values are: onEnter|onStart|onCompletion|manual

workflowDefinitionName The name of the workflow definition.

Positional arguments
projectName, workflowDefinitionName, stateDefinitionName,
transitionDefinitionName

Response
One transitionDefinition element.

ec-perl
syntax: $cmdr->modifyTransitionDefinition (<projectName>, <workflowDefinitionName>,
 <stateDefinitionName>, <transitionDefinitionName>, {<optionals>});

Example
$cmdr->modifyTransitionDefinition ("projectA", "BTD", "build", "build2test",

{targetState => "deploy",
trigger => "onCompletion",

description => "bypass all tests"});

ectool
syntax: ectool modifyTransitionDefinition <projectName> <workflowDefinitionName>
 <stateDefinitionName> <transitionDefinitionName> ...

Example
ectool modifyTransitionDefinition projectA BTD build build2test

--targetState deploy
--trigger onCompletion
–-description "bypass all tests"

Back to Top

modifyWorkflowDefinition
Modifies an existing workflow definition.

You must specify projectName and workflowDefinitionName.

API Commands - Workflow Definition Management

357

Arguments Descriptions

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

newName The new name of your choice for the workflow definition--must be
a unique name within the workflow.

projectName The name of the project containing the workflow definition to
modify.

workflowDefinitionName The name of the workflow definition to modify.

workflowNameTemplate The template used to determine default names for workflows
launched from a workflow definition.

Positional arguments
projectName, workflowDefinitionName

Response
One workflowDefinition element.

ec-perl
syntax: $cmdr->modifyWorkflowDefinition (<projectName>, <workflowDefinitionName>,
{<optionals>});

Example
$cmdr->modifyWorkflowDefinition ("projectA", "BTD",

{newName => "BuildTestDeploy",
description => "changed name"});

ectool
syntax: ectool modifyWorkflowDefinition <projectName> <workflowDefinitionName> ...

Example
ectool modifyWorkflowDefinition projectA BTD

--newName "BuildTestDeploy"
--description "changed name"

Back to Top

moveStateDefinition
Moves a state definition within a workflow definition.

You must specify projectName, workflowDefinitionName, and stateDefinitionName.

ElectricCommander

358

Arguments Descriptions

beforeStateDefinition

Use this option to reorder state definitions in a workflow definition.
The state definition (stateDefinitionName) will be moved to a
position just before the state definition "named" by this option.
If omitted, the state definition is moved to the end of the workflow
definition.

projectName The name of the project containing the state definition.

stateDefinitionName The name of the state definition to move.

workflowDefinitionName The name of the workflow definition.

Positional arguments
projectName, workflowDefinitionName, stateDefinitionName

Response
None or status OK message.

ec-perl
syntax: $cmdr->moveStateDefinition (<projectName>, <workflowDefinitionName>,
 <stateDefinitionName>, {<optionals>});

Example
$cmdr->moveStateDefinition ("projectA", "BTD", "deploy",

{beforeStateDefinition => "test"});

ectool
syntax: ectool moveStateDefinition <projectName> <workflowDefinitionName>
 <stateDefinitionName> ...

Example
ectool moveStateDefinition projectA BTD deploy --beforeStateDefinition test

Back to Top

moveTransitionDefinition
Moves a transition definition within a workflow definition.

You must specify projectName, workflowDefinitionName, stateDefinitionName, and
transitionDefinitionName.

API Commands - Workflow Definition Management

359

Arguments Descriptions

beforeTransitionDefinition

Use this option to move a transition definition in a workflow
definition. The transition definition is moved to a position just
before the transition definition named by this option.
If omitted, the transition definition is moved to the end of the
workflow definition.

projectName The name of the project containing the transition definition.

stateDefinitionName The name of the state definition.

transitionDefinitionName The name of the transition definition to move.

workflowDefinitionName The name of the workflow definition.

Positional arguments
projectName, workflowDefinitionName, stateDefinitionName,
transitionDefinitionName

Response
None or status OK message.

ec-perl
syntax: $cmdr->moveTransitionDefinition (<projectName>, <workflowDefinitionName>,
 <stateDefinitionName>, <transitionDefinitionName>, {<optionals>});

Example
$cmdr->moveTransitionDefinition ("projectA", "BTD", "Build", "in",

{beforeTransitionDefinition => "out"});

ectool
syntax: ectool moveTransitionDefinition <projectName> <workflowDefinitionName>
 <stateDefinitionName> <transitionDefinitionName> ...

Example
ectool moveTransitionDefinition projectA BTD Build in--beforeTransitionDefinition o
ut

Back to Top

ElectricCommander

360

API Commands - Workspace Management

createWorkspace
deleteWorkspace
getWorkspace
getWorkspaces
modifyWorkspace

createWorkspace
Creates a new workspace.

A workspace definition consists of three paths to access the workspace in various ways:

agentDrivePath

agentUncPath - The agent uses agentUncPath and agentDrivePath to compute the drive mapping
needed to make agentDrivePath valid in the step (see examples below).

agentUnixPath

Examples for agentDrivePath and agentUncPath:

agentDrivePath agentUncPath Result from running a step in "job123" that
uses this workspace

 N:\ \\server\share
The agent maps\\server\share to drive n:
and runs the step in n:\job123.

 N:\sub1
\\server\share\dir1\sub
1

The agent maps\\server\share\dir1 to
driven:and runs the step in n:\sub1\job123.

 N:\sub1 \\server\share\dir1 Invalid! No mapping can be deduced from this
pair of values.

 C:\ws C:\ws
A local workspace on the agent. No drive
mapping is needed. The job step runs in
c:\ws\job123.

 C:\ws Same as if agentUncPath were set identical to
agentDrivePath.

You must specify a workspaceName.

Arguments Descriptions

agentDrivePath Drive-letter-based path used by Windows agents to access the
workspace in steps.

API Commands - Workspace Management

361

Arguments Descriptions

agentUncPath

UNC path used by Windows Commander Web servers to access
the workspace. The agent uses agentUncPath and
agentDrivePath to compute the drive mapping needed for
making agentDrivePath valid in the step.

agentUnixPath UNIX path used by UNIX agents and Linux Commander Web
servers to access the workspace.

credentialName

Credential to use when connecting to a network location.
credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

local <Boolean flag - 0|1|true|false> Set to "true", the workspace is
local.

workspaceDisabled <Boolean flag - 0|1|true|false> Set to "true", the workspace is
disabled.

workspaceName Any name you choose to name this workspace.

zoneName The name of the zone where this workspace resides.

Positional arguments
workspaceName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->createWorkspace(<workspaceName>, {<optionals>});

Example
$cmdr->createWorkspace('test', {agentDrivePath => 'c:/workspace',

agentUncPath => 'c:/workspace',
agentUnixPath => '/mnt/server/workspace'});

ElectricCommander

362

ectool
syntax: ectool createWorkspace <workspaceName> ...

Example
ectool createWorkspace test --agentDrivePath c:/workspace --agentUncPath

c:/workspace --agentUnixPath '/mnt/server/workspace'

Back to Top

deleteWorkspace
Deletes a workspace.

You must specify the workspaceName.

Arguments Descriptions

workspaceName The name of the workspace to delete.

Positional arguments
workspaceName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->deleteWorkspace(<workspaceName>);

Example
$cmdr->deleteWorkspace("test");

ectool
syntax: ectool deleteWorkspace <workspaceName>

Example
ectool deleteWorkspace test

Back to Top

getWorkspace
Retrieves a workspace by name.

You must specify the workspaceName.

Arguments Descriptions

workspaceName The name of the workspace to retrieve.

API Commands - Workspace Management

363

Positional arguments
workspaceName

Response
One workspace element.

ec-perl
syntax: $cmdr->getWorkspace(<workspaceName>);

Example
$cmdr->getWorkspace("test");

ectool
syntax: ectool getWorkspace <workspaceName>

Example
ectool getWorkspace test

Back to Top

getWorkspaces
Retrieves all workspaces.

Arguments Descriptions

None

Positional arguments
None

Response
Zero or more workspace elements.

ec-perl
syntax: $cmdr->getWorkspaces();

Example
$cmdr->getWorkspaces();

ectool
syntax: ectool getWorkspaces

Example
ectool getWorkspaces

Back to Top

ElectricCommander

364

modifyWorkspace
Modifies an existing workspace.

A workspace definition consists of three paths to access the workspace in various ways:

agentDrivePath

agentUncPath - The agent uses agentUncPath and agentDrivePath to compute the drive mapping
 needed to make agentDrivePath valid in the step (see examples below).

agentUnixPath

Examples for agentDrivePath and agentUncPath:

agentDrivePath agentUncPath Result from running a step in "job123" that
uses this workspace

N:\ \\server\share
The agent maps \\server\share to drive n:
and runs the step in n:\job123.

N:\sub1
\\server\share\dir1\sub
1

The agent maps \\server\share\dir1 to
drive n: and runs the step in
n:\sub1\job123.

N:\sub1 \\server\share\dir1
Invalid! No mapping can be deduced from this
pair of values.

C:\ws C:\ws
A local workspace on the agent. No drive
mapping is needed. The job step runs in
c:\ws\job123.

C:\ws Same as if agentUncPath were set identical to
agentDrivePath.

You must specify a workspaceName.

Arguments Descriptions

agentDrivePath Drive-letter-based path used by Windows agents to access the
workspace in steps.

agentUncPath

UNC path used by Windows Commander web servers to access
the workspace. The agent uses agentUncPath and
agentDrivePath to compute the drive mapping needed for
making agentDrivePath valid in the step.

agentUnixPath UNIX path used by UNIX agents and Linux Commander web
servers to access the workspace.

API Commands - Workspace Management

365

Arguments Descriptions

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

description

A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html> tags. The only HTML tags allowed in the
text are: <a>
 <div> <dl> <i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

local <Boolean flag - 0|1|true|false> Set to "true", the workspace is
local.

newName Supply any name of your choice to rename the workspace.

workspaceName The name of the workspace to modify.

workspaceDisabled <Boolean flag - 0|1|true|false> Set to "true", the workspace is
disabled.

zoneName The name of the zone where this workspace resides.

Positional arguments
workspaceName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->modifyWorkspace(<workspaceName>, {<optionals>});

Example
$cmdr->modifyWorkspace("test", {description => "my test workspace"});

ectool
syntax: ectool modifyWorkspace <workspaceName> ...

Example
ectool modifyWorkspace test --description "my test workspace"

Back to Top

ElectricCommander

366

API Commands - Miscellaneous Management

changeOwner
clone
countObjects
deleteObjects
export
findObjects
getObjects
import

changeOwner
Changes the owner of an object.

You must specify an object name.

Note: The modify privilege on the "admin" system ACL is required to change an object's owner.
For email notifiers, the owner can be changed if the current user has sufficient privileges to have
deleted the object and recreated it.

Arguments Descriptions

credentialName

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object. Requires a
qualifying project name.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

configName The name of the email configuration.

groupName The full name of a group. For Active Directory and LDAP, this is a
full DN.

newOwnerName The name of the new owner for this object. Defaults to the current
user.

notifierName The name of the email notifier.

pluginName The name of the plugin - the plugin key for a promoted plugin or a
plugin key and version for an unpromoted plugin.

procedureName The name of the procedure - may be a path to the procedure.
Also requires projectName

API Commands - Miscellaneous Management

367

Arguments Descriptions

projectName
The name of the project - may be a path. The project name is
ignored for credentials, procedure, steps, and schedules if it is
specified as a path.

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

resourceName The name of the resource.

scheduleName The name of the schedule - may be a path to the schedule.
Also requires projectName

stateDefinitionName The name of the state definition.

stepName The name of the step - may be a path to the step.
Also requires projectName and procedureName

transitionDefinitionName The name of the transition definition.

userName The full name of the user. For Active Directory and LDAP, the
name may be user@domain.

workflowDefinitionName The name of the workflow definition.

workspaceName The name of the workspace.

Positional arguments
None

Response
Returns the modified object.

ec-perl
syntax: $cmdr->changeOwner({...});

Example
$cmdr->changeOwner ({"projectName"=>"Sample Project"});

ectool
syntax: ectool changeOwner ...

Example
ectool changeOwner –-projectName "Sample Project"

Back to Top

ElectricCommander

368

clone
Makes a copy of an existing ElectricCommander-platform object. For example: credential, directory provider,
email configuration, email notifier, project, procedure, property sheet, resource, resource pool, schedule, state
definition, step, transition definition, workflow definition, and workspace.

Note: You cannot clone parameters.

IMPORTANT:
To find the entity you want to clone, you must specify the following arguments:
- A new name for the cloned object (cloneName)
- Locator arguments

For example, if you want to clone a project, you must specify the name of the project that you want to clone.

Arguments Descriptions

Naming

cloneName

The cloneName specifies the path to the new object, possibly in an
alternate location.
If no container path is specified, the new object is created inside
the same container as the original.
If no name is specified, the server will generate a name.

Locators

applicationName The name of the application container of the property sheet which
owns the property; must be unique among all projects.

applicationTierName The name of the application tier container of the property sheet
which owns the property.

artifactName The name of the artifact container of the property sheet which owns
the property.

artifactVersionName The name of the artifactVersion container of the property sheet
which owns the property..

componentName The name of the component container of the property sheet which
owns the property.

configName The name of the emailConfig container that owns the property.

API Commands - Miscellaneous Management

369

Arguments Descriptions

credentialName

The name of the credential container of the property sheet which
owns the property.

credentialName can be one of two forms:
relative
(for example, "cred1") - the credential is assumed to be in the
project that contains the request target object.
absolute
(for example, "/projects/BuildProject/credentials/cred1") - the
credential can be from any specified project, regardless of the
target object’s project.

environmentName The name of the environment container of the property sheet which
owns the property; must be unique among all projects.

environmentTierName The name of the environment tier container of the property sheet
which owns the property.

gatewayName The name of the gateway container of the property sheet.

groupName The name of the group container of the property sheet which owns
the property.

jobId
The unique ElectricFlow-generated identifier (a UUID) for a job,
assigned automatically when the job is created. Also accepts a job
name assigned to the job by its name template.

jobStepId The unique identifier for a job step, assigned automatically when
the job step is created.

notifierName The name of the email notifier.

objectId The object id as returned by FindObjects.

path The property path that specifies the object.

pluginName The name of the plugin container of the property sheet which owns
the property.

procedureName The name of the procedure you want to clone.
Also requires projectName

processName The name of the process, if the container is a process or process
step.

processStepName The name of the process step, if the container is a process step.

projectName The name of the project you want to clone.

ElectricCommander

370

Arguments Descriptions

propertySheetId The unique identifier for a property sheet, assigned automatically
when the property sheet is created.

providerName The LDAP or Active Directory provider name.

resourceName The name of the resource you want to clone.

resourcePoolName The name of a pool containing one or more resources.

scheduleName The name of the schedule you want to clone.
Also requires projectName

stateDefinitionName The name of the state definition.

stateName The name of the state.

stepName The name of the step you want to clone.
Also requires projectName and procedureName

systemObjectName

System object names include:

admin|artifacts|directory|emailConfigs|forceAbort|l
icensing|log|
plugins|priority|projects|repositories|resources|se
rver|session|
workspaces|zonesAndGateways

transitionDefinitionName The name of the transition definition.

transitionName The name of the transition.

userName The name of the user where you may need to expand the string.

workflowDefinitionName The name of the workflow definition.

workflowName The name of the workflow.

workspaceName The name of the workspace you want to clone.

zoneName The name of the zone.

Positional arguments
None.

Response
Returns the name of the new cloned object.

Using the clone command successfully depends on the context of the locator arguments in your system.
The command works when the arguments are specified correctly.

API Commands - Miscellaneous Management

371

ec-perl
syntax: $cmdr->clone ...;

Examples
Create a copy of a procedure, as though you clicked the "Copy"
button in the UI.

$xPath = $cmdr->clone(
{

projectName => "EC-Examples",
procedureName => "set Property"

}
);

Create a copy of a procedure providing a name for the copy.

$xPath = $cmdr->clone(
{

projectName => "EC-Examples",
procedureName => "set Property",
cloneName => "set Property 2"

}
);

Create a copy of a procedure step.

$xPath = $cmdr->clone(
{

projectName => "EC-Examples",
procedureName => "set Property",
cloneName => "set Property 2",
stepName => 'setProperty'

}
);

Copy a step using the path.

$xPath = $cmdr->clone(
{

path =>
'/projects/EC-Examples/procedures/set Property/steps/setProperty'

}
);

ectool
syntax: ectool clone ...

ElectricCommander

372

Examples
Create a copy of a procedure, as though you clicked the "Copy"
button in the UI.

$ ectool clone --projectName 'EC-Examples' --procedureName 'set Property'
<response requestId="1" nodeId="192.168.16.238">

<cloneName>Set Property copy</cloneName>
</response>

Create a copy of a procedure providing a name for the copy.

$ ectool clone --projectName 'EC-Examples' --procedureName 'set Property'
--cloneName 'set Property 2'
<response requestId="1" nodeId="192.168.16.238">

<cloneName>set Property 2</cloneName>
</response>

Create a copy of a procedure step.

$ ectool clone --projectName 'EC-Examples' --procedureName 'set Property'
--stepName 'setProperty
<response requestId="1" nodeId="192.168.16.238">

<cloneName>setProperty copy</cloneName>
</response>

Create a copy of a procedure step using the full path.

$ ectool clone --path '/projects/EC-Examples/procedures/set Property/steps/setPrope
rty'
<response requestId="1" nodeId="192.168.16.238">

<cloneName>setProperty copy</cloneName>
</response>

Back to Top

countObjects
This API returns the count of objects specified by the provided filter.

API Commands - Miscellaneous Management

373

Arguments Descriptions

filter

A list of zero or more filter criteria definitions used to define objects
to find.

Each element of the filter list is a hash reference containing one
filter criterion. You can specify several filter criteria, in which case
an object must meet all filter criteria to be included in the result.
See the code example below for instructions on forming the list
and passing it to the ElectricCommander Perl API.

Two types of filters:
"property filters" - used to select objects based on the value of the
object's intrinsic or custom property

"boolean filters" ("and", "or", "not") - used to combine one or more
filters using boolean logic.

Each "property filter" consists of a property name to test and an
operator to use for comparison. The property can be either an
intrinsic property defined by Commander or a custom property
added by the user. Each operator takes zero, one, or two operands
to compare against the desired property.

Property filter operators are:
between (2 operands)
contains (1)
equals (1)
greaterOrEqual (1)
greaterThan (1)
in (1)
lessOrEqual (1)
lessThan (1)
like (1)
notEqual (1)
notLike (1)
isNotNull (0)
isNull (0)

A boolean filter is a boolean operator and an array of one or more
filters that are operands. Each operand can be either a property
filter or a boolean filter.

Boolean operators are:
not (1 operand)
and (2 or more operands)
or (2 or more operands)

ElectricCommander

374

Arguments Descriptions

objectType

This argument specifies the type of object to count.
Values include:

artifact
artifactVersion
credential
directoryProvider
emailconfig
emailNotifier
formalParameter
job
jobStep
logEntry
plugin
procedure
procedureStep

project
property
repository
resource
resourcePool
schedule
state
stateDefinition
transition
transitionDefinition
workflow
workflowDefinition
workspace

Positional arguments
objectType

Response
Returns the number of filtered objects.

ec-perl
syntax: $cmdr->countObjects(<objectType>, {<optionals>});

Example
use ElectricCommander();
my @artifactNameFilters;
Create the filter list for filtering on artifact name

push (@artifactNameFilters,
{"propertyName"=>"artifactName",

"operator"=>"contains",
"operand1"=>"groupId:installer-windows",

);
my $cmdr = new ElectricCommander();
Perform the countObjects query
my $reference=$cmdr->countObjects("artifactVersion",

{ filter=>
{operator=>"and",
filter=>[

{ propertyName=>"modifyTime" ,
operator=>"greaterOrEqual",# Give me all dates after or equal

arbinary date
"operand1"=>"2014-03-25T14:48:55.286Z",
}
,
{
operator => 'or', # apply 'or' for the filters in the list
filter => \@artifactNameFilter

API Commands - Miscellaneous Management

375

}
]

}
});

my $jobs=$reference->find('//response/count');
print $jobs;

ectool
Not supported.

Back to Top

deleteObjects
This API deletes objects specified by the provided filters.

Because of the complexity of specifying filter criteria, this API is not supported by ectool. However, all of its
capabilities
are supported through the Perl API.

You must specify an objectType and at least one filter.

Note: Currently, this API supports deleting artifact, artifactVersion, job, logEntry, project,
repository,
and workflow.

ElectricCommander

376

Arguments Descriptions

filter

Specify filters in a space-separated list: filter1 filter2 ...
A list of zero or more filter criteria definitions used to define objects
to find.

Each element of the filter list is a hash reference containing one
filter criterion. You may specify several filter criteria, in which case
an object must meet all filter criteria to be included in the result.
See the code example below for instructions on forming the list
and passing it to the ElectricCommander Perl API.

Two types of filters:
"property filters" - used to select objects based on the value of the
object's intrinsic or custom property
"boolean filters" ("and", "or", "not") - used to combine one or more
filters using boolean logic.

Each "property filter" consists of a property name to test and an
operator to use for comparison. The property can be either an
intrinsic property defined by Commander or a custom property
added by the user. Each operator takes zero, one, or two
operands to compare against the desired property.

Property filter operators are:

between (2 operands)
contains (1)
equals (1)
greaterOrEqual (1)
greaterThan (1)
in (1)
lessOrEqual(1)
lessThan (1)
like (1)
notEqual (1)
notLike (1)
isNotNull (0)
isNull (0)

A boolean filter is a boolean operator and an array of one or more
filters that are operands. Each operand can be either a property
filter or a boolean filter.

Boolean operators are:

not (1 operand)
and (2 or more operands)
or (2 or more operands)

maxIds
<id count>
The maximum number of objects that will be deleted. Defaults to
all objects that match the filter.

API Commands - Miscellaneous Management

377

Arguments Descriptions

objectType

This argument specifies the type of object to find.
Values include:
artifact|artifactVersion|job|logEntry|project|
repository|workflow

sorts

Specify "sorts" in a space-separated list: sort1 sort2 ...

An ordered list of sort criteria. Each list entry consists of a property
name and a sort order--either an ascending or descending sort
order. If you specify more than one sort criterion, the sorts are
applied according to the order they appear in the list.
The first item in the list is the primary sort key.
Each item in the list is a hash reference.
See the code example below for instructions on forming the list
and passing it to the Commander Perl API.
The sort order affects which objects are deleted if a maxIds value
limits the number of objects returned by the filter.

Positional arguments
objectType

Response
Returns a list of object references.

ec-perl
syntax: $cmdr->deleteObjects(<objectType>, {<optionals>});

Example
This code example illustrates using a Boolean filter for the deleteObjects command to find jobs matching
either of two patterns for the job name.

my @filterList;
push (@filterList, {"propertyName" => "jobName",

"operator" => "like",
"operand1" => "%-branch-%"});

push (@filterList, {"propertyName" => "jobName",
"operator" => "like",
"operand1" => "branch-%"});

my $result = $cmdr->deleteObjects('job',
{filter => [

{ operator => 'or',
filter => \@filterList,

}
]}

);
print "result = " . $result-> findnodes_as_string("n"). "\n";

ectool
Not supported.

ElectricCommander

378

Back to Top

export
Exports part or all server data to an XML file. By default, all data in the system is exported, although the "path"
option can be used to limit the output to a single tree of objects.

If a relative filename is specified, the file is created relative to the Commander server's data directory, which
by default is located:

For Windows: C:\Documents and Settings\All Users\Application Data\Electric Cloud\
 ElectricCommander

For Linux: /opt/electriccloud/electriccommander

You must specify a fileName.

Note: A full export/import preserves job IDs, but a partial import preserves names only, not IDs.

Arguments Descriptions

compress

<Boolean flag - 0|1|true|false> Use this argument to
compress XML output. If set to 1, the file will be compressed using
the “gzip” format and a “.gz” file extension will be added to the
filename. The default behavior is to compress the output.
Note: This is true for full exports only, not a partial export.

excludeJobs
<Boolean flag - 0|1|true|false> If set to 1, no job information
will be exported. This argument can be used to reduce the size of
the export file.

fileName

<remoteFileName> The specified directory for the file must already
exist in the system. If the path is local, it will be created on the
server. If it is a network path, it must be accessible by the server
and the server user.

path
<property path> Specifies the path for an object to be exported.
Any single object can be exported if it is specified using property
path syntax. The object and its sub-objects are exported.

relocatable

<Boolean flag - 0|1|true|false> If the --relocatable flag is
set to "true", a partial export (for example, with --path) will not
include object IDs, ACLs, system property sheets, create/modify
times, owners, email notifiers or lastModifiedBy information,
and the export file result will be much smaller than a normal
export. When this file is imported, the result should show one or
more objects owned by the importing user as if they were newly
created.
Note: The relocatable argument ONLY works with a partial export.
This argument is silently ignored during a full export.

API Commands - Miscellaneous Management

379

Arguments Descriptions

safeMode

The safeMode argument determines whether the server will be
quiesced before a full export begins and if yes, whether or not the
server will shutdown and restarted after the export completes.
Values are:

l none (default) - Do not quiesce the server during export.

l shutdown - Quiesce the server and shutdown when
complete.

l restart - Quiesce the server and restart when complete.

Note: The safeMode argument has no effect on partial exports.

withAcls
Modifies relocatable.
<Boolean flag - 0|1|true|false> If the withAcls flag is set to
"true", a relocatable partial export will include ACLs.

withNotifiers
Modifies relocatable.
<Boolean flag - 0|1|true|false> If the withNotifiers flag is
set to "true", a relocatable partial export will include email notifiers.

Positional arguments
fileName

Response
None or a status OK message.

ec-perl
syntax: $cmdr->export(<fileName>, {<optionals>});

Examples
$cmdr->export("c:\CommanderBackup\Mar 15 2007.xml");

$cmdr->export("c:\CommanderBackup\Test Proj.xml",
{path => "/projects[Test Proj]",

relocatable => "true",
withNotifiers => "true"});

ectool
syntax: ectool export <fileName> ...

Examples
ectool export "c:\CommanderBackup\Mar 15 2007.xml"

ectool export "c:\CommanderBackup\Test Proj.xml" --path "/projects[Test Proj]"
--relocatable true --withNotifiers true

Back to Top

ElectricCommander

380

findObjects
This command returns a sorted list of Commander objects based on an object type and a set of filter
criteria. This API can be used to find many, but not all, types of Commander objects and is used by the
Commander web interface to implement the Commander "Search" feature.

Because of the complexity of specifying filter criteria, this API is not supported by ectool. However, all
of its capabilities are supported through the Perl API.

You must specify an objectType.

API Commands - Miscellaneous Management

381

Arguments Descriptions

filter

A list of zero or more filter criteria definitions used to define objects
to find.

Each element of the filter list is a hash reference containing one
filter criterion. You can specify several filter criteria, in which case
an object must meet all filter criteria to be included in the result.
See the code example below for instructions on forming the list
and passing it to the ElectricCommander Perl API.

Two types of filters:
"property filters" - used to select objects based on the value of the
object's intrinsic or custom property

"boolean filters" ("and", "or", "not") - used to combine one or more
filters using boolean logic.

Each "property filter" consists of a property name to test and an
operator to use for comparison. The property can be either an
intrinsic property defined by Commander or a custom property
added by the user. Each operator takes zero, one, or two operands
to compare against the desired property.

Property filter operators are:
between (2 operands)
contains (1)
equals (1)
greaterOrEqual (1)
greaterThan (1)
in (1)
lessOrEqual (1)
lessThan (1)
like (1)
notEqual (1)
notLike (1)
isNotNull (0)
isNull (0)

A boolean filter is a boolean operator and an array of one or more
filters that are operands. Each operand can be either a property
filter or a boolean filter.

Boolean operators are:
not (1 operand)
and (2 or more operands)
or (2 or more operands)

maxIds

<id count>
The maximum number of object IDs that will be returned. If omitted,
default behavior returns IDs for the first 1000 objects matching the
query. If "0" is specified, the ID of every matching object is
returned.

ElectricCommander

382

Arguments Descriptions

numObjects

<full object count>
Specifies the number of full objects (not just the IDs) returned from
the findObjects request. This option allows selecting a limited
number of full objects to be returned in the initial request. The
returned "full objects" correspond to the objects from the beginning
of the list of object IDs. If numObjects is not specified, all full
objects in the list of object IDs are returned. Any and all objects
can be retrieved using the getObjects command.

objectType

This argument specifies the type of object to find.
Values include:

artifact
artifactVersion
credential
directoryProvider
emailconfig
emailNotifier
formalParameter
job
jobStep
logEntry
plugin
procedure
procedureStep

project
property
repository
resource
resourcePool
schedule
state
stateDefinition
transition
transitionDefinition
workflow
workflowDefinition
workspace

select

This is an unordered list of property names that specify additional
top-level properties to return for each object. See the code
example below for instructions on forming the list and passing it to
the ElectricCommander Perl API.

sort

This is an ordered list of sort criteria. Each list entry consists of a
property name and a sort order—either an ascending or
descending sort order. If you specify more than one sort criterion,
the sorts are applied according to the order they appear in the list.
The first item in the list is the primary sort key. Each item in the list
is a hash reference. See the code example below for instructions
on forming the list and passing it to the ElectricCommander Perl
API.

Positional arguments
objectType

Response
This command returns a list of object references. These references can be used in a subsequent call to the
getObjects command. Optionally, the command can return full objects from the result list also.

ec-perl
syntax: $cmdr->findObjects(<objectType>, {<optionals>});

API Commands - Miscellaneous Management

383

Example 1
This example illustrates using a Boolean filter for the findObjects command to find jobs matching either
of two patterns for the job name.

my @filterList;
push (@filterList, {"propertyName" => "jobName",

"operator" => "like",
"operand1" => "%-branch-%"});

push (@filterList, {"propertyName" => "jobName",
"operator" => "like",
"operand1" => "branch-%"});

my $result = $cmdr->findObjects('job',
{filter => [

{ operator => 'or',
filter => \@filterList,

}
]}

);
print "result = " . $result->findnodes_as_string("/"). "\n";

Example 2
This example uses both findObjects and getObjects to manage large result sets, and also uses
"select" to return the values of two properties in the returned objects.

Search for the first 10 matching objects and retrieve the first 2
my $xPath = $cmdr->findObjects("schedule",

{maxIds => "10",
numObjects => "2",

filter => [{propertyName => "createTime",
operator => "greaterOrEqual",
operand1 => "2007-01-20T00:00:00.000Z"},

{propertyName => "lastModifiedBy",
operator => "like",
operand1 => "adm%"}],

sort => [{propertyName => "projectName",
order => "ascending"},

{propertyName => "createTime",
order => "descending"}],

select => [{propertyName => 'prop1'},
{propertyName => 'prop2'}]

});
print "Return data from Commander:\n" . $xPath-> findnodes_as_string("/"). "\n";
Build a list of all the object id's
my @allObjectsList;
my $nodeset = $xPath->find('//response/objectId');
foreach my $node ($nodeset->get_nodelist)

{
my $objectId = $node-> string_value();
push (@allObjectsList, $objectId);
}

Retrieve the second 2 objects
my @objectList = @allObjectsList[2..3];
$xPath = $cmdr->getObjects(

{objectId => \@objectList});
print "Return data from Commander:\n" . $xPath->findnodes_as_string("/"). "\n";

ElectricCommander

384

Example 3
This code example illustrates composing filters combining 'or' and 'and' for finding artifacts matching either
of two
patterns for the artifact name, and a modify time before a specified date.

Create the filter list for filtering on artifact name.
my @artifactNameFilters;

push (@artifactNameFilters,
{"propertyName" => "artifactName",

"operator" => "equals",
"operand1" => "groupId:installer-windows"},

{propertyName => "artifactName",
operator => "equals",
operand1 => "groupId:installer-linux"

});
Perform the findObjects query
my $result = $cmdr->findObjects('artifactVersion',

{filter =>
{operator => "and", # 'and' the different filters below

filter => [
#filter 1
{

propertyName => "modifyTime",
operator => "lessOrEqual", # Give me all dates before
operand1 => "2011-11-010T00:00:00.000Z" # Arbitrary date

},
#filter 2
{

operator => 'or', # apply 'or' for the filters in the list
filter => \@artifactNameFilters

}
]
}

}
);
print "result = " . $result-> findnodes_as_string("/") . "\n";
Top-level filters are implicitly 'and'ed, so the above findObjects query
could also be written like this:
$result = $cmdr->findObjects('artifactVersion',

{filter => [
#filter 1
{

propertyName => "modifyTime",
operator => "lessOrEqual", # Give me all dates before
operand1 => "2011-11-010T00:00:00.000Z" # Arbitrary date

},
#filter 2
{

operator => 'or', # apply 'or' for the filters in the list
filter => \@artifactNameFilters

}
]
}

);

API Commands - Miscellaneous Management

385

Example 4

This example illustrates looking for a project whose name contains 'foo' and whose description equals 'bar'.

$commander->findObjects('project', {
filter => {operator => 'and',

filter => [{propertyName => 'projectName',
operator => 'contains',
operand1 => 'foo'},
{propertyName => 'description',
operator => 'equals',
operand1 => 'bar'}]}});

Example 5

This example illustrates looking for a procedure whose project name is 'foo' and whose procedure name is
either 'bar' or not 'bat'. (The top level filters are implicitly combined with 'and'.)

$commander->findObjects('procedure', {
filter => [{propertyName => 'projectName',

operator => 'equals',
operand1 => 'foo'},
{operator => 'or',
filter => [{propertyName => 'procedureName',

operator => 'equals',
operand1 => 'bar'},
{operator => 'not',
filter => {propertyName => 'procedureName',

operator => 'equals',
operand1 => 'bat'}}]}]});

Example 6

This example illustrates looking for a project with certain property values.

$commander->findObjects("project", {
filter => {operator => 'or',

filter => [{propertyName => 'prop1',
operator => 'equals',
operand1 => 'value1'},

{propertyName => 'prop2',
operator => 'equals',
operand1 => 'value2'},

{propertyName => 'prop3',
operator => 'isNull'}]}

ectool
Not supported.

Back to Top

getObjects
The getObjects command retrieves a list of full objects based on object IDs returned by findJobSteps or
findObjects. All requested objects must be of the same objectType. See findObjects for a list of object
types.

You must specify objectId.

ElectricCommander

386

Arguments Descriptions

objectId

A list of one or more object IDs that were returned by a prior call to
findObjects. Each list element is a string containing the ID. See
the code example below for instructions on forming the list and
passing it to the Commander Perl API.

select

This is an unordered list of projection definitions. Each list entry
consists of a property name identifying a top-level custom property
to return in addition to the rest of the object elements. See the code
example below for instructions on forming the list and passing it to
the Commander Perl API.

Positional arguments
objectId

Response
A list of full objects for the requested type.

ec-perl
syntax: $cmdr->getObjects({<optionals>});

Example 1
Code example for findObjects and getObjects:

This example runs within a Commander step, so a "login" is not needed.
use strict;
use ElectricCommander;
my $cmdr = ElectricCommander->new();

Search for the first 10 matching objects and retrieve the first 2
my $xPath = $cmdr->findObjects("schedule",

{maxIds => "10",
numObjects => "2",
filter => [{propertyName => "createTime",

operator => "greaterOrEqual",
operand1 => "2010-01-20T00:00:00.000Z"},

{propertyName => "lastModifiedBy",
operator => "like",
operand1 => "adm%"}],

sort => [{propertyName => "projectName",
order => "ascending"},

{propertyName => "createTime",
order => "descending"}],

select => [{propertyName => 'prop1'},
{propertyName => 'prop2'}]

});
print "Return data from Commander:\n" . $xPath-> findnodes_as_string("/"). "\n";
Build a list of all the object id's
my @allObjectsList;
my $nodeset = $xPath->find('//response/objectId');
foreach my $node ($nodeset->get_nodelist)

{

API Commands - Miscellaneous Management

387

my $objectId = $node-> string_value();
push (@allObjectsList, $objectId);
}

Retrieve the second 2 objects
my @objectList = @allObjectsList[2..3];
$xPath = $cmdr->getObjects(

{objectId => \@objectList});
print "Return data from Commander:\n" . $xPath-> findnodes_as_string("/") . "\n";

Example 2
Code example using a Boolean filter:

my $xpath = $N->findObjects('project', {
filter => {operator => 'and',

filter => [{propertyName => 'projectName',
operator => 'contains',
operand1 => $projectBase},

{propertyName => 'description',
operator => 'equals',
operand1 => 'foo'}]}});

ectool
Not supported.

Back to Top

import
Imports data from an XML export file.

You must specify either file or fileName.

Note: A full export/import preserves job IDs, but a partial import preserves names only, not IDs.
Use the preserveId option for a partial import if you need to retain the same (existing) job or workflow ID
number.

Arguments Descriptions

batchSize

<batch size> The number of objects imported before committing a
transaction in the database. This argument limits the object batch
size during import. Default value is 50 objects. If your objects are
unusually large, you can throttle this number down to 1, depending
on your available memory.
Note: The batchSize argument is applicable to full import
operations only.

disableSchedules
<Boolean flag - 0|1|true|false> If set to 1, imported
schedules will be disabled. This argument can modify imported
schedules after import and before they are used to start a job.

ElectricCommander

388

Arguments Descriptions

file

<localFileName> This is the path to a file on the client to import.
The file is uploaded from the client to the server. The specified
<file> value is sent as an attachment to the import API request.
The server detects the presence of the attachment and reads the
attached file instead of looking for a file on the server. The
maximum file size specified by file is determined by the
maximum upload-size server setting.
By default the limit is 50MB, so this option should be used only for
individually exported objects, not a full system export.

fileName

<remoteFileName> This is the name of a file on the server to
import.
The file path name must be accessible to the server process on
the server host.

force
<Boolean flag - 0|1|true|false> This argument can be used
to replace a single object if it already exists at the specified
property path.

path

<property path> Use this argument to import a single object to a
new location. For example, if a procedure was exported from
"project A", this argument allows you to import it into "project B", but
only if the export used the path option also.

preserveId If performing a partial import, using this option preserves the
original job ID or workflow ID.

Positional arguments
fileName

Response
None or a status OK message.

ec-perl
syntax examples: $cmdr->import(<fileName>, {...});

$cmdr->import({file => <localFileName>, ...);

Examples
$cmdr->import("/opt/TestProg.xml");

$cmdr->import({file => "c:\r.xml", path => "/projects[Test]");

ectool
syntax examples: ectool import <remoteFileName> ...

 ectool import --file <localFileName>

API Commands - Miscellaneous Management

389

Examples
ectool import /mnt/backups/fullBackkup.xml

ectool --file "c:\project.xml" --path "/projects[Test]"

Back to Top

ElectricCommander

390

API Response and Element Glossary

The first part of this help topic lists returned response container elements in alphabetical order. The Contents for
each container element lists all or most of the possible returned response elements—both simple and
subcontainer elements. Depending on your request, you may not see all elements in your response. If the value
of an element is "empty," typically that element is omitted from the response.

Note: Elements annotated with an * (asterik) may appear multiple times in a response.

The second part of this help topic is an element glossary for all single or "leaf" elements and subcontainer
elements. Click here to go to the glossary or notice that each response element is a link—each response
element is linked directly to its glossary entry.

access
Contains the set of effective permissions for a user or a group.

Contents:

changePermissionsPrivilege

executePrivilege

modifyPrivilege

readPrivilege

aclEntry
Contains an ACE (access control list entry) on an object for a given principal.

Contents:

aclEntryId

changePermissionsPrivilege

executePrivilege

modifyPrivilege

readPrivilege

principalName

principalType

actualParameter
An actualParameter object provides the value for a parameter, which is passed to a procedure when it is
invoked.
Actual parameters can be provided for jobs and nested subprocedures within a job. Actual parameters are
different
from "formal parameters"- formal parameters define the parameters a procedure is expecting, and actual
parameters
provide values to use at run-time.

API Response and Element Glossary

391

Contents:

actualParameterId

actualParameterName

createTime

modifyTime

value

artifact
Contains elements to define the artifact. An artifact is specified by groupId and artifactKey.
The name of an artifact is in this form "groupId:artifactKey". An artifact contains a collection of
artifactVersions.

Contents:

artifactId

artifactKey

artifactName

artifactVersionNameTemplate

createTime

description

groupId

lastModifiedBy

modifyTime

owner

propertySheetId

artifactVersion
A "concrete" version of an artifact that contains a collection of files stored in the artifact repository.

Contents:

artifactKey majorMinorPatch

artifactName modifyTime

artifactVersionId owner

artifactVersionName propertySheetId

artifactVersionState publisherJobId

buildNumber publisherJobName

createTime publisherJobStepId

ElectricCommander

392

dependentArtifacts qualifier

description repositoryName

groupId retrievers

lastModifiedBy version

credential
Contains a stored credential. The password is returned for the getFullCredential API only.

Contents:

credentialId

credentialName

createTime

description

lastModifiedBy

modifyTime

owner

password

projectName

propertySheetId

userName

databaseConfiguration
Contain configuration information about communicating with the database used to store server data.

Contents:

batchRequests

batchSize

completeUserName

customDatabaseDialect

customDatabaseDriver

customDatabaseUrl

databaseDialect

databaseDriver

databaseName

databaseType

databaseUrl

API Response and Element Glossary

393

hostName

port

statementCacheSize

userName

directoryProvider
Contains information about the configuration used to communicate with an external directory service (LDAP or
ActiveDirectory).

Contents:

commonGroupNameAttribute modifyTime

createTime name

description owner

directoryProviderId position

domainName propertySheetId

emailAttribute providerIndex

enableGroups providerName

fullUserNameAttribute providerType

groupBase realm

groupMemberAttributes url

groupMemberFilter useSSL

groupNameAttribute userBase

groupSearchFilter userNameAttribute

lastModifiedBy userSearchFilter

managerDn userSearchSubtree

testDirectoryProvider
Contains the results of testing a directory provider configuration as a list of test result blocks.

Each block contains a result with details about any failures. The findGroupsTest block also
includes a list of groups for the test user.

The findUserTest block includes information about the user or users that matched the test user name.

Contents:

findGroupsTest

testResult

details

ElectricCommander

394

groupList

group*

findUserTest

testResult

details

userList

userInfo*

email

fullUserName

mutable

providerName

userAuthenticationTest

testResult

details

emailConfig
Contains information about the configuration used to communicate with an email server.

Contents:

configName

createTime

description

emailConfigId

emailConfigName

lastModifiedBy

mailFrom

mailHost

mailPort

mailProtocol

mailUser

modifyTime

owner

propertySheetId

emailNotifier
Contains information about an email notifier.

API Response and Element Glossary

395

Contents:

condition

configName

container

createTime

description

destinations

emailNotifierId

eventType

formattingTemplate

lastModifiedBy

modifyTime

notifierName

owner

propertySheetId

formalParameter
Contains information about a formal parameter.

Contents:

container

createTime

defaultValue

description

expansionDeferred

formalParameterId

formalParameterName

lastModifiedBy

modifyTime

owner

required

type

gateway
Contains information about a gateway.

Contents:

ElectricCommander

396

createTime

description

gatewayDisabled

gatewayId

gatewayName

hostName1

hostName2

lastModifiedBy

modifyTime

owner

port1

port2

propertySheetId

resourceName1

resourceName2

group
Contains information about a defined group of users.

Contents:

createTime

groupId

groupName

lastModifiedBy

modifyTime

mutable

owner

propertySheet

propertySheetId

providerName

users

job
Contains information about a running or completed job. Different API calls will result in
different subsets of possible properties on the job. Refer to the specific API for details.

Contents:

API Response and Element Glossary

397

abortedBy licenseWaitTime

abortStatus liveProcedure

actualParameters* liveSchedule

callingState modifyTime

combinedStatus outcome

createTime owner

credentialName priority

deleted procedureName

directoryName projectName

elapsedTime propertySheet

errorCode propertySheetId

errorMessage resourceWaitTime

external runAsUser

finish scheduleName

jobId start

jobName status

jobStep* steps

lastModifiedBy totalWaitTime

launchedByUser workspaceWaitTime

jobStep
Contains information to define or locate a job step. Notice that the calledProcedure
element (subcontainer element) can contain multiple jobStep elements.

Contents:

abortedBy outcome

abortStatus owner

actualParameters parallel

alwaysRun postExitCode

assignedResourceName postLogFileName

broadcast postProcessor

calledProcedure precondition

 jobStep* procedureName

ElectricCommander

398

combinedStatus projectName

command propertySheetId

condition releaseExclusive

createTime releaseMode

delayUntil resourceName

elapsedTime resourceWaitTime

errorCode retries

errorHandling runAsUser

errorMessage runnable

exclusive runTime

exclusiveMode shell

exitCode start

external status

finish stepName

hostName subprocedure

jobId subproject

jobName timeLimit

jobStepId timeout

lastModifiedBy totalWaitTime

licenseWaitTime waitTime

liveProcedure workingDirectory

liveProcedureStep workspaceName

logFileName workspaceWaitTime

modifyTime

license
Contains information to specify the Commander license.

Contents:

createTime

customerName

evaluation

expirationDate

featureName

API Response and Element Glossary

399

gracePeriod

lastModifiedBy

licenseId

modifyTime

owner

productName

property*

propertySheet*

signature

licenseUsage
Contains information about Commander license usage.

Note: Your response will be different depending on how you are licensed for ElectricCommander currently.

Contents:

concurrentResources

inUseHosts

inUseProxiedHosts

maxHosts

maxProxiedHosts

concurrentUsers*

adminLicenseLastUse

adminLicenseUser

inUseLicenses

maxLicenses

license*

admin

expiration

lastUse

user

concurrentSteps

maxConcurrentSteps

runningSteps

logEntry
Contains information about log events generated anywhere in the system.

ElectricCommander

400

Contents:

category

container

containerName

deleted

logEntryId

message

principal

severity

subject

subjectName

time

object
Primarily, the object element is returned from a getAccess API request. If multiple objects are returned,
they are presented in an order beginning with the API requested object to the top-level object in the ACL
hierarchy. Your object-query response can contain one or more aclEntry containers.

Contents:

objectId

objectName

objectType

aclEntry*

plugin
Contains elements to define the plugin.

Contents:

author

createTime

description

label

lastModifiedBy

modifyTime

owner

pluginId

pluginKey

pluginName

API Response and Element Glossary

401

pluginVersion

project

projectName

promoted

propertySheetId

procedure
Contains elements to define the procedure.

Contents:

attachedCredentials

createTime

credentialName

description

jobNameTemplate

lastModifiedBy

modifyTime

owner

procedureId

procedureName

projectName

propertySheetId

resourceName

workspaceName

project
Contains all elements to define a project.

Contents:

attachedCredentials

createTime

credentialName

deleted

description

lastModifiedBy

modifyTime

owner

ElectricCommander

402

pluginName

projectId

projectName

propertySheetId

resourceName

workspaceName

property
Contains property sheets and various elements, depending on your query.

Contents:

createTime

description

expandable

lastModifiedBy

modifyTime

owner

path

propertyId

propertyName

propertySheet*

propertySheetId

value

propertySheet
Contains one or more property elements.

Contents:

createTime

lastModifiedBy

modifyTime

owner

property*

propertySheetId

API Response and Element Glossary

403

repository
Contains elements to define the artifact repository. The most useful elements in this
object are "repositoryName" and "url". Clients publishing/retrieving artifact versions search
repositories by name to obtain connection information.

Contents:

createTime

description

lastModifiedBy

modifyTime

owner

propertySheetId

repositoryDisabled

repositoryId

repositoryIndex

repositoryName

url

zoneName

resource
Contains elements to define a resource.

Contents:

agentState lastRunTime

alive modifyTime

code owner

details pools

message port

pingToken propertySheetId

protocolVersion proxyCustomization

state proxyHostName

time proxyPort

version proxyProtocol

artifactCacheDirectory repositoryNames

createTime resourceDisabled

description resourceId

ElectricCommander

404

exclusiveJobId resourceName

exclusiveJobName shell

exclusiveJobStepId stepCount

exclusiveJobStepName stepLimit

gateways trusted

hostName useSSL

hostOS workspaceName

hostPlatform zoneName

lastModifiedBy

resourcePool
Contains elements to define a resource pool.

Contents:

autoDelete

createTime

description

lastModifiedBy

lastResourceUsed

modifyTime

orderingFilter

owner

propertySheetId

resourceNames

resourcePoolDisabled

resosurcePoolId

resourcePoolName

resourceUsage
Contains information about resource usage. For any step running on a resource,
there is a resource usage record containing the ID and name of the job, job step,
and resource.

Contents:

jobId

jobName

jobStepId

API Response and Element Glossary

405

jobStepName

licenceWaitTime

resourceId

resourceName

resourcePoolId

resourcePoolName

resourceUsageId

resourceWaitTime

waitReason

workspaceWaitTime

schedule
Contains all elements to define a schedule.

Contents:

actualParameters monthDays

attachedCredentials owner

beginDate priority

createTime procedureName

credentialName projectName

description propertySheetId

endDate scheduleDisabled

interval scheduleId

intervalUnits scheduleName

lastModifiedBy startTime

lastRunTime stopTime

misfirePolicy timeZone

modifyTime weekDays

serverStatus
Contains elements to determine the status of the server.

Contents:

apiMonitor

longestCall

ElectricCommander

406

api

callId

description

elapsedTime

label

remoteAddress

start

userName

mostActiveCalls

totalCallCount

activeCalls

call*

api

callId

description

elapsedTime

label

remoteAddress

start

userName

recentCalls

call*

api

callId

description

elapsedTime

label

remoteAddress

start

userName

lastMessage

messages

message*

serverState

startTime

API Response and Element Glossary

407

serverVersion
Contains elements to specify the Commander server version.

Contents:

label

protocolVersion

schemaVersion

version

state
Contains elements for a state in a running or completed workflow.

Contents:

active

createTime

description

errorMessage

index

lastModifiedBy

modifyTime

owner

projectName

propertySheetId

stateId

stateName

subjob

subprocedure

subproject

substartingState

subworkflow

subworkflowDefinition

workflowName

stateDefinition
Contains elements for the state definition within a workflow definition.

Contents:

ElectricCommander

408

createTime

description

formalParameters

index

lastModifiedBy

modifyTime

owner

projectName

propertySheetId

startable

stateDefinitionId

stateDefinitionName

subprocedure

subproject

substartingState

subworkflowDefinition

workflowDefinitionName

step
Contains elements to specify or define a step.

Contents:

actualParameters postLogFileName

alwaysRun postProcessor

attachedCredentials precondition

attachedParameters procedureName

broadcast projectName

command propertySheetId

condition releaseExclusive

createTime releaseMode

credentialName* resourceName

description shell

errorHandling stepId

exclusive stepName

exclusiveMode subprocedure

API Response and Element Glossary

409

lastModifiedBy subproject

logFileName timeLimit

modifyTime timeLimitUnits

owner workingDirectory

parallel workspaceName

transition
Contains elements about a transition in a running or completed workflow.

Contents:

actualParameters

condition

createTime

description

index

lastModifiedBy

modifyTime

owner

projectName

propertySheetId

stateName

targetState

transitionId

transitionName

trigger

workflowName

transitionDefinition
Contains elements about a transition definition within a workflow definition.

Contents:

actualParameters

condition

createTime

description

index

ElectricCommander

410

lastModifiedBy

modifyTime

owner

projectName

propertySheetId

stateDefinitionName

targetState

transitionDefinitionId

transitionDefinitionName

trigger

workflowDefinitionName

user
Contains information about the current user.

Contents:

createTime

email

fullUserName

groups

lastModifiedBy

modifyTime

mutable

owner

propertySheetId

providerName

userId

userName

workflow
Contains elements about a running or completed workflow.

Contents:

activeState

callingState

completed

createTime

API Response and Element Glossary

411

deleted

elapsedTime

finish

lastModifiedBy

launchedByUser

liveWorkflowDefinition

modifyTime

owner

projectName

propertySheetId

start

startingState

workflowDefinitionName

workflowId

workflowName

workflowDefinition
Contains elements about a workflow definition.

Contents:

createTime

description

lastModifiedBy

modifyTime

owner

projectName

propertySheetId

workflowDefinitionId

workflowDefinitionName

workflowNameTemplate

workspace
Contains elements about a workspace.

Contents:

agentDrivePath

agentUncPath

ElectricCommander

412

agentUnixPath

createTime

credentialName

description

lastModifiedBy

local

modifyTime

owner

propertySheet

propertySheetId

workspaceDisabled

workspaceId

workspaceName

zoneName

zone
Contains elements about a zone.

Contents:

createTime

description

lastModifiedBy

modifyTime

owner

propertySheetId

resources

zoneId

zoneName

Element Glossary
The following table lists all simple returned elements, including the element type and its description.

Returned element Type Description/Value

abortStatus enum Possible values are: abort|force_abort

abortedBy string The name of the user who aborted the job.

API Response and Element Glossary

413

Returned element Type Description/Value

aclEntryId number The unique Commander-generated ID for this
aclEntry object.

active boolean <Boolean flag - 0|1|true|false>—If set to
"true", the state of the workflow is active.

activeCalls subcontainer
A container element within the serverStatus
element. activeCall describes an API
currently running on the server.

activeState string The name of the activeState on the workflow
object.

actualParameters propertySheet

An actualParameter object provides the
value for a parameter, which is passed to a
procedure when it is invoked. Actual
parameters can be provided for jobs and
nested subprocedures within a job.
Actual parameters are different from "formal
parameters"- formal parameters define the
parameters a procedure is expecting, and
actual parameters provide values to use at run-
time.
For the workflow feature, these are the
parameters that were passed when the
workflow was started.

actualParameterId number The unique Commander-generated ID for this
actual parameter object.

actualParameterName string

The name of the parameter. This name is
unique within the step, and at run time it
matches the name of a formal parameter in the
subprocedure.

admin boolean <Boolean flag - 0|1|true|false>—If set to
"true", the this is an "admin" license.

adminLicenseLastUse date The time at which the admin license was last
used.

adminLicenseUser string The name of the user who is currently licensed
as the "admin" user.

agentDrivePath string Drive-letter-based path used by Windows
agents to access the workspace in steps.

ElectricCommander

414

Returned element Type Description/Value

agentUncPath string

UNC path used by Windows Commander Web
servers to access the workspace. The agent
uses agentUncPath and agentDrivePath to
compute the drive mapping needed for making
agentDrivePath valid in the step.

agentUnixPath string
UNIX path used by UNIX agents and Linux
Commander Web servers to access the
workspace.

agentState subcontainer

A subcontainer element returned from certain
resource queries. agentState returns
specific information about an agent, including
the state of the agent. Possible values are:
unknown|alive|down

alive boolean Refers to the agent state or status.

alwaysRun boolean

<Boolean flag - 0|1|true|false> - If set to 1,
indicates this step will run even if the job is
aborted before the step completes. Defaults to
"false".

api string

An element returned on longestCall,
activeCall, and recentCall subcontainers
of the serverStatus element. api returns the
API call (command) that is running or ran on the
server.

apiMonitor
A server object that tracks API active and recent
calls, as well as the total number of calls since
server startup.

artifactCacheDirectory string The directory on the agent host where retrieved
artifacts are stored.

artifactId number The unique Commander-generated ID for this
artifact object.

artifactKey string
User-specified identifier for this artifact. This
field is limited to alphanumeric characters,
spaces, underscores, hyphens, and periods.

artifactName string The name of the artifact.

artifactsDirectory string The directory in the workspace where you can
put files to view, using a report link.

artifactVersionId string The unique Commander-generated ID for this
artifact version object.

API Response and Element Glossary

415

Returned element Type Description/Value

artifactVersionName name

The name of the artifact version.
An artifact version name is interpreted by the
server as the artifactVersionName attribute
for the artifactVersion in question. This
name is parsed and interpreted as
"groupId:artifactKey:version" and the
object is searched either way you specify its
name—the Commander server interprets either
name form correctly.

artifactVersionNameTemplate string

A template for the names of artifact versions
published to this artifact. Over-rides the
globalartifactVersionNameTemplate. The
global setting can be manipulated in the Server
Settings page (Administration > Server, select
the Settings link).

artifactVersionState enum Possible values are:
available|publishing|unavailable

assignedResourceName string The name of the resource assigned to the step
by the step scheduler.

attachedCredentials list The names of the credentials attached to the
specified object.

attachedParameters string These are credential parameters that were
attached to a step.

author string The author of the plugin.

autoDelete boolean
<Boolean flag - 0|1|true|false> - If "true",
the resource pool is deleted when the last
resource is removed or deleted.

batchRequests string

A setting in the database configuration that
determines whether or not to batch SQL
queries when making a request to the
database.

batchSize string The number of objects imported before being
committed to the database.

beginDate string <yyyy-mm-dd> The date the schedule is set to
begin.

ElectricCommander

416

Returned element Type Description/Value

broadcast boolean

<Boolean flag - 0|1|true|false> - Used for
command steps, this flag is used to run the
same step on several resources at the same
time. The step is “broadcast” to all resources
listed in the resourceName argument. Defaults
to "false".

buildNumber string User-defined build number component of the
version attribute for the artifact version.

call subcontainer

A subcontainer returned on activeCall and
recentCall elements returned by the
serverStatus API. call contains information
specific to each API call on the server.

callId number A unique Commander-generated identifier for
this particular call.

callingState string
The full property path to the "calling state",
which can appear on subjobs and
subworkflows of a workflow.

calledProcedure list
A subcontainer element within the jobStep
element. The calledProcedure element can
contain multiple jobStep elements.

category (currently not used)

changePermissionsPrivilege enum Possible values are: allow|deny|inherit

code enum Script to execute the functions for a step—
passed to the step's shell for execution.

combinedStatus enum
More inclusive step status output - this value
may combine up to three sub-elements:
status|message|properties

command string The command to run steps - for command
steps.

commonGroupNameAttribute string

The attribute in a group record that contains the
common group name. If specified, this name is
used only when searching for groups from an
external provider.

completed boolean
<Boolean flag - 0|1|true|false> - If "true",
the workflow is completed and no additional
transactions will be evaluated.

API Response and Element Glossary

417

Returned element Type Description/Value

completeUserName string A SQL server-specific tag that includes the
user's name and the user's domain name.

concurrentResources object

A subcontainer element that includes
information about "in use" and "maximum
licensed" hosts and proxied hosts for the
licenseUsage API command.

concurrentSteps number

The total number of steps running at the same
time in the Commander system. This means all
steps from all procedures, regardless of how
many or how few projects you have created.)

concurrentUsers object

A subcontainer element that includes
information about the admin license, "in use"
licenses, and the maximum number of licenses
for the licenseUsage API command.

condition string

For steps:
If empty or non-zero, the step will run. If set to
"0", the step is skipped. A useful setting during
procedure development or when re-running a
job that has already completed some of the
steps. Also, this argument is useful for
conditional execution of steps based on
properties set by earlier steps.
For email notifiers:
Mail sent if the condition evaluates to "true".
The condition is a string subject to property
expansion. The notification will NOT be sent if
the expanded string is "false" or "0". If no
condition is specified, the notification is
ALWAYS sent.

configName string The name of the configuration.

container string

An object ID for a "container" that contains
formal parameters.
In another context, this is typically the type and
name of the workflow or job with a
corresponding ID.

containerName string The name of the container.

createTime date The time when this object was created.

credentialId number The unique Commander-generated ID for this
credential object.

ElectricCommander

418

Returned element Type Description/Value

credentialName string

credentialName can be one of two forms:
relative (for example, "cred1") - the credential
is assumed to be in the project that contains
the request target object. Requires a qualifying
project name.
absolute (for example,
"/projects/BuildProject/credentials
/cred1") - the credential can be from any
specified project, regardless of the target
object’s project.

customDatabaseDialect string

Class name for the Hibernate dialect. The
server chooses an appropriate dialect based
on databaseType or this can be part of the
custom specification.

customDatabaseDriver string

Class name of the JDBC driver. The server will
choose an appropriate driver based on
databaseType or this can be part of the
custom specification.

customDatabaseUrl string
The JDBC URL to use. The server will compose
an appropriate URL or this can be part of the
custom specification.

customerName string
The name of a company and/or group name
with a company that is using
ElectricCommander.

databaseDialect string
Class name for the Hibernate dialect (the
server chooses an appropriate dialect based
on databaseType).

databaseDriver string
Class name of the JDBC driver (the server will
choose an appropriate driver based on
databaseType).

databaseName string The name of the database the Commander
server is using.

databaseType enum
Possible values are:
builtin|mysql|oracle|postgresql|sqls
erver

databaseUrl string The JDBC URL to use (the server will compose
an appropriate URL).

defaultValue string This value is used for the formal parameter if a
value is not supplied by the caller.

API Response and Element Glossary

419

Returned element Type Description/Value

delayUntil date
For a step that was rescheduled due to a
resource or workspace problem, this is the next
time when the step will be eligible to run.

deleted byte

The object was marked for background
deletion.
Possible values are "0" or "1". Default is "0" (not
set).

dependentArtifacts string A space-separated list of artifacts.

description string

A plain text or HTML description for this object.
If using HTML, you must surround your text
with
<html> ... </html> tags. The only HTML
tags allowed in the text are: <a>

<div> <dl> <i> <p>
<pre> <style> <table> <tc>
<td> <th> <tr>

destinations string

A space-separated list of valid email
addresses, email aliases, or Commander user
names, or a string subject to property
expansion that expands into such a list.

details string A string containing details about agent status.

directoryName string The name of the job's directory within each
workspace for a job.

directoryProviderId number The unique Commander-generated ID for this
directory provider object.

domainName string
The name of the domain from which the Active
Directory server(s) are automatically
discovered.

elapsedTime number
The number of milliseconds between the start
and end times for the job or job step - or a
workflow.

email string The user's email address.

emailAttribute string

The attribute in a user record that contains the
user's email address. If the attribute is not
specified, the account name and domain name
are concatenated to form an email address.

emailConfigId number The unique Commander-generated ID for this
email configuration object.

ElectricCommander

420

Returned element Type Description/Value

emailConfigName string The name of the email configuration.

emailNotifierId number The unique Commander-generated ID for this
email notifier object.

enableGroups boolean Determines whether or not to enable external
groups for the directory provider.

endDate string <yyyy-mm-dd> The date this schedule is set to
end.

errorCode enum Displays the error code, identifying which error
occurred.

errorHandling enum

Determines what happens to the procedure if
the step fails:

l failProcedure - The current
procedure continues, but the overall
status is error (default).

l abortProcedure - Aborts the current
procedure, but allows already-running
steps in the current procedure to
complete.

l abortProcedureNow - Aborts the
current procedure and terminates
running steps in the current procedure.

l abortJob - Aborts the entire job,
terminates running steps, but allows
alwaysRun steps to run.

l abortJobNow - Aborts the entire job
and terminates all running steps,
including alwaysRun steps.

l ignore - Continues as if the step
succeeded.

errorMessage string A description of the error.

evaluation boolean Determines whether or not this license is an
evaluation copy only.

eventType enum

Possible values are: onCompletion|onStart
"onStart" triggers an event when the job or job
step begins. "onCompletion" triggers an event
when the job finishes, no matter how it finishes.
Default is "onCompletion".

API Response and Element Glossary

421

Returned element Type Description/Value

exclusive boolean
<Boolean flag - 0|1|true|false> - If set to 1,
indicates this step should acquire and retain
this resource exclusively. Defaults to "false".

exclusiveJobId number

The ID number of the job that owns this
resource, which occurs when one of the job’s
steps requests exclusive use of the resource for
the duration of the job.

exclusiveJobName string

The name of the job that owns this resource,
which occurs when one of the job’s steps
requests exclusive use of the resource for the
duration of the job.

exclusiveJobStepId number

The ID number of the job step that owns this
resource, which occurs when one of the steps
request exclusive use of the resource for the
duration of the job.

exclusiveJobStepName name

The name of the job step that owns this
resource, which occurs when one of the steps
request exclusive use of the resource for the
duration of the job.

exclusiveMode enum Possible values are: none|job|step|call
See exclusive

executePrivilege enum Possible values are: allow|deny|inherit

exitCode number The step's exit code.

expandable boolean

<Boolean flag - 0|1|true|false>
Determines whether the property value will
undergo property expansion when it is fetched.
Default is "true".

expansionDeferred boolean
<Boolean flag -0|1|true|false> Default is
"false," which means the formal parameter is
expanded immediately.

expiration date The date when a user license expires.

expirationDate date The date when a license expires.

external boolean

<Boolean flag -0|1|true|false> If "true," this
job is external. For more information about
external jobs, see the API Commands - Job
Management Help topic.

ElectricCommander

422

Returned element Type Description/Value

featureName string The name of the licensed feature. Possible
features include: Server

findGroupsTest subcontainer
For the testDirectoryProvider API, this
element provides information on which groups
the user is a member.

findUserTest subcontainer
For the testDirectoryProvider API, this
element contains specific information about the
user.

finish date The time the job or workflow completed.

formalParameterId number The formal parameter's ID.

formalParameterName string The name of the procedure's parameter,
containing a credential reference.

formalParameters string
The parameters that must be supplied when
entering the state (similar to formal parameters
on a procedure).

formattingTemplate string
Specifies a template for formatting email
messages when an event [notification] is
triggered by the emailNotifier.

fullUserName string The user's full name - not his or her nickname.

fullUserNameAttribute string

The attribute in a user record that contains the
user's full name (first and last) for display in the
UI. If this attribute is not specified or the
resulting value is empty, the user's account
name is used instead.

gatewayDisabled boolean <Boolean flag -0|1|true|false> If "true", the
gateway is disabled.

gatewayId number The Commander-generated ID number for this
gateway.

gatewayName string The name of the gateway.

gateways list A space-separated list of gateway names.

gracePeriod number The number of days available after the
Commander license expires.

groupBase string
This string is prepended to the basedn to
construct the directory DN that contains group
records.

API Response and Element Glossary

423

Returned element Type Description/Value

groupId number

The unique Commander-generated group ID.
For Artifact Management:
A user-generated group name for this artifact.
This field is limited to alphanumeric characters,
spaces, underscores, hyphens, and periods.

groupList list

For the testDirectoryProvider API, this
element contains zero or more groups returned
after querying existing groups known to the
directory provider.

groupMemberAttributes string

A comma-separated attribute name list that
identifies a group member. Most LDAP
configurations only specify a single value, but if
there is a mixture of POSIX and LDAP style
groups in the directory, multiple attributes might
be required.

groupMemberFilter string

This LDAP query is performed in the groups
directory context to identify groups containing a
specific user as a member.
Two common forms of group record in LDAP
directories: POSIX style groups where
members are identified by account name, and
groupOfNames or uniqueGroupOfNames
records where members are identified by the
full user DN. Both forms are supported, so the
query is passed to parameters: "{0}" is
replaced with the full user record DN, and "{1}
" is replaced with the user's account name.

groupName string The full name of a group. For Active Directory
and LDAP, this is a full DN.

groupNameAttribute string The group record attribute that contains the
name of the group.

groups list A space-separated list of group names.

groupSearchFilter string The LDAP query performed in the context of the
groups directory to enumerate group records.

groupSettingsId number The unique Commander-generated ID for this
group settings object.

hostName string
The computer name or IP address for the
machine containing the Commander server or
agent.

ElectricCommander

424

Returned element Type Description/Value

hostName1 string

For gateways: The name Resource 2 uses to
communicate with Resource 1. If "blank", the
Agent Host Name attribute in Resource 1's
definition is used at runtime.

hostName2 string

For gateways: The name Resource 1 uses to
communicate with Resource 2. If "blank", the
Agent Host Name attribute in Resource 2's
definition is used at runtime.

hostOS string
The full name of the host operating system, plus
its version. However, if this host is a proxy, the
value is "proxied".

hostPlatform string
Examples for "platform" are: Windows, Linux,
HPUX, and so on. However, if this host is a
proxy, the value is "proxied".

index number
The numeric index of the transition that
indicates its order in the list of transitions in a
state definition.

interval string The repeat interval for starting new jobs.

intervalUnits enum

Possible values are:
hours|minutes|seconds|continuous
If set to continuous, Commander creates a
new job as soon as the previous job completes.

inUseHosts number The number of hosts (agents) currently in use.

inUseLicenses number The number of user licenses currently in use.

inUseProxiedHosts number The number of proxy target hosts currently in
use.

jobId number

The unique ElectricFlow-generated identifier (a
UUID) for a job, assigned automatically when
the job is created. Also accepts a job name
assigned to the job by its name template.

jobName string The name of the job.

jobNameTemplate string Template used to determine the default name
of jobs launched from a procedure.

jobStepId number The unique identifier for a job step, assigned
automatically when the job step is created.

jobStepName string The name of the job step.

API Response and Element Glossary

425

Returned element Type Description/Value

label string

A name used by a plugin for display in a list, or
this may represent context-specific info about
an API call—not all API calls return a "label"
tag.

lastMessage string Element returned by the serverStatus API
showing the last message the server received.

lastModifiedBy string Shows who (generally a user name) last
modified the object.

lastResourceUsed string The name of the most recently used resource
from the pool.

lastRunTime date

The last time a job was launched by a
schedule.
-or-
In a resource response, this is the most
recent time that a job step ran on the resource.

lastUse

Returned element in the concurrentUsers
subcontainer (for the licenseUsage API),
providing the last time a specific user accessed
Commander.

launchedByUser string
The name of the user or project principal that
explicitly launched the job. This property is
blank when the job is launched by a schedule.

licenseId number The unique Commander-generated ID for this
license.

licenseWaitTime
The amount of time a job step was stalled
waiting for an available license. On a job, this is
the sum of license wait for all job steps.

liveProcedure string

Shows the current procedure name for the
procedure step from which the job or job step
was created – if the procedure step was
renamed since the job or job step was
launched, this is the procedure step’s new
name, and if the procedure step was deleted,
this will be null.

liveProcedureStep string

Shows the current procedure step name for the
procedure step from which the job step was
created – if the procedure step was renamed
since the job was launched, this is the
procedure step’s new name, and if the
procedure step was deleted, this will be null.

ElectricCommander

426

Returned element Type Description/Value

liveSchedule string

Shows the current schedule name for the
procedure step from which the job was created
– if the schedule was renamed since the job
was launched, this is the schedule’s new name,
and if the schedule was deleted, this will be
null.

liveWorkflowDefinition string

Shows the current workflow definition name for
the workflow definition from which the workflow
was created – if the workflow definition was
renamed since the workflow was launched, this
is the workflow definition’s new name, and if the
workflow definition was deleted, this will be
null.

local boolean <Boolean flag -0|1|true|false> If "true", this
object is local.

logEntryId number The Commander-generated ID number for the
log entry record.

logFileName string
A custom log file name produced by running
the step. By default, ElectricCommander
assigns a unique name for this file.

longestCall string Provides the API call that took the longest time.

mailFrom string The email address used as the email sender
address for notifications.

mailHost string The name of the email server host.

mailPort number

The port number for the mail server, but may
not need to be specified. The protocol software
determines the default value (25 for SMTP and
465 for SSMTP). Specify a value for this
argument when a non-default port is used.

mailProtocol string This is either SSMTP or SMTP (not case-
sensitive). The default is SMTP.

mailUser string

This can be an individual or a generic name
like "Commander" - name of the email user on
whose behalf Commander sends email
notifications.

majorMinorPatch string major.minor.patch component of the
version attribute for the artifact.

API Response and Element Glossary

427

Returned element Type Description/Value

managerDn string

The name of a user who has read-only access
to the LDAP or Active Directory server. Typically
a DN (distinguished name). A simple name
may be used when the Active Directory server's
URL is being auto-discovered via DNS.
Note: This user does not need to be an admin
user with modify privileges.

maxConcurrentSteps number
The maximum number of steps that can run at
the same time per the provisions of your
Commander license.

maxHosts number The maximum number of hosts licensed for
resource use.

maxLicenses number The maximum number of licenses available for
users.

maxProxiedHosts number The maximum number of available licenses for
proxy hosts.

message string A user-readable diagnostic message
associated with an error.

messages list Multiple error or diagnostic messages.

misfirePolicy enum

Possible values are: ignore | run once
A schedule may not fire at the allotted time
because a prior job is still running, the server is
running low on resources and there is a delay,
or the server is down.
When the underlying issue is resolved, the
server will schedule the next job at the next
regularly scheduled time slot if the policy is
'ignore', otherwise it will run the job
immediately. Defaults to "ignore".

modifyPrivilege enum Possible values are: allow|deny|inherit

modifyTime date The time when the object was last modified.

monthDays string
Restricts the schedule to specified days of the
month. Specify numbers from 1-31, separating
multiple numbers with a space.

mostActiveCalls number The number of most active API calls since
server startup.

ElectricCommander

428

Returned element Type Description/Value

mutable boolean
If "true," the member list of this group is editable
within Commander via the web UI or the
modifyGroup API.

name string The name of the directory provider.

notifierName string The name of the email notifier.

objectId number

An object identifier returned by findObjects
and getObjects.
This value is a "handle" only for passing to API
commands. The internal structure of this value
is subject to change - do not parse this value.

objectName string The name of the object.

objectType enum The type of object being described, for
example: project, procedure, step, and so on.

orderingFilter string

A Javascript block invoked when scheduling
resources for a pool.
Note: A Javascript block is not required unless
you need to override the default resource
ordering behavior.

outcome enum

Possible values for outcome:
Note: The outcome is accurate only if the job
status is "completed."
success - The job finished successfully.
warning - The job completed with no errors,
but encountered some suspicious conditions.
error - The job has finished execution with
errors.

owner string The person (user name) who created the
object.

parallel boolean

<Boolean flag - 0|1|true|false> - If set,
indicates this step should run at the same time
as adjacent steps marked to run as parallel
also. Defaults to "false".

password string The password matching the specified user
name.

path string The property path that specifies the object to
use.

API Response and Element Glossary

429

Returned element Type Description/Value

pingToken number

Every time an agent starts, a unique
pingToken value is generated. The server
uses the pingToken value to determine agent
restarts by noticing the values before and after
a restart.

pluginId number The unique Commander-generated ID for the
plugin object.

pluginKey string The name of the plugin as displayed on the
Commander Plugin Manager web page.

pluginName string
The name of the plugin - the plugin key for a
promoted plugin or a plugin key and version for
an unpromoted plugin.

pluginVersion string The version of the plugin being described.

pools list

A space-separated list of one or more pool
names where this resource is a member. Steps
defined to run on a resource pool will run on
any available member (resource) in the pool.

port number

If a port number is not specified, the default
Commander port is used.
For a proxy resource, this is the port number for
the service running on the proxy target that will
run commands on behalf of the
ElectricCommander agent. For ssh, the default
is 22.

port1 number
The port number used by Gateway Resource1 -
default is to the port number used by the
resource.

port2 number
The port number used by Gateway Resource2 -
default is to the port number used by the
resource.

position number

Used to reorder a Commander object. For
example, if reordering directory providers: the
provider name is moved to a position just
before this provider. "Blank" means move the
provider to the end of the provider list.

postExitCode number The step's post processor exit code.

postLogFileName string The log file name produced by this step’s post
processor.

ElectricCommander

430

Returned element Type Description/Value

postProcessor string

This program looks at the step output to find
errors and warnings. Commander includes a
customizable program called “postp” for this
purpose.
The value for postProcessor is a command
string for invoking a post-processor program in
the platform shell for the resource (cmd for
Windows, sh for UNIX).

precondition string

Set this property to make a step wait until one
or more dependent conditions are met. When a
job step is eligible to transition from pending to
runnable, a precondition is evaluated.
A precondition is a fixed text or text embedding
property reference that is evaluated to TRUE or
FALSE. An empty string, a \"0\" or \"false\" is
interpreted as FALSE. Any other result string is
interpreted as TRUE. The step will block until
the precondition is TRUE.

principal string The user or project principal from the session
that was active when the event occurred.

principalName string This is either a user or a group name.

principalType enum Possible values are: group|user

priority enum

Possible values
are: low|normal|high|highest
Priorities take effect when two or more job
steps in different jobs are waiting for the same
resource.
When the resource is available, it will be used
by the job step that belongs to the job with the
highest priority.
If the priority level is the same, the resource will
be used by the job step that belongs to the job
with the lowest job ID number.
If the job steps are in the same job, the
resource will be used first by the step with the
lowest job step ID number.

procedureId number The unique Commander-generated procedure
ID.

procedureName string The name of the procedure - may be a path to
the procedure.

productName string
The name of the product with the licensed
feature. Possible products include:
ElectricCommander

API Response and Element Glossary

431

Returned element Type Description/Value

project name The name of the project associated with the
plugin.

projectId number The unique Commander-generated project ID.

projectName string

The name of the project - may be a path. The
project name is ignored for credentials,
procedure, steps, and schedules if it is
specified as a path.

promoted boolean

<Boolean flag - 0|1|true|false> The new
value of the promoted flag for the specified
plugin. Default is "true", which means the plugin
will be promoted. If you want to demote the
plugin, use the value of “0” or false.

propertyId number The unique Commander-generated property
ID.

propertyName string
The name of the property. It may be a relative
or absolute property path, including "my" paths
such as "/myProject/prop1".

propertySheetId number
The unique identifier for a property sheet,
assigned automatically when the property
sheet is created.

protocolVersion sting
The server API protocol version. For example,
the server accepts messages from ectool and
ec-perl.

providerIndex number

The index that specifies the search order
across multiple directory providers. For
example: 2 LDAP providers, one with index "0"
and one with index "1" means the providers will
be searched in that numerical order.

providerName string The LDAP or Active Directory provider name.

providerType enum Possible values are: ldap|activedirectory

proxyCustomization string

Perl code customizing how the proxy resource
communicates with the proxy target. This
argument is applicable only for proxy
resources.

proxyHostName string
The name or IP address of the computer
containing the ElectricCommander Agent used
for a proxy resource.

ElectricCommander

432

Returned element Type Description/Value

proxyPort number The ElectricCommander agent port number for
a proxy resource.

proxyProtocol string

Protocol for communicating with the proxy
target. Defaults to ssh. (This argument is not
exposed in the ElectricCommander Web
Interface at this time.)

publisherJobId number The Commander-generated ID for the job that
published the artifact version.

publisherJobName name The name of the job that published the artifact
version.

publisherJobStepId number The Commander-generated ID for the job step
that published the artifact version.

qualifier string User-defined qualifier component of the version
attribute for the artifact.

readPrivilege enum Possible values are: allow|deny|inherit

realm string
The realm of the LDAP directory provider—
used to create unique user names when there
are multiple providers.

recentCall subcontainer

A subcontainer element on the serverStatus
API - a call no longer active (completed). The
API monitor keeps track of the 10 most recent
calls.

releaseExclusive boolean
<Boolean flag - 0|1|true|false> Declares
whether or not this step will release its
resource, which is currently held exclusively.

releaseMode string Possible values are:
none|release|releaseToJob

remoteAddress string

Generally a combined IP address plus a port
specification - used when the agent is talking to
the server or to show where the request to the
server originated.

repositoryDisabled boolean
<Boolean flag - 0|1|true|false>
Determines whether the repository is disabled.
Default is "false".

repositoryId number The Commander-generated ID for the artifact
repository.

API Response and Element Glossary

433

Returned element Type Description/Value

repositoryIndex integer The order of the repository within a list of
repositories.

repositoryName string The name of the artifact repository.

repositoryNames list A list of one or more repository server names—
each repository name listed on a "new line".

required boolean
<Boolean flag - 0|1|true|false> If set to 1,
this value indicates whether a non-blank value
must be supplied when calling the procedure.

resourceDisabled boolean
<Boolean flag - 0|1|true|false> If set to 1,
Commander will not start new steps on this
resource. Defaults to "false".

resourceId number The unique Commander-generated ID for this
resource.

resourceName1 string
The name for the first of two resources required
to create a gateway. "Spaces" are NOT allowed
in a resource name.

resourceName2 string
The name for the second of two resources
required to create a gateway. "Spaces" are
NOT allowed in a resource name.

resourceName string The name of a resource.

resourceNames string
A list of strings that refer to resources that
belong to the pool. Names that do not refer to
existing resources are ignored.

resourcePoolDisabled boolean
<Boolean flag - 0|1|true|false> If set to 1,
Commander will not use resources in this pool.
Defaults to "false".

resourcePoolId number The unique ID number for a resource pool.

resourcePoolName name The name of the resource pool.

resources string A space-separated list of resource names.

resourceUsageId number The unique ID number of the resource usage
record.

ElectricCommander

434

Returned element Type Description/Value

resourceWaitTime

The amount of time a job step waited for a
resource to become available. On a job, this is
the sum of time all job steps waited for resource
availability. This could indicate that eligible
resources for the step have reached their step
limit, are in-use but the step requires a resource
exclusively, or resources are down.

retries number

The number of attempts to write to the step log
in the workspace. In a running step, this is the
number of retries attempted up to this point. The
most common reason for step retries is the
workspace for the step was unavailable.

retrievers list
A collection of retrieve elements that can
contain a jobName, jobId, and/or a
jobStepId element(s).

runAsUser string The name of the user being impersonated in
this job.

runnable date The time when the step became runnable.

runningSteps The number of steps running at the same time.

runtime number The number of milliseconds the step command
spent running on a resource.

scheduleDisabled boolean
<Boolean flag - 0|1|true|false> If set to 1,
ElectricCommander does not start any new
jobs from the schedule. Defaults to "false".

scheduleId number The unique Commander-generated ID for the
schedule.

scheduleName string The name of the schedule - may be a path to
the schedule.

schemaVersion number The Commander server's database schema
version.

serverState enum

Possible values are: bootstrap,
databaseConfiguration,
databaseConnection, databaseSchema,
running, failed, stopping,
importFailed

severity enum Possible values are: INFO|WARN|ERROR

API Response and Element Glossary

435

Returned element Type Description/Value

shell string

Where shell is the name of a program used to
execute commands contained in the
“command” field. Normally, this file is a
command shell, but it could be any other
command line program. The default is "cmd /q
/c" for a Windows agent and "sh -e" for a
UNIX agent. This is applicable to command
steps only.

signature string The digital signature on this license.

start date The time this job or workflow began executing.

startable boolean "True" means this state definition can be the
initial state of an instantiated workflow.

startingState string The initial state of the workflow.

startTime string
Formatted hh:mm, using the 24-hour clock.
Using this schedule, Commander starts
creating jobs at this time on the specified days.

stateDefinitionId number The unique Commander-generated ID for this
state definition object.

stateDefinitionName string The name of the state definition.

stateId number The unique Commander-generated ID for this
state object.

statementCacheSize string The number of MS SQL statements cached in
the database.

stateName string The name of the state.

status enum

Possible values for status:
pending - The job is not yet runnable—it is
waiting for other steps to complete first.
runnable - The job is ready to run, but it is
waiting for a resource to become available.
running - The job is assigned to a resource
and is executing the step command.
completed - The job finished executing.

stepCount number The number of executing steps on this
resource.

stepErrorCode enum Agent error messages.

stepId number The unique Commander-generated ID for the
step.

ElectricCommander

436

Returned element Type Description/Value

stepLimit number

The number of steps that can run on the
resource at one time. (Previously setting the
limit to 1 enforces serial access to the
resource.)

stepName string The name of the step - may be a path to the
step.

steps The list or number of steps in a job.

stopTime string

Formatted hh:mm, using the 24-hour clock.
ElectricCommander stops creating new jobs at
this time, but a job in progress will continue to
run. If stopTime is not specified,
ElectricCommander creates one job only on
each specified day.

subject string
Refers to the object the event concerns (similar
to
container).

subjectName string The name of the subject/object.

subjob string The name of the subjob.

subprocedure string

The name of the nested procedure called when
a step runs. If a subprocedure is specified,
command or commandFile options are not
necessary.

subproject string

If a subprocedure argument was used, this is
the name of the project where that
subprocedure is found. By default, the current
project is used.

substartingState sting Name of the starting state for the workflow
launched when the state is entered.

subworkflow string The name of the subworkflow.

subworkflowDefinition string The name of the subworkflow definition.

targetState string The target state for the transition definition.

testResult enum Possible values are:
success|skipped|failure

time date

The time of day to invoke this schedule's
procedure (24-hour clock, for example, 17:00).
For a logEntry response, time indicates the
time at which data was written to the log.

API Response and Element Glossary

437

Returned element Type Description/Value

timeLimit number

The maximum length of time the step is allowed
to run. After the time specified, the step will be
aborted.
The time limit is specified in units that can be
hours, minutes, or seconds.

timeLimitUnits enum Possible values are:
hours|minutes|seconds

timeout number Specifies the timeout for the element flag. The
default value is 120 seconds.

timeZone string The time zone specified to use for this schedule
(Java-compatible string).

totalCallCount number The total number of API calls to the server since
startup.

totalWaitTime
On a job, this is the sum of total time all job
steps waited for license, resource, and/or
workspace availability.

transitionDefinitionId number The unique Commander-generated ID for this
transition definition.

transitionDefinitionName string The name of the transition definition.

transitionId number The unique Commander-generated ID for this
transition object.

transitionName string The name of the transition.

trigger enum Possible values are:
onEnter|onStart|onCompletion|manual

trusted boolean

<Boolean flag - 0|1|true|false> If "true",
the resource is trusted. A trusted agent is one
that has been "certificate verified."

Agents can be either trusted or untrusted:

l trusted - the Commander server verifies
the agent's identity using SSL certificate
verification.

l untrusted - the Commander server does
not verify agent identity. Potentially, an
untrusted agent is a security risk.

ElectricCommander

438

Returned element Type Description/Value

type string

The "type" is any string value. Used primarily by
the web interface to represent custom form
elements. However, if "credential" is the string
value, the server will expect a credential as the
parameter value.

url string

For directory providers:
The server URL is in the form
protocol://host:port/basedn.
Protocol is either ldap or ldaps (for secure
LDAP). The port is implied by the protocol, but
can be overridden if it is not at the default
location (389 for ldap, 636 for ldaps). The
basedn is the path to the top-level directory that
contains users and groups at this site. This is
typically the domain name where each part is
listed with a dc= and separated by commas.
Note: Spaces in the basedn must be URL
encoded (%20).
For artifact repositories:
The server URL is in the form
protocol://host:port/. Typically, the
repository server is configured to listen on port
8200 for https requests, so a typical URL
looks like https://host:8200/.

userAuthenticationTest subcontainer For the testDirectoryProvider API, this
element authenticates the user.

userBase string
The string prepended to the basedn to
construct the directory DN that contains user
records.

userId number The unique Commander-generated ID for the
user.

userInfo

findUserTest container element includes a
userList subcontainer that may include
multiple userInfo tags, each of which
describes a user (including full name, email
address, and provider name).

userList list
findUserTest container element includes a
userList subcontainer that may include one
or more userInfo tags.

userName string The full name of the user. For Active Directory
and LDAP, the name may be user@domain.

userNameAttribute string The attribute in a user record that contains the
user's account name.

API Response and Element Glossary

439

Returned element Type Description/Value

userSearchFilter string

The LDAP query performed in the context of the
user directory to search for a user by account
name. The string "{0}" is replaced with the
user's login ID. Typically, the query compares a
user record attribute with the substituted user
login ID.

userSearchSubtree boolean
<Boolean flag - 0|1|true|false> If true, the
subtree below the user base was recursively
searched.

userSettingsId number The unique Commander-generated ID for the
user settings.

useSSL boolean
<Boolean flag - 0|1|true|false> This flag is
used to specify using SSL to communicate with
your Active Directory servers.

value string
For a string property, this is the value of the
property. For a sheet property, this argument is
invalid.

version string

For plugin versions, the value is represented in
the form:
major.minor.
For artifact versions, the value is represented
in the form:
major.minor.patch-qualifier-
buildNumber

waitReason string

Possible values are:
license, resource, or workspace
Generally, this objects are unavailable, causing
a longer wait time for availability.

waitTime number
The number of milliseconds the step spent
between runnable and running (for example,
waiting for a resource).

weekDays string

Restricts the schedule to specified days of the
week. Days of the week are separated by
spaces. English names "Monday", "Tuesday",
and so on.

workflowDefinitionId number The unique Commander-generated ID for this
workflow definition.

workflowDefinitionName string The name of the workflow definition.

ElectricCommander

440

Returned element Type Description/Value

workflowId number The unique Commander-generated ID for this
workflow object.

workflowName string The name of this workflow.

workflowNameTemplate string
Template used to determine the default names
for workflows launched from a workflow
definition.

workingDirectory string

The Commander agent sets this directory as
the “current working directory,” when running
the command contained in the step. If no
working directory is specified in the step,
Commander uses the directory it created for the
job in the Commander workspace as the
working directory.
Note: If running a step on a proxy resource, this
directory must exist on the proxy target.

workspaceDisabled boolean <Boolean flag - 0|1|true|false> - If "true,"
the workspace is disabled.

workspaceId number The unique Commander-generated ID for the
workspace.

workspaceName string The name of the workspace.

workspaceWaitTime
The total time a job step waited for workspace
availability. On a job, this is the sum of time all
job steps waited for workspace availability.

zoneId number The Commander-generated ID for this zone.

zoneName string The name of the zone.

ElectricFlow Glossary

441

ElectricFlow Glossary

This glossary is a reference topic containing short descriptions for ElectricFlow objects, terms, and concepts.
Links to one or more related help topics for a particular "term" are available at the end of most descriptions.

Term Description

access control An ACL determines if a particular user can perform a particular operation on a
specified object. The list contains access control entries (ACE), each of which
specifies a user or group and indicates whether certain operations are allowed or
denied for that user or group. Using access control provides security for
Commander system use.
See the Access Control topic for more information.

ACE (Access Control
Entry)

An ACL determines if a particular user can perform a particular operation on a
specified object. The list contains access control entries (ACE), each of which
specifies a user or group and indicates whether certain operations are allowed or
denied for that user or group. Using access control provides security for
Commander system use.
See the Access Control topic for more information.

ACL (Access Control
List)

An ACL determines if a particular user can perform a particular operation on a
specified object. The list contains access control entries (ACE), each of which
specifies a user or group and indicates whether certain operations are allowed or
denied for that user or group. Using access control provides security for
Commander system use.
See the Access Control topic for more information.

actual parameter An actual parameter is an object that provides the value for a parameter, which is
passed to a procedure when it is invoked. Actual parameters can be provided for
jobs and nested subprocedures within a job. Actual parameters are different from
"formal parameters": formal parameters define parameters a procedure is
expecting, and actual parameters provide values to use at run-time.

admin "admin" is a special built-in user that has universal ElectricCommander access. If
you log in as admin, you can perform any operation in the system, regardless of
access control limitations.

agent An agent is an ElectricCommander component that runs on each machine where
job steps can execute. The agent works under the Commander server's control to
execute job steps, monitor their progress, and record information about their
completion. A single agent process can manage multiple job steps executing
concurrently on a single machine.
See resource.

artifact An artifact is a top-level object containing artifact versions, a name template for
published artifact versions, artifact specific properties, and access control entries
to specify privileges.

artifact key An artifact key is an identifier for an artifact and the "key" component of the artifact
name.

ElectricCommander

442

Term Description

artifact repository See repository.

artifact version An artifact version is a collection of 0 to N files that were published to an artifact
repository.

backingstore The backingstore is the directory on the repository server where artifact versions
are stored. By default, the backingstore is the <datadir>/repository-data directory
in the repository installation—this default setting can be changed.

compression Compression reduces transfer time when publishing an artifact. However,
compression also adds overhead when computing the compressed data. If files
included in the artifact version are primarily text files or are another highly
compressible file format, the benefit of reduced transfer time outweighs the cost of
computing compressed data.

continuous integration Using continuous integration means a build is launched every time code changes
are checked into a Source Control Management (SCM) system.
The Commander ElectricSentry component is the engine for continuous
integration, while the CI Continuous Integration Dashboard is the front-end user
interface for ElectricSentry.

credential A credential is an object that stores a user name and password for later use. You
can use credentials for user impersonation and saving passwords for use inside
steps. Two credential types are available: stored or dynamic.

custom property Custom properties are identical to intrinsic properties and when placed on the
same object, are referenced in the same manner and behave in every way like an
intrinsic object-level property with one exception: they are not created
automatically when the object is created. Instead, custom properties can be
added to objects already in the database before a job is started, or created
dynamically by procedure steps during step execution.

Custom properties in a property sheet can be one of two types: string property or
a property sheet property. String properties hold simple text values. Property
sheet properties hold nested properties. Nested properties are accessed by way
of the property sheet property of their containing sheet.

description A description is an optional plain text or HTML description for an object.
Description text is for your use, Commander does not use this information. If using
HTML, you must surround your text with <html> ... </html> tags. The only
HTML tags allowed in the text are: <a>
 <div> <dl> <i>
 <p> <pre> <style> <table> <tc> <td> <th> <tr>

ElectricFlow Glossary

443

Term Description

diagnostic extract A diagnostic extract is a log file portion from a job step, typically describing an
error or interesting condition, extracted by a postprocessor and saved for
reporting. The postprocessor usually places this information in an XML file in the
top-level job workspace directory, and then sets a property that contains the
filename.

The Commander postp postprocessor uses filenames like diag-2770.xml,
where "2770" is the unique identifier for the step. Other postprocessors you may
use can have a different filename configuration.

dynamic credential Dynamic credentials are captured when a job is created. Dynamic credentials are
stored on the server temporarily until the job completes and then discarded.

ec-perl ec-perl is a small wrapper program installed as part of ElectricCommander. When
the ec-perl wrapper runs, it sets up the environment, finds, and calls
Commander's copy of Perl, passing all of its parameters to Perl.

ectool ectool is the ElectricCommander command-line application that provides control
over the Commander system if you prefer using a command-line interface rather
than the Commander web interface. Most functions that can be invoked through
the Commander web interface can be invoked using ectool.

ElectricAccelerator ElectricAccelerator is a software build accelerator that dramatically reduces
software build times by distributing the build over a large cluster of inexpensive
servers. Using a patented dependency management system, ElectricAccelerator
identifies and fixes problems in real time that would break traditional parallel
builds. ElectricAccelerator plugs into existing Make-based infrastructures
seamlessly and includes web-based management and reporting tools.

ElectricSentry ElectricSentry is the ElectricCommander engine for continuous integration—
integrating with numerous Source Control Management (SCM) systems.
ElectricSentry is installed automatically with Commander and is contained in a
Commander plugin named ECSCM and in the Electric Cloud project.
Note: The CI Continuous Integration Dashboard is the front-end user interface for
ElectricSentry.

email configuration Before you can send an email notifier, you must set up and email configuration,
which establishes communication between the Commander server and your mail
server.

email notifier After setting up the Commander server and your mail server to communicate, you
can send email notifications (notifiers). You can attach email notifiers to
procedures, procedure steps, and state definitions.

Event log See log (s).

Everyone A special intrinsic access control group that includes all users.

ElectricCommander

444

Term Description

filter Two filter categories:

l Intrinsic filters - these filters provide a convenient way to access certain
well-defined fields for jobs.

l Custom filters - these filters allow you to access a much broader range of
values, including custom properties. Any values accessible through an
intrinsic filter can be checked using a custom filter also (though not as
conveniently).

formal parameter A formal parameter is an object that defines a parameter expected by a
procedure, including its name, a default value, and an indication of whether the
parameter is required. Formal parameters are different from "actual parameters":
formal parameters define the kinds of parameters a procedure is expecting, and
actual parameters provide values to use at run-time.

gateway To communicate with a resource, workspace, or artifact repository server in
another zone, a "gateway" must be created. A gateway object contains two
resource (agent) machines, for example, GatewayResource1 and
GatewayResource2—each configured to communicate with the other. One
gateway resource resides in the source zone and the other in the target zone. A
gateway is bidirectional and informs the Commander server that each gateway
machine is configured to communicate with its other gateway machine (in another
zone).

group A group defines a collection of users for access control purposes. A group can be
defined externally in an LDAP or Active Directory repository, or locally in the
Commander server.
See local group.

impersonation Impersonation is a mechanism that allows a job step to execute under a particular
login account (the Commander agent "impersonates" a particular user during the
execution of that step). Impersonation is implemented using credentials.

inheritance A feature of the Commander access control mechanism where access to a
particular object is determined by the access control list for that object, and also
by the access control lists of the object's parent and other ancestors. Each object
can be configured to enable or disable inheritance from its ancestors.

intrinsic property Intrinsic properties represent attributes that describe the object to which they are
attached. Commander automatically provides intrinsic properties for each similar
type object within Commander.
For example:
Every project has a description property that can be referenced with a non-
local property path such as /projects/Examples/description.

job A job is the output associated with invoking a Commander procedure. A new job
is created each time you run (execute) a procedure.

ElectricFlow Glossary

445

Term Description

job configuration A job configuration is an object containing all parameter and credential
information needed to run a procedure. A Job Configuration section is provided
as part of the Commander Home page to make it easy for you to invoke your
favorite configurations with a single mouse click. You can create job
configurations in three ways:

l From the Job Details page for a previously invoked job, click the Save
Configuration link at the top of the page. Your saved job configuration will
be displayed on your Home page.

l Create a job configuration from "scratch" by clicking the Create link in the
Job Configurations section (on the Home page). In the Create
Configuration popup menu, select the project and procedure you want to
use for creating this configuration.

l On the page for editing a schedule, click the Save Configuration link at
the top of the page. Your saved configuration will be displayed on your
Home page.

job name template This is the template used to determine the default name for jobs launched from
the procedure. You can create a Job Name Template when you create a
procedure.
For example:
In the Job Name Template field, you might supply:

$[projectName]_$[/increment /myproject/jobCounter]_$[timestamp]

which produces a name like:
projectFoo_1234_20140102130321

You can supply any combination of elements to create procedure names more
meaningful to you. For example, you could choose to include the build number
and procedure name.

jobs quick view A Jobs Quick View section is one of the facilities provided on the Commander
Home page. This section allows you to define a category of jobs interesting to you
(such as all running jobs or all jobs for a particular product version). Your Home
page can display the last several jobs in each category you define.

job step After a procedure is executed, the resulting job contains one job step for each
step in the original procedure. The job step records information about the
procedure step execution, such as the command executed, the resource where it
executed, execution time, and error information.

job workspace A directory (containing all files and subdirectories) allocated by Commander for a
particular job. Each job workspace is allocated as the child of a workspace root
directory.
See workspace.

ElectricCommander

446

Term Description

local group A group defined inside Commander, as opposed to a group defined in an
external repository. A local group can refer to both local and remote users,
whereas a group in an external repository refers to users in that repository only.
See group.

local user A user defined inside Commander, as opposed to a user defined in an external
repository. If a user defined in an external repository has the same name as a
local user, the external user is not accessible. Local users are not visible outside
Commander. Electric Cloud recommends using external accounts whenever
available, but you may need to create local users if you do not have a shared
directory service or if you need special accounts to use for Commander only.
See user.

log(s) ElectricCommander provides a log for events generated anywhere in the system,
including jobs and workflows.
Note: From the Administration tab, the default view for the Event Log page is the
warning (WARN) level. For workflow and job event logs, the default view from
their respective pages is the information (INFO) level.

l To see only events for a single workflow, select the Workflows tab, then a
workflow Name to go to the Workflow Details page and click the View Log
link at the top of the page.

l To see only events for a single job, select the Jobs tab, then the Job name
to go to the Job Details page and click the View Log link at the top of the
page.

l To see only events for a specific object, select the Search tab to go to the
Define Search page.
For example:
You can select the Object Type, "Log Entry", then click the Add Intrinsic
Filter link. Select the down-arrow where you see "Container" auto-
populated and select "Container Type. Use the "equals" operator, then
select the next down-arrow to choose an object. Click OK to start the
search.
See the Event Log topic for more information.

matcher A matcher controls the postp postprocessor. Use matchers to extend postp with
additional patterns if you find useful patterns in your log files undetected by postp.
A matcher contains a pattern that matches lines in a step's log and actions to carry
out if/when the pattern matches.

misfire policy A misfire policy allows you to manage how a schedule resumes in cases where
the normal scheduled time is interrupted.
Available options are:
skip (all misfires are ignored and the job runs at the next scheduled time) and
run once (after one or more misfires, the job runs at the soonest time that occurs
within an active region).
See schedule.

ElectricFlow Glossary

447

Term Description

parameter A property value passed into a procedure when it is invoked (at run time), and
used by the procedure to change its behavior. Two types of parameters: actual
and formal.

plugin A plugin is a collection of one or more features, or a third-party integration or tool
that can be added to ElectricCommander. Plugins are delivered as a JAR file
containing the functional implementation. When a plugin is installed, the
Commander server extracts the JAR contents to disk into a configurable plugins
directory.

A plugin has an associated project that can contain procedures and properties
required by the implementation. A plugin can provide one or more new pages for
the web interface and may also provide a configuration page so you can provide
additional information that may be necessary to implement the plugin.

polling frequency The polling frequency is how often the ElectricSentry continuous integration
engine is set to look for new code check-ins. The default is set to every 5 minutes,
but this number can be adjusted.

pool Also known as "resource pool". A pool is a collection of resources. If a step
specifies a pool name as its resource, Commander can choose any available
resource within that pool.

postp postp is a postprocessor included with ElectricCommander. postp uses regular
expression patterns to detect interesting lines in a step log. postp is already
configured with patterns to handle many common cases such as error messages
and warnings from gcc, gmake, cl, junit, and cppunit, or any error message
containing the string "error."
postp also supports several useful command-line options, and it can be extended
using "matchers" to handle environment-specific errors.
See matcher.

postprocessor A postprocessor is a command associated with a particular procedure step. After
a step executes, the postprocessor runs to analyze its results. Typically, a
postprocessor scans the step log file to check for errors and warnings. Also, it
records useful metrics such as the number of errors in properties on the job step,
and extracts step log portions that provide useful information for reporting.
Commander includes a standard postprocessor called postp for your use and you
can "extend" postp.
See matcher.

preflight build A preflight build provides a way to build and test a developer's changes before
those changes are committed. A "post-commit" source tree is simulated by
creating a clean source snapshot and overlaying the developer's changes on top
of it. These sources are then passed through the production build procedure to
validate the changes work successfully. Developers are allowed to commit their
changes only if the preflight build is successful. Because developer changes are
built and tested in isolation, many common reasons for broken production builds
are eliminated.

ElectricCommander

448

Term Description

privileges Commander supports four privilege types (for access control/security) for each
object:

l Read - Allows object contents to be viewed.

l Modify - Allows object contents (but not its permissions) to be changed.

l Execute - If an object is a procedure or it contains procedures (for
example, a project), this privilege allows object procedures to be invoked
as part of a job. For resource objects, this privilege determines who can
use this resource in job steps.

l Change Permissions - Allows object permissions to be modified.

procedure A procedure defines a process to automate one or more steps. A procedure is the
Commander unit you execute (run) to carry out a process. A step in one
procedure can call another procedure (in the same or different project), and this
procedure then becomes known as a "subprocedure" (also known as a "nested"
procedure). The step can pass arguments to the subprocedure.

project A project is a top-level container for related procedures, workflows, schedules,
jobs, and properties, which is used to isolate different user groups or functions,
and also encapsulate shared facilities.
Projects have two purposes:

l Projects allow you to create separate work areas for different purposes or
groups of people so they do not interfere with each other. In a small
organization, you might choose to keep all work within a single project, but
in a large organization, you may want to use projects to organize
information and simplify management.

l Projects simplify sharing. You can create library projects containing
shared procedures and invoke these procedures from other projects. After
creating a library project, you can easily copy it to other Commander
servers to create uniform processes across your organization.

project principal Project principal is a special user ID associated with each project. If a project
name is "xyz," the project principal for that project is "project: xyz" (with an
embedded space). This principal is used when procedures within the project are
run, so you can create access control entries for this principal to control runtime
behavior.

ElectricFlow Glossary

449

Term Description

property A property is a name-value pair associated with ElectricCommander objects to
provide additional information beyond what is already built into the system. Built-
in data is accessible through the property mechanism also. Two types of
properties: intrinsic and custom.

Commander provides Intrinsic properties and allows you to create Custom
properties.
Note: Intrinsic properties are case-sensitive. Custom properties, like all other
object names in the Commander system, are case-preserving, but not case-
sensitive.

l Intrinsic properties
These properties represent attributes that describe the object to which
they are attached, and are automatically by Commander for each similar
type object. For example, every project has aDescription property that
can be referenced with a non-local property path such as
/projects/Examples/description.

l Custom properties
Custom properties are identical to intrinsic properties and when placed on
the same object, are referenced in the same manner, and behave in every
way like an intrinsic object-level property with one exception: they are not
created automatically when the object is created. Instead, custom
properties can be added to objects already in the database before a job is
started, or created dynamically by procedure steps during step execution.

property sheet A property sheet is a collection of properties that can be nested to any depth. The
property value can be a string or a nested property sheet. Most objects have an
associated "property sheet" that contains custom properties created by user
scripts.

proxy agent A proxy agent is an agent on a supported Linux or Windows platform, used to
proxy commands to an otherwise unsupported agent platform. Proxy agents have
limitations, such as the inability to work with plugins or communicate with ectool
commands.???

proxy resource This resource type requires SSH keys for authentication. You can create proxy
resources (agents and targets) for Commander to use on numerous other remote
platforms/hosts that exist in your environment.

proxy target A proxy target is an agent machine on an unsupported platform that can run
commands via an SSH server.

publisher A publisher is the job that completes the publish operation for an artifact version.

ElectricCommander

450

Term Description

quiet time An inactivity period before starting a build within a continuous integration system.
This time period allows developers to make multiple, coordinated check-ins to
ensure a build does not start with some of the changes only—assuming all
changes are checked-in within the specified inactivity time period. This time
period also gives developers an opportunity to "back-out" a change if they realize
it is not correct.
Using ElectricSentry, the inactivity time period can be configured globally for all
projects or individually for a single project.

reports ElectricCommander provides multiple reports and custom report capabilities to
help you manage your build environment.

l Real-time reports - filtered view of your workload in real-time

l Build reports - summary reports produced at the end of a build and
attached to the job

l Batch reports - summaries of your build environment with trends over time,
two types:

l Default Batch reports - automatically installed during
ElectricCommander installation and scheduled to run daily
(Cross Project Summary, Variant Trend, Daily Summary, Resource
Summary, Resource Detail)

l Optional Batch reports - you can configure, rename, and schedule
these reports to fit your requirements
(Category Report, Procedure Usage Report, Count Over Time Report,
Multiple Series Reports)

l Custom reports - your choice to create and add at any time

repository or
repository server

The artifact repository is a machine where artifact versions are stored in either
uncompressed tar archives or compressed tar-gzip archives. The repository
server is configured to store artifact versions in a directory referred to as the
repository backingstore.

By default, the backingstore is the <datadir>/repository-data directory in
the repository installation—this default setting can be changed.

A repository is an object that stores artifact versions. This object primarily contains
information about how to connect to a particular artifact repository. Similar to steps
in a procedure, repository objects are in a user-specified order. When retrieving
artifact versions, repositories are queried in this order until one containing the
desired artifact version is found.

Connection information is stored in the repository object on the Commander
server.

ElectricFlow Glossary

451

Term Description

resource A resource specifies an agent machine where job steps can be executed.
Resources can be grouped into a "pool", also know as a "resource pool."
Commander supports two types of resources:

l Standard - specifies a machine running the ElectricCommander agent on
one of the supported agent platforms

l Proxy - requires SSH keys for authentication. You can create proxy
resources (agents and targets) for Commander to use on numerous other
remote platforms/hosts that exist in your environment.

schedule A schedule is an object used to execute procedures automatically in response to
system events. For example, a schedule can specify executing a procedure at
specific times on specific days. Three types of schedules are available: Standard,
Continuous Integration, and Custom (custom schedules are typically continuous
integration schedules that do not use the ECSCM plugin).

Sentry schedule A continuous integration schedule created using the ElectricSentry engine for
continuous integration or the CI Continuous Integration Dashboard, which is an
easy- to-use front-end user interface for the ElectricSentry engine.

shortcut One type of shortcut is part of the Commander Home page facility and records the
location of a page you visit frequently (either inside or outside of
ElectricCommander), so you can return to that page with a single click from the
Home page.

Another type of shortcut is a context-relative shortcut to property paths. This
shortcut can be used to reference a property without knowing the exact name of
the object that contains the property. You might think of a shortcut as another part
of the property hierarchy. These shortcuts resolve to the correct property path
even though its path elements may have changed because a project or
procedure was renamed. Shortcuts are particularly useful if you do not know your
exact location in the property hierarchical tree.

state Workflows always have a single active state. Each state in a workflow, when it
becomes active, can perform an action. A state can run a procedure to create a
subjob or run a workflow definition to create a subworkflow—in the same way that
procedures can call other procedures. One or more states can be designated as
"starting" states to provide multiple entry points into the workflow.
See state definition.

ElectricCommander

452

Term Description

state definition Workflow objects are split into two types: Definition objects and Instance objects.
Definition objects provide the template for a running workflow instance. You
create a new workflow by defining a Workflow Definition along with its State
Definition and Transition Definition objects.

When you run the workflow definition, the system creates a new Workflow object
with an equivalent set of State and Transition objects that represent the run-time
instances of the workflow definition.
Note:We omit the "Instance" qualifier for brevity in the API and the UI.

Each workflow can contain one or more state objects. Defining states for a
workflow is analogous to defining steps for a procedure.

step A step is a procedure component. Each step specifies a command to execute on
a particular resource or a subprocedure (nested procedure) to invoke. Commonly
created steps include:

l Command - This step invokes a bat, cmd, shell, perl script, or similar.

l Subprocedure - This step invokes another Commander procedure.

l Plugin step - These include task-specific steps. Depending on which step-
type you choose, the information you need to supply is somewhat
different. Some of the step types bundled with ElectricCommander
include:

l Publish or retrieve artifact version

l Send Email

l Various SCM step types

l Build tools and more

stored credential Stored credentials are given a name and stored in encrypted form in the
database. Each project contains a list of stored credentials it owns. These
credentials are managed from the Project Details page.

subprocedure Creating subprocedures is a way of "nesting" procedures. A step (from any
procedure) can call a procedure from another project or the same project. The
procedure called by the step then becomes a subprocedure.

substitution A mechanism used to include property values in step commands and elsewhere.
For example, if a step command is specified as "echo $[status]", and when
the step executes there is a property named "status" with value "success",
the actual command executed will be "echo success".

system object This is a special object whose access control lists are used to control access to
some ElectricCommander internals.
System objects are: admin, artifactVersions, directory, emailConfigs,
forceAbort, licensing, log, plugins, priority, projects, repositories,
resources, server, session, and workspaces.

ElectricFlow Glossary

453

Term Description

tag A way to categorize a project to identify its relationship to one or more other
projects or groups. You can edit a project to add a tag. Supply a tag if you want to
categorize or "mark" a project to identify its relationship to one or more other
projects or groups.

For example, you might want to tag a group of projects as "production" or
"workflow", or you might want to use your name so you can quickly sort the project
list to see only those projects that are useful to you.

transition Transitions are used to move workflow progress from one state to another state.
Four types of transitions are available to move a workflow to the next state:

l On Enter - transitions before sending notifiers or starting the sub-action

l On Start - transitions immediately after starting the sub-action. These
transitions are ignored if no sub-action is specified for the source state.

l On Completion - transitions when the sub-action completes. These
transitions are ignored if no sub-action is specified for the source state.
Note: On Completion transitions are taken only if the state is still active
when the sub-action completes, and are ignored if the workflow has
transitioned to another state—this can occur if an On Start or Manual
transition occurred before the sub-action completed.

l Manual - transitions when a user selects the transition in the UI and
specifies parameters. The same action can occur using ectool or the Perl
API by calling transitionWorkflow. Only users who have "execute"
permission on the transition are allowed to use the Manual transition.
See transition definition.

transition definition Workflow objects are split into two types: Definition objects and Instance objects.
Definition objects provide the template for a running workflow instance. You
create a new workflow by defining a Workflow Definition along with its State
Definition and Transition Definition objects.

When you run the workflow definition, the system creates a new Workflow object
with an equivalent set of State and Transition objects that represent the run-time
instances of the workflow definition.
Note:We omit the "Instance" qualifier for brevity in the API and the UI.

Each state can contain one or more transition objects. The transition definition
object requires a name for the transition. This transition name will appear on the
Workflow Definition Details page for quick reference and also on the State
Definition Details page when you select the Transition Definitions tab.

You can define one or more transitions for each state, depending on which
transition options you want to apply to a particular state.

user A user defines an account used to log into the system and control access to
ElectricCommander objects. A user can be defined externally in an LDAP or
Active Directory repository, or locally in ElectricCommander.
See local user.

ElectricCommander

454

Term Description

workflow You can use a workflow to design and manage processes at a higher level than
individual jobs. For example, workflows allow you to combine procedures into
processes to create build-test-deploy lifecycles.

A workflow contains states and transitions you define to provide complete control
over your workflow process. The Commander Workflow feature allows you to
define an unlimited range of large or small lifecycle combinations to meet your
needs.
See workflow definition.

workflow definition Workflow objects are split into two types: Definition objects and Instance objects.
Definition objects provide the template for a running workflow instance. You
create a new workflow by defining a Workflow Definition along with its State
Definition and Transition Definition objects.

When you run the workflow definition, the system creates a new Workflow object
with an equivalent set of State and Transition objects that represent the run-time
instances of the workflow definition.
Note:We omit the "Instance" qualifier for brevity in the API and the UI.

workflow name
template

This is the template used to determine the default name of jobs launched from the
workflow definition.
For example:

$[projectName]_$[/increment /myproject/workflowCounter]_
$[timestamp]

(substitute your values for the names above)

Produces a workflow name like:
projectName_123_20140102130321

workspace A workspace is a subtree of files and directories where job file data is stored. The
term "workspace" typically refers to the top-level directory in this subtree.

workspace root A workspace root is a directory in which ElectricCommander allocates job
workspace directories. Each workspace root has a logical name used to refer to it
in steps and procedures.

zone A zone is a way to partition a collection of agents to secure them from use by
other groups—similar to creating multiple top-level networks.
For example, you might choose to create a developers zone, a production zone,
and a test zone—agents in one zone cannot directly communicate with agents in
another zone.
A default zone is created during Commander installation.
The server implicitly belongs to the default zone, which means all agents in this
zone can communicate with the server directly (without the use of a gateway).

	ElectricFlow in the Electric Cloud Environment
	How to Use the ElectricFlow API
	Using ectool
	Logging in
	Global Arguments (optional)
	Passing Lists as Arguments

	Using Perl
	Perl API structure

	Common Global Options
	The Batch API
	Using the Batch API

	Installing Commander Perl modules into Your Perl Distribution
	Installing Perl Modules into the Commander Perl Distribution
	When Upgrading Commander

	API commands - ACL Management
	API commands - Applications
	API commands - Application Tier
	API commands - Artifact Management
	API commands - Component
	API Commands - Credential Management
	API Commands - Database Configuration
	API Commands - Directory Provider Management
	API Commands - Email Configuration Management
	API Commands - Email Notifier Management
	API Commands - Environment Requests
	createEnvironment
	createEnvironmentInventoryItem
	deleteEnvironment
	deleteEnvironmentInventoryItem
	getEnvironment
	getEnvironments
	getEnvironmentApplications
	getEnvironmentInventory
	getEnvironmentInventoryItem
	getEnvironmentInventoryItems
	modifyEnvironment
	modifyEnvironmentInventoryItem

	API Commands - Environment Tier
	createEnvironmentTier
	deleteEnvironmentTier
	getEnvironmentTier
	getEnvironmentTiers
	modifyEnvironmentTier

	API Commands - Gateways/Zones Management
	API Commands - Job Management
	External Job APIs

	API Commands - Parameter Management
	API Commands - Plugin Management
	API Commands - Procedure Management
	API Commands - Process
	createProcess
	deleteProcess
	getProcess
	getProcesses
	modifyProcess
	runProcess

	API Commands - Process Dependency
	createProcessDependency
	deleteProcessDependency
	getProcessDependencies
	modifyProcessDependency

	API Commands - Process Step
	createProcessStep
	deleteProcessStep
	getProcessStep
	getProcessSteps
	modifyProcessStep

	API Commands - Project Management
	API Commands - Property Management
	API Commands - Resource Management
	API Commands - Schedule Management
	API Commands - Server Management
	API Commands - Tier Map
	createTierMap
	deleteTierMap
	deleteTierMapping
	getTierMaps
	modifyTierMap

	API Commands - User/Group Management
	API Commands - Workflow Management
	API Commands - Workflow Definition Management
	API Commands - Workspace Management
	API Commands - Miscellaneous Management
	API Response and Element Glossary
	Element Glossary

	ElectricFlow Glossary

