@,

Electric
Cloud

ElectricFlow
API Guide

Electric Cloud, Inc.

35 South Market Street, Suite 100
San Jose, CA 95113
www.electric-cloud.com

ElectricFlow version 7.0.3
Copyright © 2002—-2017 Electric Cloud, Inc. All rights reserved.
Published 6/30/2017

Electric Cloud® believes the information in this publication is accurate as of its publication date. The information
is subject to change without notice and does not represent a commitment from the vendor.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” ELECTRIC CLOUD, INCORPORATED
MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION
IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any ELECTRIC CLOUD software described in this publication requires an
applicable software license.

Copyright protection includes all forms and matters of copyrightable material and information now allowed by
statutory or judicial law or hereinafter granted, including without limitation, material generated from software
programs displayed on the screen such as icons, screen display appearance, and so on.

The software and/or databases described in this document are furnished under a license agreement or
nondisclosure agreement. The software and/or databases may be used or copied only in accordance with terms
of the agreement. Itis against the law to copy the software on any medium except as specifically allowed in the
license or nondisclosure agreement.

Trademarks

Electric Cloud, ElectricAccelerator, ElectricCommander, ElectricFlow, and Electricinsight are registered
trademarks or trademarks of Electric Cloud, Incorporated.

Electric Cloud products—ElectricAccelerator, ElectricCommander, Electricinsight, ElectricFlow Deploy,
ElectricFlow Release, and Electric Make—are commonly referred to by their “short names”—Accelerator,
Commander, Deploy, eMake, Flow, Insight, and Release—throughout various types of Electric Cloud product-
specific documentation.

Other product names mentioned in this guide may be trademarks or registered trademarks of their respective
owners and are hereby acknowledged.

Contents

Introduction to ElectricFlow i 1
Web-Based Sy s em . 1
Automation Platform . 6
What Makes ElectricFlow UniQUe ? .. e e e e e e e 6
ElectricFlow Architecture .. . 6

Simple Architectural OvervieW . . L 7
Expanded Remote Configuration 8
Other Configurations e e 9
Build-Test Automation ... e 9
Deployment AUtOmMatioN .l 12
Pipeline Management e 16
Roadmap to the ElectricFlow APIs .. . i 16

Using the ElectricFlow Perl APl . 18

USiNg eCt00l ... 19
LOgaiNg IN 19
Global Arguments (Optional) e e 19
Passing Lists @as Arguments ... 19

Using Perl (eC-perl) ... 20
Perl AP S rUCIUIE 20

Common Global OptioNS 22

The BatCh APl e 24
Using the Batch APl e 25

Installing ElectricFlow Perl Modules into Your Perl Distribution __ 26

Installing Perl Modules into the ElectricFlow Perl Distribution 26

Using APl Commands in JavasCript 28

ElectricFlow Perl APl Commands ...l 29

Perl APl Commands Listed by Group 29
ACL Management (Access Control List) i 29
APPICatiONS .. 29
APPICatiON TiOrS 30
Artifact Management il 30
Change History ... e 32
COMPONENS 32
Credential Management 33
Database Configuration 33
Directory Provider Management ... 34

Dynamic EnvironNments 34

Email Configuration and Management _ . 36

Email Notifiers Management ... 37
ENVIrONmMEN S 37
Environment Tiers .. e 38
Gateway and Zone Management ... il 39
Job Management il 39
Parameter Management . . 41
Pipelines and Releases e 41
Plugin Management 44
Procedure Management . . 45
PrOCESS .. 45
Process Dependency Management .. e 46
Process Step Management . il 46
Project Management .. 46
Property Management . . 46
Rolling Deployments ... e 47
Resource Management .. . 47
Schedule Management il 48
Server Management ... 49
Snapshot Management . 50
Tier Map Management .. 50
User/Group Management . 50
Workflow Definition Management e 51
Workflow Management ... 52
Workspace Management . 53
Miscellaneous ... L 53
APl Commands - ACL Management o e 54
API Commands - Applications e 97
API Commands - Application Tier ... 102
API Commands - Artifact Management e 107
APl Commands — Change History e 144
APl Commands - CoOMPONENtS .. 152
API Commands - Credential Management _ . . el 163
APl Commands - Database Configuration 174
APl Commands - Directory Provider Management it 178
APl Commands - Dynamic Environments 194
API Commands - Email Configuration Management 238
API Commands - Email Notifier Management _ 243
APl Commands - Environment ...l 274
APICommands - Environment Tier . .. 299
API Commands - Gateway and Zone Management 307
APl Commands - Installing or Upgrading Remote Agents i i 316
APl Commands - Job Management 316
External Job APIS . 339
API Commands - Parameter Management . el 362
API Commands - Pipelines and Releases el 395

APl Commands - Plugin Management il 471

API Commands - Procedure Management _ . . e 479

APl Commands - ProCess il 502
APl Commands - Process DependencCy 514
APl Commands - ProCess Step ... 522
API Commands - Project Management . 537
API Commands - Property Management ... 542
APl Commands - Resource Management 596
APICommands - Rolling Deploy e 619
API Commands - Schedule Management .. . e 627
APl Commands - Search Filters 641
APl Commands - Server Management 645
APl Commands - SNapshotS ... 657
AP Commands - Tier Map ..o e 665
API Commands - User and Group Management _ ... e 670
APl Commands - Workflow Definition Management 685
API Commands - Workflow Management _ 705
API Commands - Workspace Management 714
API Commands - Miscellaneous Management 722
API Response and Element GloSSary 773
Element GloSSary 795
Using the ElectricFlow RESTful APl ... 823
Accessing the REST UL AP . e e e e e e 824
Using the RESTIUl APl L 825
REST Ul APl EXamMDIes e 828
POST Operations Without Special Arguments 828
POST Operations with Special ArgUmMeNtS e e 830
Using the ElectricFlow DS . 832
Why Use DS il 832
Using DSL for Object Versioning e e e 834
RUNNING DO e e e e e e e e 834
Modeling With DSL .. 836
Getting Started With DS e 836
Getting Help on DSL Methods e e e e 836
Creating and Running DS SCriptS ... o e e e e 837
Common Use Casesl 837
Generating DSL SCriptS .. . 843
Through €Ct00l .l 844
Through the ElectricFlow Ul e 844
DS IDE . 844
DSL Methods 848
Troubleshooting and FAQS 913
TroUbleSNOOtING . .l 913
FAQS i 913
Using Groovy and JRUDY . 915

EC-GIOOVY . e 915

G- TUDY il

Glossary

Introduction to ElectricFlow

ElectricFlow™ is an enterprise-grade DevOps Release Automation platform that simplifies provisioning, build
and release of multi-tiered applications. Our model-driven approach to managing environments and
applications allows teams to coordinate multiple pipelines and releases across hybrid infrastructure in an
efficient, predictable and auditable way.

BUILD/TEST DEPLOY RELEASE OTHER

FLEXIBLE AND ANY APP. TRADITIONAL
SCALABLE ANY VERSION. AND €D
AUTOMATION FOR ANYWHERE. PIPELINES
DEV AND QA ANYTIME. AND RELEASES

ORCHESTRATE ANY TOOLCHAIN OR PROCESS.
DSL, CLI, REST, SOAP, HTTP, API, SDK

SHARED CONTROL SHARED VISIBILITY SHARED RESOURCES
ElectricFlow

DEVOPS AUTOMATION PLATFORM

EXTENSIBLE SCALABLE SECURE

FLEXIBLE TRANSPARENT HYBRID CLOUD

it

g @ n 4 }(a@ amazon ﬂ* @ “ n Wﬂg-"! 'i'@ splunk> plygs right in to

m._’_I g :: 2 gerrit_ n IEM !" 'ICII‘S.éIQ.' *QIT:E A r 5 ;& ,3 now your existing tools

=

Web-Based System

Atits core, ElectricFlow automation platform is a web-based system for automating and managing the build, test,
deployment, and release process. It provides a scalable solution, solving some of the biggest challenges of
managing these "back end" software development tasks, including these challenges:

e Time wasted on script-intensive, manual, home-grown systems that
© Are error prone
© Do notscale well
© Have little or no management visibility or reporting
e Multiple, disconnected build and test systems across locations, resulting in:
© Redundant work
© Inability to share or reuse code files across teams
© Hard to manage build and test data
e Slow overall build and release cycles that directly impact:
© Release predictability

© Time-to-market

ElectricFlow

Automation Platform

The automation platform has a three-tier architecture, AJAX-powered web interface, and first-of-its-kind build
and release analytic capabilities for reporting and compliance. With this solution, your developers, release
engineers, build managers, QA teams, and managers gain:

e Shared platform for disseminating best practices and reusing common procedures
e Ability to support geographically distributed teams

e Continuous integration and greater agility

e Faster throughput and more efficient hardware utilization

e Visibility and reporting for better project predictability

e Better software quality by integrating and validating against all target platforms and configurations

For examples of ElectricFlow architecture configurations, see ElectricFlow Architecture on page 6.

What Makes ElectricFlow Unique?

ElectricFlow provides enterprise-class speed and scalability for software build and release management. ltis
easy to install and use on a simple build, yet scales to support the largest and most complex build and test
processes. ElectricFlow distributes jobs in parallel across multiple resources for faster overall cycle time.

ElectricFlow supports multiple teams, working in multiple locations, programming in multiple languages in an
environment that can be centrally controlled and managed. Shared assets and reuse make individual teams
more efficient by eliminating duplicate work, and gives organizations the power to deploy cross-company
standards.

ElectricFlow's unique analytics provide visibility into one of the best indicators of project success: compiled,
tested, working code. ElectricFlow's analytics database stores all build and test information for real-time and
trend reporting giving your organization the power to collect pinpoint statistics and to gain visibility into
important productivity metrics such as trends in error rates. Additionally, out-of-the-box reports provide
information about cross-project status and build trends by project and resource utilization. ElectricFlow's
integration with virtual lab automation (VLA) solutions also allows you to snapshot or reproduce a specific build
for auditing or troubleshooting purposes.

ElectricFlow provides unified process automation across the entire build-test-deploy life cycle and across
heterogeneous tools via integrations with leading ALM tools. Integrations with SCM tools enable continuous
integration, triggering builds whenever code is checked into the specified repository/branch. When used with
VMware Lab Manager, ElectricFlow can dynamically provision either physical or virtual resources without
manual intervention. This feature delivers efficient, dynamic resource provisioning and reduces development
and QA dependence on IT operations.

ElectricFlow Architecture

ElectricFlow was designed to support small, mid-range, or enterprise scale software production. Based on a
three-tier architecture, ElectricFlow scales to handle complex environments. The ElectricFlow multi-threaded
Java server provides efficient synchronization even under high job volume.

e The ElectricFlow server manages resources, issues commands, and generates reports.
e An underlying database stores commands, metadata, and log files.

e Agents execute commands, monitor status, and collect results in parallel across a cluster of servers for
rapid throughput.

Introduction to ElectricFlow

Simple Architectural Overview

This local configuration applies to all the use cases. The ElectricFlow server, web server, artifact cache, Artifact
Repository server, workspace, command-line tools, resources, agents, and job steps are all in the automation
platform.

In this local configuration:

e The ElectricFlow server manages resources, issues commands, and generates reports.
e Resources, agents, and databases are managed in the automation platform.

¢ Anunderlying database stores commands, metadata, and log files.

e Procedures, which include job steps, are defined in the automation platform.

e Job steps are executed on resources in the defined environments.

e Applications (which include procedures), components, and environments are defined for deployment
automation.

e Pipelines, stages, and tasks are defined for pipeline management.

Web Browser

Command-Line Tools { Web Server J
ectool and ec-perl

@ Agent

Email Reports

ElectricFlow Server

[Artifact Repository Server

[Workspace]

/]

Agent w ‘ Agent w ‘ Agent w | Agent je— —

P B[m BB | BB _
Cache = o B8 B B D_Dj: = ~Job Steps

\J
Resources

ElectricFlow

If you are only evaluating ElectricFlow, the ElectricFlow software, the database, the ElectricFlow server, the web
server, and the repository server can reside on the same machine.

In a production environment, the database should reside on a separate machine from the ElectricFlow server to
prevent performance issues. It is acceptable for the ElectricFlow server, web server, and repository server to
reside on the same machine in a local configuration, but not required.

Expanded Remote Configuration

ElectricFlow is not limited by only the components shown in the previous configuration. This configuration
applies to all the use cases.

The following shows a remote web server configuration and is an example for how you may set up a remote
web server installation.

Web Browser Web Browser
Web Server] Web Server)

il ElectricFlow Server i

y

r

]
[Workspace) [Workspace }
I Database I

" Agent W’ Agent " Agent W{ Agent
ED - g (] B
__ B / -] —
p " \ _/
Agent w Agent " Agent W/ Agent
O @| 00 O @| 00
EE EEO BEO
N N / \ BE o J

This type of remote web server configuration helps prevent network latency. If you have multiple sites,
ElectricFlow can be configured to help you work more efficiently.

Introduction to ElectricFlow

Other Configurations

Go to the ElectricFlow Installation Guide (http:/docs.electric-cloud.com/eflow_doc/FlowIndex.html) for other
architecture configurations:

Proxy (universal) resources
Remote database

Multiple remote web servers
Multiple remote repository servers

Clustered configuration for horizontal scalability and high availability

Build-Test Automation

You create, configure, and manage these objects in the automation platform:

For build-test automation, you must create, configure, and manage these objects in the automation platform:

Projects

A projectis an object used in ElectricFlow to organize information. A project is a container object for
procedures, steps, schedules, workflows, and properties. If you use ElectricFlow for different purposes,
you can use a separate project for each purpose so different projects do not interfere with each other.
When you work in one project, you do not normally see information in other projects. At the same time, a
project can use information defined in other projects, which allows you to create shared library projects.

Resources

A resource is defined as an agent machine where steps can execute. A resource has a logical name
and a host name. In some situations, itis convenient to have multiple logical resources associated with
the same host. A resource can also be associated with one or more pools. Each resource has a step
limit that determines the maximum number of steps that can execute simultaneously on the resource.
Resources can be grouped into resource pools. Multiple resources can be defined on the same
machine.

http://docs.electric-cloud.com/eflow_doc/FlowIndex.html

ElectricFlow

e Procedures

Procedures and steps define tasks that you want ElectricFlow to execute. A procedure consists of one or
more steps. A step includes a command or script executed on a single resource and is the smallest unit
of work that ElectricFlow understands. Each step specifies a resource on which it should run (either the
name of a specific machine or the name of a resource pool of equivalent machines, in which case
ElectricFlow picks a machine from the pool). A step can be given a time limit, and if the step does not
complete within the specified time, ElectricFlow automatically aborts it.

Steps are ordered within a procedure and normally execute sequentially. However, it is possible to mark
a consecutive range of steps for parallel execution, so all steps in that range run concurrently.

You can define parameters for procedures. Parameter values are assigned when procedures are
scheduled. Parameters can be required, optional, or have default values. Parameters are used for a
variety of purposes such as specifying the branch to build or the set of platforms on which to run tests.
Parameter values can be used in step commands and many other places.

Procedures can be nested. A step in one procedure can invoke another procedure instead of running a
command. The invoking step provides parameters needed by the nested procedure, also referred to as
a subprocedure.

Schedules

A schedule is used to execute procedures and determine when specific procedures run. A schedule can
trigger at defined times, for example, every 2 hours from 10:00 pm to 6:00 am on Mondays,
Wednesdays, and Fridays, or when modifications are checked into a particular branch of your source
code control system. Itis also possible to create a schedule that runs immediately and disappears after
the job runs. When you create a schedule, you must provide the parameters required by the procedure
that you want to invoke.

The Continuous Integration Dashboard works with your source code management (SCM) system and
provides visibility into running builds, the ability to add a project to continuous integration quickly, and
easily accessed configuration pages to setup or modify a continuous integration schedule.

Workflows

Managing a build-test-deploy product life cycle spanning multiple procedures and projects requires a
significant amount of "meta-programming" and a heavy use of properties, and the workflow feature
simplifies this process. Using the workflow object, you can create build-test-deploy life cycles by defining
a set of states and transitions. Any ElectricFlow project can contain a workflow.

When a procedure is executed or run, a job is created. A job is an object thatis created each time a
procedure begins to execute or run. The job keeps track of all data associated with the procedure's
execution, such as the running time of each step and any errors that may occur during the step.
ElectricFlow retains job information after the job completes so you can examine what occurred.

After setting resources, procedures, and schedules, ElectricFlow automatically runs the procedures that you
created using these objects and facilities:

e Zones and Gateways—A zone (or top-level network) that you create is a way to partition a collection of

agents to secure them from use by other groups. A gateway is a secured connection between two zones
when you want to share or transfer information between the zones. For example, you might want a
developers zone and a test zone. The ElectricFlow server is a member of the default zone, created
during ElectricFlow installation.

10

Introduction to ElectricFlow

Continuous Integration Builds and other schedules—Run jobs according to schedules that you define.
Scheduled jobs can run at specific times or when source code changes are checked in to your source
control system. ElectricFlow integrates with major source control systems. The Continuous Integration
Dashboard allows you to add more projects easily and create build configurations quickly so you can
visually see running builds, build status, and so on.

Artifact Management functionality—Using artifacts can improve performance across builds, provide better
reusability of components, and improve cross-team collaboration with greater tractability. For example,
instead of developers repeatedly downloading third-party packages from external sources, these
components can be published and versioned as an artifact. Developers then simply retrieves a specific
artifact version from a local repository, guaranteeing a consistent package from build to build.

Preflight build functionality—Used by developers to build and test code changes in isolation on their local
machines before those changes are committed to a production build.

Plugin capability—ElectricFlow is built with an extensible Ul, enabling easy development of plugins that
include integrations with other tools, custom dashboards, and unique user experiences based on roles.
"Bundled" plugins, installed during ElectricFlow installation, provide easy integration with your SCM
systems, defect tracking applications, and so on. For a complete list of bundled plugins, see Appendix A:
Plugins That are Bundled with ElectricFlow.

Workflow functionality—Use a workflow to design and manage processes at a higher level than

individual jobs. You can use workflows to combine procedures into processes to create build-test-deploy
life cycles (for example). A workflow contains states and transitions that you define to provide complete
control over your workflow process. The ElectricFlow Workflow feature allows you to define an unlimited
range of large or small life cycle combinations to meet your needs.

Resource management-If a resource is overcommitted, ElectricFlow delays some jobs until others are
finished with the resource. You can define pools of equivalent resources, and ElectricFlow spreads
usage across the pool.

Recording a variety of information about each job, such as the running time and the success or failure of
each step. A set of reports is available to provide even more information.

Powerful and flexible reporting facilities—Various statistics such as number of compiles or test errors are
collected after each step and recorded in the ElectricFlow database. A variety of reports can be
generated from this information.

Allowing you to observe jobs as they run and to cancel jobs.

Credentials—Use a credential, consisting of an user name and password, can be attached directly to a
step or schedule at the platform level. You can also attach impersonation credentials to procedure steps,
procedures, and projects before executing the job step. It allows ElectricFlow to use a specific account
with special privileges on a per-job or per-step basis.

Workspace for each job, which is a disk area a job uses for storage—ElectricFlow also provides a facility

for reclaiming space occupied by workspaces.

Powerful data model based on properties—Properties are used to store job input data such as the source
code branch to use for the build, to collect data during a job (such as number of errors or warnings), and
to annotate the job after it completes (for example, a build has passed QA).

Access control for users logged into the system—ElectricFlow uses this information to control their
activities and integrates with Active Directory and LDAP repositories.

Search, sort, and filter functions to minimize viewing or "wading" through information that is of no interest
to you, allowing you to access to the information you need quickly.

11

ElectricFlow

e Email notifications to get important information or data to individuals or groups immediately and on a
regular basis for a particular job or a specific job aspect.

e All ElectricFlow operations and features are available from a command-line application tool (Perl API),
ectool, the RESTful API, DSL methods, and a user interface (Ul).

This diagram shows the relationships between objects in the automation platform to objects used in deployment
automation.

e Resources are assigned to environments.
e Resource pools are also assigned to environments.

e Resource pools are assigned to Resource Templates, which are used to define Environment Templates.

Flow Object Hierarchy —

Application

L 4

.

W

Process

-
Process 3 w—
w
o o Process

"Comp Process | 4

Step - . -
* Application Tier

For more information about the ElectricFlow objects, concepts, and features in this topic, go to the ElectricFlow
GlossaryGlossary on page 918

To configure and manage build-test automation, you can use APl commands or DSL scripts.

You can also use the ElectricFlow user interface (Ul) to configure and manage your automation solution. For
information about using the ElectricFlow Ul, see the ElectricFlow User Guide.

Deployment Automation

This diagram shows the relationships between the following objects to other objects in deployment automation.

12

http://docs.electric-cloud.com/eflow_doc/6_0/HTML5/User/FlowUserGuideHTML.htm

Introduction to ElectricFlow

Applicétion

mb—n,_—

Process Component

Process
Step

Comp
Process

Comp Process
Step

Flow Object Hierarchy

Project

Template

Tier Map

Independently Managed

PR crviconment
refers m\ Inventory

Environment Tier

' Application Tier "

s

It also shows the relationships to following objects in the automation platform:

e Resources are assigned to environments.

e Resource pools are also assigned to environments.

e Resource pools are assigned to Resource Templates, which are used to define Environment Templates.

To automate your deployments for Continuous Delivery, you model and deploy (run) applications in

ElectricFlow.

e Applications consist of application processes and application tiers.

You add components to application tiers and model component processes.

Components are based on artifacts that are defined and managed by the automation platform.

e Before deploying an application, you map an application process to an environment, where the
application will be deployed, in a tier map.

A tier map can have one or more mappings of an application tier to an environment tier.

An environment tier can be mapped to more than one application tier.

13

ElectricFlow

Environments can be static or dynamic.

You can create a static environment before deploying an application, or you can create a dynamic
environment when deploying the application.

An environment consists of one or more environment tiers to which resources are added.

In a static environment, you can add only static resources to the environment tiers. These resources are
defined and managed in the automation platform.

You can create dynamic environments with provisioned cloud resources and static resources in
ElectricFlow 5.4 or later.

Apply these features in your application:

Dynamic environments

A dynamic environment is automatically spun up on an on-demand basis when you deploy an
application. It can have provisioned cloud resources and static resources.

Dynamic environments allow you to optimize how your cloud resources are used, reuse provisioned
resource pools, track the status and usage of cloud resources, and verify the credentials of these
resources before provisioning them.

Deploying applications
You can deploy part or all of the objects one of these ways:
e Full deploy—All objects in the application are deployed.

e Smart deploy—Only objects that have not been deployed to specific resources, not deployed
with specific artifact versions, or on new resources

o Partial deploy—Only specific objects and versions

e Schedule—On a one-time, daily, weekly, or monthly basis.

e Snapshot-Based on a version of the application with specific artifact versions and the state of
the application atany pointin time.

While developing an application, you can save different versions of the application as
snapshots and compare them to refine and troubleshoot the application.

Change Tracking

ElectricFlow monitors changes to fracked objects, such as applications, procedures, workflows,
workspaces, resources, and project-owned components (such as libraries). It records a change history
of the historical states of the system and the state changes.

Snapshots

You can design and save a version of your application with specific artifact versions. If you save
snapshots of the application during development and test phases, you can ensure that the components
that were developed and tested are the same as those in the released version of the application. You
can redeploy the snapshot any time.

14

Introduction to ElectricFlow

e Credentials and impersonation

You apply credentials and impersonation to control who can run applications and where the
applications are run.

e You can attach one or more credentials to component or application process steps.

e You can attach only one impersonation credential to an application process, component
process, or a process step.

¢ When you attach an impersonation credential in ElectricFlow, it specifies the user who can
deploy the application and the environment in which the application is deployed.

e When you attach an impersonation credential in the automation platform, it specifies the
account (user) that can run the job or job step. If you want to specify another condition, you
have to attach another credential to the object.

e Custom parameters in application processes
You can define and apply custom parameters to application processes in your deployments.

You define the parameters and apply them while deploying the application or while defining an
application process step, which determines when and how the application is deployed.

e Email notifications

You can easily customize the email notification that the system sends when an application, application
process, or process step runs.

When setting the recipients of email notifications, you can specify users or groups, which are defined
and managed in the automation platform, as well as email addresses.

e Tracking, viewing, and troubleshooting the deployment results

Use the Environment Inventory to track and view details of the objects that were deployed and artifacts in
the application. It shows the status of the application deployment at a pointin time.

Use the Application Inventory to track and view the deployment results. It shows more details about the
application at a pointin time.

You can also view the change history of the objects in the application and search for specific
information.

More about application, deploy, and run:

As you use ElectricFlow, remember that these terms have different meanings within ElectricFlow and
outside of ElectricFlow when you deploy your software or application:

15

ElectricFlow

Term Within ElectricFlow Outside of ElectricFlow
Application | The application that you design The software, system or application that you build,
and run (deploy) to produce your test, install, implement, release, and deploy using
software for continuous delivery ElectricFlow.
across different pipelines. o . .
This is the end product of using ElectricFlow.
Deploy Running the application that you All the processes or actions to develop and run
designed in ElectricFlow. your software in its environment, including
T q duct i fw building, testing, implementing, installing,
€ end pro ug |s.yourso are, configuring, making changes, and releasing.
system, or application. Deploy is a
synonym of run in ElectricFlow.
Run Running the application that you All the processes or actions to use software in its
designed. environment, including implementing, installing,
configuring, debugging, troubleshooting, and
The end product is your software, g. 9 9ging 9
L releasing.
system, or application.
Run is a synonym of deploy in
ElectricFlow.

For more information about the ElectricFlow objects, concepts, and features in this topic, go to the ElectricFlow
GlossaryGlossary on page 918

To configure and manage deployment automation, you can use APl commands or DSL scripts.

You can also use the ElectricFlow user interface (Ul) to configure and manage your automation solution. For
information about using the ElectricFlow Ul, see the ElectricFlow User Guide.

Pipeline Management

For end-to-end Continuous Delivery, you model and deploy pipelines in ElectricFlow.

... concepts, features, objects

For more information about the ElectricFlow objects, concepts, and features in this topic, go to the ElectricFlow
GlossaryGlossary on page 918

To configure and manage pipeline management, you can use APl commands or DSL scripts.

You can also use the ElectricFlow user interface (Ul) to configure and manage your automation solution. For
information about using the ElectricFlow Ul, see the ElectricFlow User Guide.

Roadmap to the ElectricFlow APIs

ElectricFlow supports these APIs, ranked from easiest to hardest to use:

e DSL methods

You create scripts and templates without using APl commands.

16

http://docs.electric-cloud.com/eflow_doc/6_0/HTML5/User/FlowUserGuideHTML.htm
http://docs.electric-cloud.com/eflow_doc/6_0/HTML5/User/FlowUserGuideHTML.htm

Introduction to ElectricFlow

The ElectricFlow DSL allows you to create scripts or templates for all the operations that you can do on
the ElectricFlow Ul, using the RESTful API, or the Perl API.

e RESTful APIs
You do not need detailed knowledge of the API syntax to execute RESTful API requests.

You navigate to the RESTful APl URI and enter the appropriate information in the APl Ul to execute a
request.

e Perl API
You need to know the correct syntax to execute these commands.
You can use Perl APIs one of these ways:
e Access ectool or ec-perl through the command-line interface

e Putthe APl commands in Javascript

Go to the following sections to use these APls:

API Type Go to

DSL Methods | Using the ElectricFlow DSL on page 832

RESTful APIs | Using the ElectricFlow RESTful APl on page 823

Perl APIs Using ectool on page 19
Using Perl (ec-perl) on page 20

Using API Commands in Javascript on page 28

17

ElectricFlow

Using the ElectricFlow Perl API

The Perl APl is the most difficult of the ElectricFlow APIs to use because you need to know the command syntax
to perform ElectricFlow operations such as

Create and call procedures

Model and deploy applications

Create and manage resources

Create environment models and add resources to them
Model and run pipelines

Model and run releases

Create and manage artifacts

Create and manage object properties

You can access the Perl API for ElectricFlow features one of these ways:

Through the user interface (Ul)

The most common way is through the user interface (Ul), also referred to as the web interface in this
document.

The Ul displays windows and dialog boxes from which you can perform the following operations:
e Create projects, procedures, and steps.
e Launch jobs.
e Deploy applications.
e Manage all administration tasks at the automation-platform level.
Through ectool or ec-perl
The Perl APIs can be used from a command-line interface, in a shell script, or in a batch file.

Any operation you can perform on the web interface, you can perform using the API because they all rely
on the same interface to the ElectricFlow server.

The ElectricFlow API supports ectool and ec-perl (or Perl) commands:
e ectoolis a command-line tool developed to script ElectricFlow operations.

e ec-perlis delivered as a Perl package during ElectricFlow installation, or you can use any
Perl of your choice.

Through Javascript
The Perl APIs can be included in Javascript files.

Any operation you can perform on the web interface, you can perform using Javascript files containing
Perl APIs because they both rely on the same interface to the ElectricFlow server.

This topic describes ectool and ec-perl usage and their differences because ectool and ec-perl can work
together. This topic also describe Javascript usage.

18

Using the ElectricFlow Perl API

e Using ectool

e Using ec-perl

e Common global options

e The Batch API

¢ Installing ElectricFlow Perl modules into your Perl distribution
¢ Installing Perl modules into the ElectricFlow Perl distribution

e Using Perl APIs in Javascript

Using ectool

ectool is a command-line application that provides operational control over the ElectricFlow system.

ectool supports a large collection of commands, each of which translates to a message sent to the ElectricFlow
server.
For example, ectool getProjects returnsinformation about all projects defined in the server.

e cctool --helpdisplays a summary of all commands and other command-line options.
e Forinformation about a particular command, use --help followed by the command name. For example,
ectool --help modifyStep returns information about the modi fyStep command.
Logging In

If you use ectool outside of a job, you mustinvoke the ectool login command to log in to the server. After logging
in, ectool saves information about the login session for use in future ectool invocations. If you run ectool as part
of an ElectricFlow job, you do not need to log in—ectool uses the login session (and credentials) for that job.

To log in to a specific server, see the example below, which includes the server name, user name, and
password.

Login example:
ectool --server bldglserver login "Ellen Ernst" "eel23"
General syntax for ectool command usage:

ectool [global argument] <command> <positional arguments> [named arguments]

Global Arguments (Optional)

See the Common global options section for more information.

Passing Lists as Arguments

Some APl commands include arguments that expect a list of values. Two list forms: value lists and name/value
pairs. The syntax to specify a list depends on whether you are using ectool or ec-perl.

For ectool

e value list - each value is specified as a separate argument on the command line
Example:

ectool addUsersToGroup groupl --userNames userl user2 user3

e namel/value pairs - each pair is specified as a separate argument in the form name=value
Example:

19

ElectricFlow

ectool runProcedure projl —--procedureName procl --actualParameter parml=valuel p
arm2=value?2

For ec-perl

e value list - the argument value is a reference to an array of values
Example:

Scmdr->addUsersToGroup ({ groupName => groupl,
userName => ['userl', 'user2']l}):;

e namel/value pairs - the argument value is a reference to an array of hash references. Each hash
contains a pair of entries, one for the name and one for the value. The hash keys depend on the specific
API.

Example:

$Scmdr->runProcedure ({ projectName => 'projl',
procedureName => 'procl',
actualParameter => [{ actualParameterName => 'parml',
value => 'valuel'},
{ actualParameterName => 'parm2',
value => 'value2'}1});

Using Perl (ec-perl)

When ElectricFlow is installed—Server, Agent, or Tools (using the express or advanced installation type)—a
copy of Perl is installed. This Perl is pre-configured with all the packages you need to run the ElectricFlow Perl
API. ElectricFlow does not, however, automatically add this version of Perl to your path because:

¢ We did not want the ElectricFlow installation to interfere with existing scripts you may run, which are
dependent on finding another copy of Perl you already use.

e Some special environment variables need to be set before calling Perl.

Both of these issues are addressed with a small wrapper program called ec-perl. The wrapper is installed as
part of ElectricFlow, and itis in a directory that is added to your path. When the ec-perl wrapper runs, it sets up
the environment, finds, and calls the ElectricFlow copy of Perl, passing all of its parameters to Perl.

To run ec-perl from a command line (or in an ElectricFlow step) enter:
ec-perl yourPerlOptions yourPerlScript.pl
The Perl script can include API calls to ElectricFlow with no other special handling required.

Another way to write Perl scripts: For an ElectricFlow step, enter the Perl script directly into the "Command" field,
and set the "Shell" field to ec-perl. The ElectricFlow-installed Perl is used to process the Perl script.

You can develop Perl scripts to access the Perl API directly. Because ectool uses the Perl API to execute its
commands, any ectool command you can execute can be executed using the Perl API. If you are writing (or
currently using) a script that makes tens or hundreds of calls, the Perl API provides a significant performance
improvement over ectool.

The Perl APl is delivered as a collection of Perl packages pre-installed in a Perl 5.8 distribution. The main API
package is called ElectricCommander.

Perl API Structure

The Perl APl has the same four elements as ectool, but the way these elements are specified is quite different.

Specifying global options

20

Using the ElectricFlow Perl API

To use the ElectricFlow Perl API, you must first create an object. Global arguments are specified at the time the
object is created. These arguments are passed as members of an anonymous hash reference, as shown in the
following example:

use ElectricCommander;
Scmdr = ElectricCommander->new ({

server => "vm-xpsp2",
port => "8ooo",
securePort => "8443",
debug => "1",

1) ;

In the example above, port options are not really necessary because they specify default values. When you
want to specify the server name only, you can use the “shorthand” form:

use ElectricCommander;
Scmdr = ElectricCommander->new ("vm-xpsp2") ;

An even simpler form can be used if you call the Perl API from a script running as part of an ElectricFlow job
step. In this case, the ElectricFlow package sets the server name based on the environment variable,
COMMANDER_SERVER, set by the ElectricFlow agent.

use ElectricCommander;
Scmdr = ElectricCommander->new () ;

To see a complete list of global commands you can use with Perl, click here.

Note: If your script uses International characters (non-ascii), add the following block to the top of your ec-perl
command block:

use utf8;
ElectricCommander: :initEncodings () ;

Specifying Subcommands
For each subcommand, there is a corresponding ElectricFlow object function.
For example, to retrieve a list of jobs, use
Scmdr->getJobs () ;
Specifying Arguments

Most subcommands expect one or more arguments. Arguments are specified as key value pairs in a hash ref
passed as the final argument to the subcommand. Additionally, as a convenience, some arguments may be
specified as positional arguments prior to the options hash ref.

For example, setProperty has two positional arguments, propertyName and value, and an optional jobId
argument that can be specified in either of the following forms:

Scmdr->setProperty ("/projects/test/buildNumber", "22",
{jobId => $jobId});

or

Scmdr->setProperty ({
propertyName => "/projects/test/buildNumber",
value => "22",
jobId => $jobId });

Handling Return Values

Every function to the object returns an object of type XML: : XPath. This is an object that returns a parsed
representation of the ElectricFlow returned XML block. See documentation on CPAN for more information.

21

ElectricFlow

SxPath = $cmdr->setProperty("filename", "temp.xml");
print "Return data from Commander:\n".
$xPath->findnodes as string ("/") . "\n";

Error Handling

If a function call to the ElectricFlow object encounters an error, by default, it "dies" inside Perl and prints an error
message. If you want to handle errors yourself and continue processing, you must set a flag to disable internal
error handling and handle the error in your code.

For example:

Scmdr->abortOnError (0) ;
SxPath = $cmdr->getResource ("NonExistent Resource");
if ($xPath) {
my Scode = $xPath->findvalue('//code')->value();
if (Scode ne "") {
my $mesg = $xPath->findvalue('//message');
print "Returned code is 'S$code'\n$mesg\n";
exit 1;

}
An alternative to using the abortOnError flag:

eval {$cmdr->get...};

if (s@) A
print "bad stuff: s$@";
exit 1;

}
Specifying a Named Object

Any API argument that refers to a named object (for example, projectName, procedureName) performs
property reference expansion before looking in the database for the object. This process allows constructs like
the following to work without making two separate server requests:

Scmdr->getProject ('$[/server/defaultProject]')

Property reference expansion for names occurs in the global context, so context-relative shortcuts like
"myProject" are not available.

Common Global Options

Global arguments can be used alone or in conjunction with other commands. These arguments are used to
control communication with the server and can be used with the ectool or ec-perl API.

Global Arguments Description

--help Display an online version of ectool commands with a short description.
Displays command information if followed by a command name.

--version Display the ectool version number.

22

Using the ElectricFlow Perl API

Global Arguments

Description

--server <hostname>

ElectricFlow server address. Defaults to the COMMANDER_SERVER
environment variable. If this variable does not exist, the defaultis to the last
server contacted through the API. However, if there is no record for which
server was contacted, the defaultis to localhost.

Note: If you are using multiple servers, we recommend using the server
option to ensure the correct server is specified for your task. For example, if
you are using the import API, the server option may be particularly
important.

Do not use in a step context: we recommend that steps running ectool or
Perl scripts should never provide the server option if the intention is to
communicate with the server thatlaunched the step. If the intention is to
communicate with a different server, this agent must be a registered,
enabled resource in the second server. Thus, that server will ping the agent,
and the agent will learn how to communicate with that server.

In a step context, ectool and the Perl API proxy server requests through the
step's agent. If the agent does not recognize the provided server-name, it
rejects the request. ectool / Perl APl retry the operation because at some
point the server should ping the agent, and then the agent will have learned
how to communicate with the server.

Generally, the issue is that the server publicizes its name as a fully-qualified
domain name and ectool / Perl APl issue requests with a simple-name for
the server. This can happen if the step explicitly states which serveritis
connecting to. Fix your steps that invoke ectool so they no longer include the
server-name, and ectool will default to the server-name that the server
provided.

--port <port>

HTTP listener port on the ElectricFlow server. Defaults to port 8000.

—--securePort
<secureport>

HTTPS listener port on the ElectricFlow server. Defaults to port 8443.

--secure <0[|1>

Use HTTPS to communicate with the ElectricFlow server.

Note: Certain requests (for example, login, createUser, and
modifyUser) automatically use HTTPS because passwords are being sent,
which means itis not necessary to specify secure for those APIs. Defaults to
1.

-—timeout <s>

An API call waits for a response from the server for a specified amount of
time. Timeout for server communication defaults to 180 seconds (3 minutes)
if no other time is specified. After the timeout, the API call stops waiting for a
response, but the server continues to process the command.

—--retryTimeout <s>

This is a separate timer, independent of the retry flag, and used to control
ElectricFlow’s automatic error recovery. When the APl is unable to contact
the ElectricFlow server, it will keep trying to contact the server for this length
of time. When the APl is called from inside a step, it defaults to 24 hours.

--retry <0[|1>

Retry the request if it times out based on the "timeout" value. Default is "0"
and should rarely be changed.

23

ElectricFlow

Global Arguments

Description

—-—-user <username>

Use the session associated with the user. Defaults to the user who last
logged in.

--service <spn>

Specify the service principal name to use for Kerberos. Defaults to
HTTP@host.domain.

--setDefault <0|1>

Use the current session as the default for subsequentinvocations. Defaults
to 1.

encoding
<charEncoding>

Use the specified encoding for input/output. For example, for
charEncoding, enter UTF-8, cp 437, and so on. Default is autodetected.

—-—-dryrun

Displays session information and the request that would be sent, without
communicating with the server. If a subcommand is specified, the server
request that would be sentis displayed. This option can also be used to
change the default user/server value by specifying the --user or --server
options.

--silent

Suppresses printing the result.

For example:

ectool --silent createResource foo will notprintthe resource
name, agent state, any modify information, create time, owner, port, or any
other information otherwise displayed when you create a resource.

--valueOf

This option can return the value of a unique element. Because many ectool
APIs return an XML result, itis inconvenient to use ectool in shell scripts and
makefiles where you might want a piece of the ectool result to incorporate
into some other logic. Using the ——valueOf <path> option evaluates the
XML result and emits the value of that node to satisfy such use cases.

For example:

$ ectool --valueOf '//version' getServerStatus

returns only "4.1.0.48418".

--format <format>

Specifies the response format. Must be one of 'xml' or json'. Defaults to 'xml'.
For example, you might specify:
ectool --format json setProperty summary hello

--ignoreEnvironment

Force ectool to ignore COMMANDER_ENV variables.

The Batch API

The Perl API supports a batch operation mode that allows you to send multiple APl requests in a single
"envelope", which has several advantages over standard, individual API calls in some situations. For example,
you could use the batch APl when you need to set 10 or even 100 property values.

The batch API reduces "round-trip" transmissions. All setProperty requests can be sentin a single envelope.

You can choose an option that changes all properties in a single database transaction in the server. This means

changes are made using an "all or none" approach. If one change fails, they all fail, which allows you to keep
your data in a consistent state. When you make a large number of requests in one envelope, the single
database transaction option provides much better performance.

24

Using the ElectricFlow Perl API

Using the Batch API

To use the batch API, first create a object as you would for a standard API. From your newly created object,
create a batch object using the newBatch method. The newBatch method takes a single argument, which is
the "request processor mode". This argument tells the server how to process multiple requests. There are three
"request processor modes™:

1. serial -each requestin the envelope is processed serially, each in its own transaction.
2. parallel - each requestin the envelope is processed in parallel, each in its own transaction.

3. single-each requestin the envelope is processed serially, all in the same transaction.

Specifying serial, parallel, or single is optional. If you do not specify an option, the server determines the best
mode to use, based on the requests in the envelope.

Example - creating a batch object:

use ElectricCommander;

my $cmdr = ElectricCommander;

Create the batch API object

my S$batch = $cmdr->newBatch ("parallel");

The batch object supports all the same calls as the standard API. The result of each call is a numeric
requestId thatcan be used to locate a response from an individual request within the batch.

Example - creating multiple requests in a batch:

Create multiple requests
my @reglds = (
Sbatch->setProperty ("/myJob/pl", 99),
Sbatch->incrementProperty ("/myJob/p2")
)

After the batch is created, submitit to the server for processing. The return from the submit () call is an XPath
object that represents an XML document containing the responses for all of the API requests.

Example - submitting the batch:

Submit all the requests in a single envelope
Sbatch->submit () ;

Sample response from this example:

<responses xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xsi:
version="2.1" dispatchId=1680
<response requestId="1">
<property>
<propertyId>199827</propertyId>
<propertyName>pl</propertyName>
<createTime>2010-07-21T16:41:20.003Z</createTime>
<expandable>1</expandable>
<lastModifiedBy>project: EA Articles</lastModifiedBy>
<modifyTime>2010-07-21T16:41:20.003Z</modifyTime>
<owner>project: EA Articles</owner>
<value>99</value>
</property>
</response>
<response requestId="2">
<property>
<propertyId>199828</propertyId>

25

ElectricFlow

<propertyName>p2</propertyName>
<createTime>2010-07-21T16:41:20.019Z</createTime>
<expandable>1</expandable>
<lastModifiedBy>project: EA Articles</lastModifiedBy>
<modifyTime>2010-07-21T16:41:20.019Z</modifyTime>
<owner>project: EA Articles</owner>
<value>1</value>
</property>
</response>
</responses>

To extract information from the response to a request, use standard XPath syntax, and enter the requestId
returned by that specific API call to either the £ind or findvalue functions on the batch object.

Example - extracting response information:

Extract the value from the "increment" request
my S$value = S$batch->findvalue ($Sreqlds[0], 'property/value');
print "New value is $value\n";

Single-transaction batch processing can continue after errors if you enter an ignoreErrors attribute in the
request and/or requests elements. The ignoreErrors value is evaluated as a regular expression against
any error codes from the batch. If the expression matches, an error will not cause the batch to fail.

There are two ways to specify ignoreErrors when issuing a single-transaction batch call:
1. Specify the ignoreErrors attribute when creating the batch object. In this case, the attribute applies to
all requests in the batch:
my $batch = $N->newBatch('single', 'DuplicateResourceName');
2. Specify the ignoreErrors attribute as an argument to an individual request. In this case, the attribute
applies only to that request and will override any global value specified:

my $req2 = S$batch->createResource ($resource, {ignoreErrors =>

'DuplicateResourceName'}) ;

Installing ElectricFlow Perl Modules into Your Perl
Distribution

You may want to use your existing Perl distribution. If so, ElectricFlow uses a CPAN style module, located in
<installdir>/src, thatcan be installed with the following commands:

tar xzvf ElectricCommander-<your version>.tar.gz
cd ElectricCommander-<your version>

perl Makefile.PL

make install;# Use nmake on Windows

These commands install the ElectricFlow Perl and all of its submodules. If some prerequisite modules are
missing, the Makefile.PL script will indicate which modules are needed.

Installing Perl Modules into the ElectricFlow Perl Distribution

You may want expand the ElectricFlow Perl distribution by adding Perl modules from CPAN or third party
vendors.

Install Perl modules using CPAN installer. The installer comes with the ElectricFlow Perl distribution in
<ElectricFlow Dir>/perl/bin

26

Using the ElectricFlow Perl API

During an ElectricFlow upgrade, the installer makes every attempt to preserve Perl packages. However, future
ElectricFlow versions may contain an upgraded Perl version, which may then require a reinstall of any added
Perl packages.

For Linux
From the command line use: <ElectricFlow Dir>/perl/bin/perl -MCPAN -e 'install <module>'

For Windows

Compatibility with ElectricFlow is important. ElectricCommander 4.1 and later use Perl 5.8 for ec-perl.
If the Perl package is not Perl-only and requires compiling (for example, for C code):
Use Windows Visual Studio VC6 (the same version used by ElectricFlow).

Make sure that c1 and nmake are both in your path. The Visual Studio install has a Command Prompt with
these executables already in the path.

Extra steps are needed for Windows because of a problem with Perl and CPAN if you are running from a
directory with spaces in the name. (By default, ElectricFlow has spaces in the installed directory.)

e Use a network drive to eliminate references to spaces.

Use subst to mount the Perl directory under a different drive letter:

c:\> subst x: "c:\program files\electric cloud\electriccommander"

Start CPAN from the new location:
c:\> x:\perl\bin\perl -MCPAN -e shell

Configure CPAN to install into the new location:
cpan> o conf makepl arg PREFIX=x:/perl

Install the module:
cpan> install <module>

Ending CPAN:

cpan> quit

e Change the <ElectricFlow Dir>\perl\lib\config.pmfile to eliminate spaces in references to the
ElectricFlow path.
For example:

#archlibexp => 'C:\Program Files\Electric Cloud\ElectricCommander\perl\1lib',
archlibexp => 'X:\perl\lib',

#privlibexp => 'C:\Program Files\Electric Cloud\ElectricCommander\perl\lib"',
privliibexp => 'X:\perl\lib',

#scriptdir => 'C:\Program Files\Electric Cloud\ElectricCommander\perl\lib',
scriptdir => 'X:\perl\lib',

#sitearchexp => 'C:\Program Files\Electric Cloud\ElectricCommander\perl\site\li

b',
sitearchexp => 'X:\perl\lib',

#sitelibexp => 'C:\Program Files\Electric Cloud\ElectricCommander\perl\site\li

b'l
sitelibexp => 'X:\perl\lib',

e Temporarily add X:\per1l\bin to your Windows path.

27

ElectricFlow

Using APl Commands in Javascript

These are examples of how to use Perl API commands in Javascript:

e To create a project:

ectool evalScript --value " (api.createProject({ 'projectName':'alex34' })).pro
ject.projectName ; " alex34

To return the object type, use this Javascript API:

ectool evalScript --value "api.getResources ({})" [object Object]

For a parsed object, use the "JSON.stringify () " call:

ectool evalScript --value "JSON.stringify(api.getResources ({})) "{"resource":{"r
esourcelId":"ceecfce5-2d0d-11e4-8888-005056330afe", "resourceName":"local", "agents
tate":{"alive":"1","details":"The agent is alive","hostOS":"Linux ga-ubl210-64-2
3.5.0-19-generic #30-Ubuntu SMP Tue Nov 13 17:48:01 UTC 2012 x86 64 x86 64 x86 6
4 GNU/Linux","hostPlatform":"1linux", "message":"The agent is alive","pingToken":"
1409049660", "protocolVersion":"6", "state":"alive", "time":"2014-08-26T10:43:25.80
2Z","version":"5.0.3.76444"},"createTime":"2014-08-26T10:43:25.6172", "descriptio
n":"Local resource created during installation.","hostName":"ga-ubl210-64-2.elec
tric-cloud.com", "hostOS":"Linux ga-ubl210-64-2 3.5.0-19-generic #30-Ubuntu SMP T
ue Nov 13 17:48:01 UTC 2012 x86 64 x86 64 x86 64 GNU/Linux","hostPlatform":"linu
x","lastModifiedBy" :"project: zebra","lastRunTime":"2014-08-26T10:50:23.7862","m
odifyTime":"2014-08-26T10:50:23.7862Z", "owner":"admin", "port":"7800", "proxyPor
g,

"resourceAgentState":"alive", "resourceAgentVersion":"5.0.3.76444",
"resourceDisabled":"0", "stepCount":"0", "stepLimit":"", "trusted":"0",
"useSSL":"1", "propertySheetId":"ceee8387-2d0d-11e4-8888-005056330afe", "zoneName"
:"default", "pools":"default"}}

e To getthe first resourceName:

ectool evalScript --value "api.getResources ({}).resource[0].resourceName"

28

ElectricFlow Perl APl Commands

ElectricFlow Perl APl Commands

Click the following link to view the entire command list by group. In the Ul, you can use the Help system Search
feature to quickly locate the Perl APl commands.

e Perl API Commands Listed by Group

Commands are grouped into common usage sections for your convenience.
This view is helpful if you want to see all available commands for a particular object.

Click a APl command name to go to a section for that APl command containing arguments and their
descriptions, command syntax, and usage examples.

Note: The API tables display positional arguments for each command; however, you can use "value pairs" to
construct your command scripts instead. For more information, see the "Using the ElectricFlow Perl APl on page
18" topic.

Perl APl Commands Listed by Group

The ElectricFlow APl commands in the following tables are listed in alphabetical order in each group.

Click a command name to go to the section with expanded information for that command, including its
arguments (required and optional), descriptions, usage examples, and related commands.

ACL Management (Access Control List)

Commands Description

breakAclInheritance Breaks ACL (access control list) inheritance at the given object.

Checks ACL (access control list) permission information
checkAccess associated with an object (including inherited ACLs) for the
current user.

Creates an ACE (access control list entry) on an object for a given

createAclEntry principal.
deleteAclEntry Deletes an ACE on an object for a given principal.
Retrieves ACL information associated with an object, including

gethccess inherited ACLs.

getAclEntry Retrieves an ACE on an object for a given principal.

modifyAclEntry Modifies an ACE on an object for a given principal.

restoreAclInheritance Restores ACL inheritance at the given object.
Applications

29

ElectricFlow

Commands

Description

createApplication

Creates a new application for a project.

deleteApplication Deletes an application.
getApplication Retrieves an application by name.
getApplications Retrieves all applications in a project.
modifyApplication Modifies an existing application.

Application Tiers

Commands

Description

createApplicationTier

Creates a new application tier in the application.

deleteApplicationTier

Deletes a tier from an application.

getApplicationTier

Retrieves an application tier by name

getApplicationTiers

Retrieves all application tiers in an application

getApplicationTiersInCompone
nt

Retrieves all application tiers that are used by the given
component

modifyApplicationTier

Modifies an existing tier in the application.

Artifact Management

Commands

Description

addDependentsToArtifactVersi
on

Adds an artifact version query to an existing artifact. Dependent
artifact versions are retrieved when the parent artifact version is
retrieved.

cleanupArtifactCache

Deletes stale artifact versions from an artifact cache. A "stale
artifact version" is one whose metadata was previously deleted
from the ElectricFlow server.

cleanupRepository

Deletes stale artifact versions from the repository backing-store. A
"stale artifact version" is one whose metadata was previously
deleted from the ElectricFlow server.

ElectricFlow Perl APl Commands

Commands

Description

createArtifact

Creates a new artifact.

createArtifactVersion

Creates a new artifact version.

createRepository

Creates a repository for one or more artifacts.

deleteArtifact

Deletes an existing artifact element and all artifact versions.

deleteArtifactVersion

Deletes artifact version metadata from the ElectricFlow database.
(This API call does not delete or remove artifacts stored on the
repository machine.)

deleteRepository

Deletes artifact repository metadata from the ElectricFlow
database. (This API call does not delete or remove artifacts stored
on the repository machine.)

findArtifactVersions

This command returns the most current artifact version that
matches the filter criteria and its dependent artifact versions. This
APl implicitly searches for artifact versions in the "available" state,
and ifrunin a job step, registers the step as a retriever for the
returned artifact versions. Use the Perl API for the
findArtifactVersions command.

getArtifact

Retrieves an artifact by its name.

getArtifacts

Reftrieves all artifacts in the system.

getArtifactVersion

Retrieves an artifact version by its name.

getArtifactVersions

Retrieves all artifact versions in the system, filtered by artifact
name, retriever job ID, and/or retriever job step ID.

Retrieves the manifest for a specified artifact version, which

getManifest includes a list of files and directories in the artifact version, plus its
checksum file.
, . Retrieves all artifact repository objects known to the ElectricFlow
getRepositories
server.
getRepository Retrieves an artifact repository by its name.

getRetrievedArtifacts

Retrieves artifacts during a job.

modifyArtifact

Modifies an existing artifact.

modifyArtifactVersion

Modifies an existing artifact version.

modifyRepository

Modifies an existing artifact repository.

31

ElectricFlow

Commands

Description

moveRepository

Moves an artifact repository in front of another, specified repository
or to the end of the list.

publishArtifactVersion

Publishes an artifact version to an artifact repository.

removeDependentsFromArtifact

Version

Removes a list of dependent artifact versions from an existing
artifact version.

resolveRoute

Resolves the network route to an artifact repository.

retrieveArtifactVersions

Retrieves the most recent artifact version, including its
dependents, from an artifact repository.

updateArtifactVersion

Updates an artifact version by adding or replacing one or more
files in the existing file and publishes the result as a new artifact
version to an artifact repository.

Change History

Commands

Description

getDeploymentHistoryItems

Retrieves all the deployment history items for a specific
environment.

getEntityChange

Retrieves the entity changes.

getEntityChangeDetails

Retrieves the differences between entities.

pruneChangeHistory

Prunes obsolete-for-days data from the Change History tables.

revert Reverts the state of the object to a previous state.

searchEntityChange Searches for entity changes.
Components

Commands Description

addComponentToApplicationTie

r

Adds the specified component to the specified application tier.

copyComponent

Creates a new component based on an existing one.

createComponent

Creates a new component for a project.

32

ElectricFlow Perl APl Commands

Commands Description

deleteComponent Deletes a component.
getComponent Retrieves a component by name
getComponents Retrieves all components in a project

etComponentsinApplicationTi) . . .
zr P PP Reftrieves the list of components in an application tier.

modifyComponent Modifies an existing component.

removeComponentFromApplicati

) Removes the specified component from an application tier.
onTier

Credential Management

Commands Description

attachCredential Attaches a credential to an object.

createCredential Creates a new credential for a project.

deleteCredential Deletes a credential.

detachCredential Detaches a credential from an object.

getCredential Finds a credential by name.

getCredentials Retrieves all credentials in a project.

getFullCredential ll’:l;:ilsnag (;rtzcri)c.antial by name, including password, from within a
modifyCredential Modifies an existing credential.

Database Configuration

Commands Description

getDatabaseConfiguration Retrieves the current database configuration.

33

ElectricFlow

Commands Description

setDatabaseConfiguration

Sets the database configuration on the server. If the serverisin
bootstrap mode, these changes take effectimmediately and the
server attempts to start. If the server is running, these changes
have no effect until the server is restarted.

validateDatabase Performs consistency checks on the database.

Directory Provider Management

Commands Description

createDirectoryProvider Creates a new LDAP directory provider.

deleteDirectoryProvider Deletes an LDAP directory provider.

getDirectoryProvider Retrieves an LDAP directory provider by name.

getDirectoryProviders Retrieves all LDAP directory providers.

modifyDirectoryProvider Modifies an existing LDAP directory provider.

moveDirectoryProvider Movgs an LDAP directory prqvider in front of another specified
provider or to the end of the list.

testDirectoryProvider Tests an LDAP directory provider.

Dynamic Environments

Commands

Description

addResourcePoolToEnvironmentTier

Adds a resource pool to a specific environment tier.

addResourceTemplateToEnvironmentTem
plateTier

Adds a resource template to the specified environment
template tier.

addResourceToEnvironmentTemplateTie
r

Adds a resource to the specified environment template
tier.

createEnvironmentTemplate

Creates an environment template.

createEnvironmentTemplateTier

Creates a tier in an environment template.

34

ElectricFlow Perl APl Commands

Commands

Description

createEnvironmentTemplateTierMap

Creates an environment-template tier map for an
application.

createHook

Creates a hook in a resource template, which can have
one or more hooks.

createResourceTemplate

Creates a resource template.

deleteEnvironmentTemplate

Deletes an environment template.

deleteEnvironmentTemplateTier

Deletes an environment template tier.

deleteEnvironmentTemplateTierMap

Deletes an environment template tier map from an
application.

deleteEnvironmentTemplateTierMappin
g

Deletes a tier mapping from a environment-template tier
map.

deleteHook

Deletes a hook associated with an entity.

deleteResourceTemplate

Deletes a resource template.

getAvailableResourcesForEnvironment

Retrieve all non-dynamic resources or resource pools.

getEnvironmentTemplate

Retrieves an environment template.

getEnvironmentTemplateTier

Retrieves an environment tier in an environment template.

getEnvironmentTemplateTierMaps

Retrieves all the environment-template tier maps used by
the specified application.

getEnvironmentTemplateTiers

Retrieves all the environment template tiers in the
specified environment template.

getEnvironmentTemplates

Retrieves all the environment templates in the specified
project.

getHook

Retrieves a hook associated in an entity.

getHooks

Retrieves all the hooks associated with an entity.

getProvisionedEnvironments

Retrieves provisioned environments.

getResourcePoolsInEnvironmentTier

Retrieves the list of resource pools in the specified
environment tier.

getResourceTemplate

Retrieves the specified resource template.

getResourceTemplates

Retrieves all the resource templates.

35

ElectricFlow

Commands

Description

getResourceTemplatesInEnvironmentTe
mplateTier

Retrieves all the resource templates in the specified
environment template tier.

getResourcesInEnvironmentTemplateTi
er

Retrieves all the resources in the specified environment
template tier.

modifyEnvironmentTemplate

Modifies an environment template.

modifyEnvironmentTemplateTier

Modifies all the environment template tiers in the specified
environment template.

modifyEnvironmentTemplateTierMap

Modifies an existing environment template tier map.

modifyEnvTemplTierResourceTemplMapp
ing

Modifies the resource countin an environment template
tier.

modifyHook

Modifies an existing hook in a resource template.

modifyResourceTemplate

Modifies the specified resource template.

provisionEnvironment

Provisions an environment.

provisionResourcePool

Provisions a resource pool.

removeResourceFromEnvironmentTempla
teTier

Removes a resource from an environment template tier.

removeResourcePoolFromEnvironmentTi
er

Removes a resource pool from the specified environment
tier.

removeResourceTemplateFromEnvironme
ntTemplateTier

Removes a resource template from the specified
environment template tier.

tearDown

Removes dynamic environments that are no longer
needed.

Email Configuration and Management

Commands

Description

createEmailConfig

Creates a new email configuration.

deleteEmailConfig

Deletes an email configuration.

getEmailConfig

Retrieves an email configuration by name.

ElectricFlow Perl APl Commands

Commands Description
getEmailConfigs Retrieves all email configurations.
modifyEmailConfig Modifies an existing email configuration.

Email Notifiers Management

Commands Description

Creates an email notifier on an object specified by an
emailNotifierSelector.

createEmailNotifier

createEventSubscription Creates a list of event subscriptions.
deleteEmailNotifier Deletes an email notifier from a property sheet container.
deleteEventSubscription Deletes a list of event subscriptions.

getEmailNotifier Retrieves an email notifier from a property sheet container.

Reftrieves all email notifiers defined for the specified property sheet

getEmailNotifiers .
container.

Modifies an email notifier in a property sheet container specified

modifyEmailNotifier))
by an emailNotifierSelector.
modifyEventSubscription Modifies a list of event subscriptions.
Facilitates sending an email from the command-line or a
Command Step without setting up an Email Notifier.
cendEmail This APl is more dynamic than an email notifier because you do
not need to setup some kind of a template beforehand.
This APl also makes sending email attachments easier than using
a notifier template.
Environments
Commands Description
createEnvironment Creates a new environment.

createEnvironmentInventoryIt

om Creates a new environment inventory item.

createReservation Creates a new reservation.

37

ElectricFlow

Commands

Description

deleteEnvironment

Deletes an environment.

deleteEnvironmentInventoryIt
em

Deletes an inventory item.

deleteReservation

Deletes a reservation.

getEnvironment

Retrieves an environment by name.

getEnvironmentApplications

Retrieves a list of applications installed on the given environment.

getEnvironmentInventory

Retrieves a per-component grouped list of inventory items.

getEnvironmentInventoryItem

Retrieves an inventory item.

getEnvironmentInventoryItems

Retrieves all the inventory items for a given environment.

getEnvironments Retrieves all environments in a project.

getReservation Retrieves an environment reservation by its name.
getReservations Retrieves all the environment reservations.
getRunSchedules Retrieves the run schedules with environment reservations

modifyEnvironment

Modifies an environment.

modifyEnvironmentInventoryIt
em

Modifies an existing environment inventory item.

modifyReservation

Modifies an environment reservation.

seedEnvironmentInventory

Creates a new environment.

Environment Tiers

Commands

Description

addResourcesToEnvironmentTie
r

Adds resources to the specified environment tier.

createEnvironmentTier

Creates a new environment tier.

deleteEnvironmentTier

Deletes an environment tier.

getEnvironmentTier

Retrieves an environment tier by name.

ElectricFlow Perl APl Commands

Commands

Description

getEnvironmentTiers

Retrieves all environment tiers in an environment.

modifyEnvironmentTier

Modifies an environment tier.

removeResourcesFromEnvironme
ntTier

Removes the given resources from the given environment tier.

Gateway and Zone Management

Commands Description
createGateway Creates a new gateway.
deleteGateway Deletes a gateway.
getGateway Finds a gateway by name.
getGateways Reftrieves all gateways.
modifyGateway Modifies an existing gateway.
createZone Creates a new zone.
deleteZone Deletes a zone.

getZone Finds a zone by name.
getZones Retrieves all zones.
modifyZone Modifies an existing zone.

Job Management

Commands Description

abortAllJobs Aborts all running jobs.

abortJob Aborts a running job.

abortJobStep Aborts any type of step—command step or subprocedure step.
completeJob Completes an externally managed job.

39

ElectricFlow

Commands Description

completeJobStep Completes an externally managed job step.

createJob Creates an externally managed job.

createJobStep Creates a job step in an existing job.

deleteJob Deletes a job from the ElectricFlow database.
Returns a list quob steps from a single job or from a single

findJobSteps 'Sl'z?sp,;o;eigzr:ejc??);ttigJob Details web page in the ElectricFlow
ul.

getJobDetails eR:érriejgisS?ggjplete information about a job, including details from

getJobInfo Retrieves all information about a job, except job step information.

getJobNotes Retrieves the notes property sheet from a job.

getJobs Retrieves summary information for a list of jobs.

getJobsForSchedule Refrieves jobs started by a specific schedule.

getJobStatus Reftrieves the status of a job.

getJobStepDetails Retrieves details for a job step.

getJobStepStatus Retrieves the status of a job step.

getJobSummaries Retrieves summary information about jobs.

get JobSummary SRtZgis:/ssean{Z:and its job steps with only the specified job and job

modifyJob Modifies the status of an externally managed job.

modifyJobStep Modifies the status of an externally managed job step.

moveJobs Moves jobs from one project to another.

runProcedure Crea_tes a.nd §tarts a new job using a procedure directly or
specified indirectly through a schedule.

setJobName Sets the name of a running job.

waitFordob Waits until the specified job reaches a given status or the timeout

expires

40

ElectricFlow Perl APl Commands

Parameter Management

Commands

Description

attachParameter

Attaches a formal parameter to a step.

createActualParameter

Creates a new actual parameter for a step that calls a nested
procedure.

The parameter is passed to the nested procedure when the step
runs. At runtime, the actual parameter name needs to match the
name of a formal parameter in the nested procedure.

createFormalParameter

Creates a new formal parameter for a procedure.

deleteActualParameter

Deletes an actual parameter.

deleteFormalParameter

Deletes a formal parameter.

detachParameter

Detaches a formal parameter from a step.

getActualParameter

Retrieves an actual parameter by its name.

getActualParameters

Retrieves all actual parameters from a job, job step, or step.

getFormalParameter

Retrieves a formal parameter by its name.

getFormalParameterOptions

Retrieves possible option values for a procedure's formal
parameter in the procedure using the options script registered for
it.

getFormalParameters

Retrieves all formal parameters from a procedure, schedule, or
step.

modifyActualParameter

Modifies an existing actual parameter. An actual parameteris a
name/value pair thatis passed to a subprocedure. This command
supports renaming the actual parameter and setting its value.

modifyFormalParameter

Modifies an existing formal parameter.

validateFormalParameters

Validates input parameters for a procedure using the validation
script registered for it.

Pipelines and Releases

Commands

Description

abortAllPipelineRuns

Aborts all pipeline runs associated with a release..

abortPipelineRun

Aborts a pipeline run.

41

ElectricFlow

Commands Description

completeManualTask Completes the manual task.

completeRelease Completes the Release.

createDeployer Creates a new Deployer task for a project or a Release.
createDeployerApplication Creates a Deployer application for a Release.
createDeployerConfiguration Creates the Deployer configuration to the Deployer application.
createGate Creates a new gate for a stage.

createNote Creates a new note.

createPipeline Creates a new pipeline for a project.

createRelease Creates a new Release for a project.

createStage Creates a new stage in a pipeline for a project.
createTask Creates a new task for a task container.

deleteGate Deletes a gate for a stage.

deleteNote Deletes a note associated with an entity.
deletePipeline Deletes a pipeline in a project.

deletePipelineRun Deletes a pipeline runtime.

deleteRelease Deletes a Release.

deleteStage Deletes a stage in a project.

deleteTask Deletes a task in a task container.
getDeployerApplication Retrieves the application used in the Release by name.
getDeployerApplications Retrieves all the applications in a Release.
getDeployerConfiguration Retrieves a Deployer configuration.
getDeployerConfigurations Retrieves all the configurations in the Deployer.
getGate Retrieves a gate by its stage name and gate type.
getNote Retrieves a note associated with an entity.

42

ElectricFlow Perl APl Commands

Commands Description
getNotes Retrieves all the notes associated with an entity.
getPipeline Retrieves a pipeline by its name.

getPipelineRuntimeDetails

Retrieves pipeline runtime details.

getPipelineRuntimes

Retrieves pipeline runs

getPipelineStageRuntimeDeploy
erTasks

Returns the list of Deployer tasks and their details to be displayed
in Pipeline Run Details page.

getPipelineStageRuntimeTasks

Retrieves the list of pipeline stage tasks and the details about
them that are displayed in the pipeline run view.

getPipelines

Retrieves all the pipelines.

getRelease

Retrieves a Release by name.

getReleaselInventory

Retrieves inventory artifacts created in a Release.

getReleases Retrieves all releases.

getStage Retrieves a stage by its name.

getStages Retrieves all the stages for a pipeline.

getTask Retrieves a task by its name.

getTasks Retrieves a task by name.

g ke ratar curentyveiing o
modifyDeployer Modifies an existing Deployer.

modifyDeployerApplication

Modifies the Deployer application associated with a Release.

modifyDeployerConfiguration

Modifies a Deployer configuration associated with a Deployer
application.

modifyGate Modifies an existing gate.

modifyNote Modifies a note associated with an entity.
modifyPipeline Modifies an existing pipeline.
modifyRelease Modifies an existing Release.

43

ElectricFlow

Commands Description

modifyStage Modifies an existing stage.

modifyTask Modifies an existing task.
removeDeployerApplication Removes a Deployer application for a Release.

removeDeployerConfiguration Removes a Deployer configuration associated with a Deployer

application.
runPipeline Runs the specified pipeline.
startRelease Starts a Release.
validateDeployer Validates the Deployer configuration.

Waits until the pipeline specified by the flow runtime ID is

waitForFlowRuntime . .
completed or the timeout expires.

Plugin Management

Commands Description

createPlugin Creates a plugin from an existing project.

deletePlugin Delgtes an existing plugin object without deleting the associated
project or files.

getPlugin Retrieves an installed plugin.

getPlugins Retrieves all installed plugins.

, . Installs a plugin from a JAR file. Extracts the JAR contents on the

installPlugin . .
server and creates a project and a plugin.

modifyPlugin Modifies a plugin.
Sets the promoted flag on a plugin. Only one version of a plugin
can be promoted at a time, so setting the promoted flag to true on

romotePlugin one version sets the flag to false on all other plugins with the

P g same key. The promoted version is the one resolved by an indirect
reference of the form $[/plugins/<key>] ora plugin name
argument without a specified version.

uninstallPlugin .Umnstalls a plugin, deleting the associated project and any
installed files.

44

ElectricFlow Perl APl Commands

Procedure Management

Commands Description
createProcedure Creates a new procedure for an existing project.
createStep Creates a new procedure step.
deleteProcedure Deletes a procedure, including all steps.
deleteStep Deletes a step from a procedure.
getProcedure Finds a procedure by its name.
getProcedures Retrieves all procedures in a project.
getStep Retrieves a step from a procedure.
getSteps Reftrieves all steps in a procedure.
modifyProcedure Modifies an existing procedure.
modifyStep Modifies an existing step.
moveStep Moves a step within a procedure.
Process
Commands Description
createProcess Creates a new process for an application or component.
deleteProcess Deletes an application or component process.
getProcess Retrieves an application or component process.
getProcesses Retrieves all processes in an application or component.
modifyProcess Modifies an existing process.
runProcess Runs the specified process.

45

ElectricFlow

Process Dependency Management

Commands

Description

createProcessDependency

Creates a dependency between two process steps.

deleteProcessDependency

Deletes a dependency between two process steps.

getProcessDependencies

Retrieves all dependencies for a process.

modifyProcessDependency

Modifies a dependency between two process steps.

Process Step Management

Commands

Description

createProcessStep

Creates a new process step.

deleteProcessStep

Deletes an application or component process step.

getProcessStep Retrieves an application or component process step.
Retriev Il the pr [in an lication or component
getProcessSteps etrieves all the process steps in an application or compo
process.
modifyProcessStep Modifies an existing process step.

Project Management

Commands Description

createProject Creates a new project.

deleteProject J!zil:tes a project, including all procedures, procedure steps, and
getProject Finds a project by its name.

getProjects Reftrieves all projects.

modifyProject Modifies an existing project.

reloadSetupScripts Runs new, modified, or previously unsuccessful setup scripts.

Property Management

46

ElectricFlow Perl APl Commands

Commands Description

Creates a regular string or nested property sheet using a

createbroperty combination of property path and context.

deleteProperty Deletes a property from a property sheet.

expandString Expands property references in a string, in the current context.
getProperties Retrieves all properties associated with an object.
getProperty Retrieves the specified property value.

Atomically increments the specified property value by the
incrementProperty incrementBy amount. If the property does not exist, it will be
created with an initial value of the incrementBy amount.

Modifies a regular string or nested property sheet using a

difyP t
mocLtyFroperty combination of property path and context.

setProperty Sets the value for the specified property.

Rolling Deployments

Commands Description
createRollingDeployPhase Adds a rolling deploy phase to the specified environment.
deleteRollingDeployPhase Deletes the rolling deploy phase associated with an environment.

Retrieves the rolling deploy phase associated with an

etRollingDeployPhase
d greptoy environment.

Reftrieves all the rolling deploy phases associated with an

etRollingDeployPhases .
d greptoy environment.

modifyRollingDeployPhase Modifies the rolling deploy phase associated with an environment.

setTierResourcePhase Maps a resource to a rolling deploy phase.

Resource Management

47

ElectricFlow

Commands

Description

addResourcesToPool

Adds resources to a specified resource pool.

addResourceToEnvironmentTier

Adds a resource to the specified environment tier.

createResource

Creates a new resource.

createResourcePool

Creates a pool container for resource.

deleteResource

Deletes a resource.

deleteResourcePool

Deletes a resource pool.

getResource

Refrieves a resource by its name.

getResources

Retrieves all resources.

getResourcesInEnvironmentTie
r

Retrieves the list of resources in an environment tier.

getResourcesInPool

Retrieves a list of resources in a pool.

getResourcePool Retrieves a specified resource pool by name.
getResourcePools Retrieves a list of resource pools.
getResourceUsage Retrieves resource usage information.
modifyResource Modifies an existing resource.

modifyResourcePool

Modifies an existing resource pool.

pingAllResources

Pings all resources.

pingResource

Pings one resource.

removeResourceFromEnvironmen
tTier

Removes a resource from the specified environment tier.

removeResourcesFromPool

Removes resources from a specified resource pool.

Runs a plugin Discover procedure to discover contents of a list or

runDiscovery set of resources, and store settings for them in the ec_discovery
property sheets.
signCertificate Signs an agent certificate.

Schedule Management

ElectricFlow Perl APl Commands

Commands Description

createSchedule Creates a new schedule.
deleteSchedule Deletes a schedule.
getSchedule Retrieves a schedule by its name.
getSchedules Retrieves all schedules.
modifySchedule Modifies an existing schedule.
pauseScheduler Sets the scheduler to pause.

Server Management

Commands Description
deletelicense Deletes a license.
- Retrieves the admin license, which can be used when all
getAdminLicense concurrent user licenses are in use.
getCertificates Returns the certificates in the trust chain for the server.
getLicense Retrieves information for one license.
getLicenses Retrieves all license data.
getLicenseUsage Retrieves the current license usage.
getServerInfo Retrieves information about server ports and message delivery.
getServerStatus Returns the status of the server.
getVersions Retrieves server version information.

importLicenseData

Imports one or more licenses.

logMessage Enters a message in the server log.
setLogLevel Changes the log level of a logger.
shutdownServer Shuts down the ElectricFlow server.
tunePerformance Adjusts how the server is performing.

49

ElectricFlow

Snapshot Management

Commands Description
createSnapshot Creates a new snapshot of the specified application.
deleteSnapshot Deletes snapshot from an application.

getPartialApplicationRevisio
n

Retrieves a partial application when a snapshot is created.

getSnapshot

Find a snapshot by name.

getSnapshotEnvironments

Reftrieves a list of environments deployed in the specified
snapshot.

getSnapshots

Retrieves all the snapshots in an application.

modifySnapshot

Modifies an existing snapshot of an application.

Tier Map Management

Commands Description

createTierMap Creates a tier map for an application.

deleteTierMap Deletes a tier map from an application.
deleteTierMapping Deletes a tier mapping from a tier map.

getTierMaps Reftrieves all tier maps that are used by an application.
modifyTierMap Modifies an existing tier map.

User/Group Management

Commands Description
Logs into the server and saves the session ID for subsequent
Login ectool use.
g The username provided determines the permissions for
commands that can be run during the session.
logout Logs out of the client session.
addUsersToGroup Adds ones or more specified users to a particular group.

50

ElectricFlow Perl APl Commands

Commands Description
createGroup Creates a new local group of users.
createUser Creates a new local user.
deleteGroup Deletes a local group.
deleteUser Deletes a local user.
getGroup Retrieves a group by its name.
getGroups Reftrieves all groups.
getUser Retrieves a user by name.
getUsers Retrieves all users.
Logs into the server and saves the session ID for subsequent
login ectool use. . . o
The username provided determines the permissions for
commands that can be run during the session.
logout Logs out of the client session.
modifyGroup Modifies an existing group.
modifyUser Modifies an existing user.
removeUsersFromGroup Removes one or more users from a particular group.

Workflow Definition Management

Commands

Description

createStateDefinition

Creates a new state definition for a workflow definition.

createTransitionDefinition

Creates a new transition definition for a workflow definition.

createWorkflowDefinition

Creates a new workflow definition for a project.

deleteStateDefinition

Deletes a state definition.

deleteTransitionDefinition

Deletes a transition definition.

deleteWorkflowDefinition

Deletes a workflow definition, including all state and transition
definitions.

51

ElectricFlow

Commands Description
getStateDefinition Finds a state definition by name.
getStateDefinitions Retrieves all state definitions in a workflow definition.

getTransitionDefinition

Finds a transition definition by name.

getTransitionDefinitions

Retrieves all transition definitions in a workflow definition.

getWorkflowDefinition

Finds a workflow definition by name.

getWorkflowDefinitions

Retrieves all workflow definitions in a project.

modifyStateDefinition

Modifies an existing state definition.

modifyTransitionDefinition

Modifies an existing transition definition.

modifyWorkflowDefinition

Modifies an existing workflow definition.

moveStateDefinition

Moves a state definition within a workflow definition.

moveTransitionDefinition

Moves a transition definition within a workflow definition.

Workflow Management

Commands Description

completeWorkflow Marks a workflow as complete, which means transitions are no
longer evaluated.

deleteWorkflow Deletes a workflow, including all states and transitions.

getState Finds a state by name.

getStates Retrieves all states in a workflow.

getTransition Finds a transition by name.

getTransitions Reftrieves all transitions in a workflow.

getWorkflow Finds a workflow by name.

getWorkflows Retrieves all workflow instances in a project.

runWorkflow Runs the specified workflow definition, returns the workflow name.

transitionWorkflow

Manually transition from a workflow active state.

52

ElectricFlow Perl APl Commands

Workspace Management

Commands Description

createWorkspace Creates a new workspace.

deleteWorkspace Deletes a workspace.

getWorkspace Retrieves a workspace by name.

getWorkspaces Reftrieves all workspaces.

modifyWorkspace Modifies an existing workspace.

resolveFile Resolves the path to a log file or artifactin a workspace.
Miscellaneous

Commands Description

acquireNamedLock Retrieves the named lock.

changeOwner Changes the owner of an object.

Makes a copy of an existing ElectricFlow project, procedure, step,
clone schedule, resource, directory provider, email configuration, or

email notifier.

countObjects

Returns the count of objects specified by the provided filter.

Deletes objects specified by the provided filters. Because of the
complexity of specifying filter criteria, this APl is not supported by

1 j ¥ e
deleteObjects ectool. However, all of its capabilities are supported through the
Perl API.
dumpHeap Captures a Java heap dump.
dumpStatistics Prints (emits) internal timing statistics.
evalDsl Evaluates and runs an ElectricFlow domain-specific language

(DSL) script.

53

ElectricFlow

Commands

Description

evalScript

Evaluates a scriptin a given context.This APl is similar to
expandString exceptthatit evaluates the value argumentas a
Javascript block, without performing any property substitution on
either the script or the result.

The string value of the final expression in the scriptis returned as
the value element of the response.

export

Exports part or all server data to an XML file. The defaultis to
export all data in the system—the specified path is interpreted by
the server. If the path is local, it will be created on the server
machine. If itis a network path, it must be accessible by the server
and the server user. Ifitis a relative path (NOT RECOMMENDED),
it must be relative to the server’s working directory.

findObjects

Finds several different types of ElectricFlow objects—it is the
underlying mechanism used to implement the ElectricFlow
"Search" feature. Because of this command's general nature and
the complexity of specifying filter and sort criteria, it is not
supported by ectool. Use the Perl APl for the findObjects
command.

finishCommand

The agent uses this command to indicate thata command has
been run.

generateDsl

Generates domain-specific language (DSL) script for an existing
object.

getObjects

Retrieves the full object based on IDs returned by findObjects.
All requested objects must be of the same objectType. See
findObjects for a list of object types.

graphStateMachine

Generates a graph element with a stateMachine DOT graph as
CDATA content.

import

Imports data from an XML export file.

logStatistic

Prints (emits) a statistics value to StatsD.

releaseNamedLock

Releases the named lock that synchronizes the name of an object.

API Commands - ACL Management

breakAclinheritance on page 55
checkAccess on page 60

createAclEntry on page 65

54

ElectricFlow Perl APl Commands

deleteAclEntry on page 71
getAccess on page 76

getAclEntry on page 81

modifyAclEntry on page 86

restoreAclinheritance on page 92

breakAclInheritance

Breaks access control list (ACL) inheritance at the specified object. When inheritance is broken, only the access

control

entries directly on the ACL will be considered.

You must specify locator arguments to find the object where you want to break inheritance.

Arguments

Descriptions

Locator arguments:

applicationName

The name of the application.

Argument type: String

applicationTierName

The name of the application tier.

Argument type: String

artifactName

The name of the artifact.

Argument type: String

artifactVersionName

The name of the artifact version.

Note: An artifact version name is interpreted by the server as
the artifactVersionName attribute for the
artifactVersion in question. This name is parsed and
interpreted as "groupId:artifactKey:version" and the
object is searched either way you specify its name. The
ElectricFlow server interprets the name form correctly.

Argument type: String

componentName

The name of the component.

Argument type: String

configName

The name of the email configuration.

Argument type: String

55

ElectricFlow

Arguments Descriptions

The name of the credential that can be one of these formats:

o relative (for example, "cred1")-The credential is assumed
to be in the project that contains the request target object. A
qualifying project name is required.

credentialName e absolute (for example,
"/projects/BuildProject/credentials/cred1"-The credential
can be from any specified project, regardless of the project
where the target object is.

Argument type: String

The name of the environment.
environmentName

Argument type: String

The name of the environment template.
environmentTemplateName

Argument type: String

The name of the environment template tier.
environmentTemplateTierName

Argument type: String

The name of the environment tier.
environmentTierName

Argument type: String

The name of the flow.

flowName

Argument type: String

The name of the flow runtime.
flowRuntimeName

Argument type: String

The name of the flow state.
flowStateName

Argument type: String

The name of the flow transition.
flowTransitionName

Argument type: String

The name of the gateway.

gatewayName

Argument type: String

The full name of the group. For Active Directory and LDAP, the full
groupName name if the full domain name.

Argument type: String

56

ElectricFlow Perl APl Commands

Arguments Descriptions
The unique ElectricFlow-generated identifier (a UUID) for a job
_ that is assigned automatically when the job is created. The system
jobId also accepts a job name assigned to the job by its name template.
Argument type: UUID
The unique identifier for a job step thatis assigned automatically
jobStepId when the job step is created.
Argument type: UUID
The name of the email notifier.
notifierName
Argument type: String
This is an object identifier returned by findObjects and
getObjects. This value is a "handle" only for passing to API
objectId commands. The internal structure of this value is subject to
change; do not parse this value.
Argument type: String
(Optional) The type of object.
objectType
Argument type: String
The property path.
path
Argument type: String
The name of the pipeline.
pipelineName
Argument type: String
The plugin key for a promoted plugin or a plugin key and version
pluginName for an unpromoted plugin.
Argument type: String
The name of the procedure or a path to a procedure thatincludes
the name.
procedureName If you use this argument, you must also use projectName.
Argument type: String
The name of the process if the container is a process or process
processName step.
Argument type: String
The name of the process step if the container is a process step.
processStepName

Argument type: String

57

ElectricFlow

Arguments Descriptions

The name of the project, which can be a path.

The project name is ignored for credentials, procedures, steps, and

jectN .
projectiame schedules when they are specified as a path.

Argument type: String

The unique identifier for a property sheet that is assigned
propertySheetId automatically when the property sheet is created.

Argument type: UUID

The name of the Release.

releaseName
Argument type: String
The name of the repository used for artifact management.
repositoryName
Argument type: String
The name of the resource.
resourceName
Argument type: String
The name of the resource pool.
resourcePoolName
Argument type: String
resourceTemplateName The name of the resource template.
The name of a schedule, which can be a path to the schedule. If
scheduleName you use this argument, you must also use projectName.
Argument type: String
The name of the snapshot.
snapshotName
Argument type: String
The name of the stage in a pipeline.
stageName

Argument type: String

The name of the state definition.
stateDefinitionName

Argument type: String

The name of the state.
stateName

Argument type: String

58

ElectricFlow Perl APl Commands

Arguments

Descriptions

stepName

The name of the step, which can be a path to the step.

If you use this argument, you must also use projectName and
procedureName.

Argument type: String

systemObjectName

The name of the system object.

System objects names include:
admin|artifactVersions|directory|emailConfigs|loglp
lugins|

server|session|workspaces

Argument type: SystemObjectName

taskName

The name of the task in a pipeline stage.

Argument type: String

transitionDefinitionName

The name of the transition definition.

Argument type: String

The name of the transition.

transitionName

Argument type: String

The full name of a user. For Active Directory or LDAP, this may be
userName user@domain).

Argument type: String

workflowDefinitionName

The name of the workflow definition.

Argument type: String

The name of the workflow.

workflowName

Argument type: String

The name of a workspace.
workspaceName

Argument type: String

The name of the zone.
zoneName

Argument type: String

Positional arguments

Arguments to locate the object, beginning with the top-level object locator.

Response
None or status OK message.

59

ElectricFlow

ec-perl
syntax: $<object>->breakAclInheritance ({<optionals>});
Example
Scmdr->breakAclInheritance ({projectName => "Default", pipelineName => "Ql 2-16 Tra

ding System"});

ectool

syntax: ectool breakAclInheritance [optionals]
Example

ectool breakAclInheritance --projectName "Default" --pipeline "Ql 2-16 Trading Syst
em"

Back to Top

checkAccess

Checks access control list (ACL) permission information associated with an object for the current user, including
inherited ACLs.

You must specify object locator arguments to define the object where you need to verify access.

Arguments Descriptions

Locator arguments:

The name of the application that must be unique among all projects.
applicationName

Argument type: String

The name of the application tier.
applicationTierName

Argument type: String

The name of the artifact.
artifactName

Argument type: String

The name of the artifact version.

Note: An artifact version name is interpreted by the server as the
artifactVersionName aftribute for the artifactvVersionin
question. This name is parsed and interpreted as
"groupld:artifactKey:version" and the objectis
searched when you specify its name one of these ways. The
ElectricFlow server interprets the name form correctly.

artifactVersionName

Argument type: String

The name of the component.
componentName

Argument type: String

60

ElectricFlow Perl APl Commands

Arguments

Descriptions

configName

The name of the email configuration.

Argument type: String

credentialName

The name of the credential container of the property sheet that owns
the property.

Specify credentialName using one of two forms:

o relative (for example, "cred1")-The credential is assumed to
be in the project that contains the request target object. This
form requires a qualifying project name.

e absolute (for example,
"/projects/BuildProject/credentials/cred1"—-The credential
can be from any specified project, regardless of the project
target object project.

Argument type: String

environmentName

The name of the environment that must be unique among all
projects.

Argument type: String

environmentTemplateName

The name of the environment template.

Argument type: String

environmentTemplateTierName

The name of the environment template tier.

Argument type: String

environmentTierName

The name of the environment tier.

Argument type: String

flowName

The name of the flow that must be unique within the project.

Argument Type: String

flowRuntimeName

The name of the flow runtime that must be unique within the flow.

Argument Type: String

flowRuntimeStateName

The name of the flow run-time state.

Argument Type: String

flowStateName

Name of the flow state that must be unique within the flow.

Argument Type: String

flowTransitionName

Name of the flow transition that must be unique within the flow state.

Argument Type: String

61

ElectricFlow

Arguments

Descriptions

gatewayName

The name of the gateway.

Argument type: String

groupName

The full name of the group. For Active Directory and LDAP, this is a
full domain name.

Argument type: String

jobId

The unique ElectricFlow-generated identifier (a UUID) for a job that
is assigned automatically when the job is created. The system also
accepts a job name assigned to the job by its name template.

Argument type: UUID

jobStepId

The unique identifier for a job step thatis assigned automatically
when the job step is created.

Argument type: UUID

notifierName

The name of the email notifier.

Argument type: String

objectId

The object identifier returned by findObjects and getObjects.
This value is a "handle" only for passing to APl commands. The
internal structure of this value is subject to change. Do not parse this
value.

Argument type: String

objectType

The type of object.
Argument type: String

path

Property path string.
Argument type: String

pipelineName

The name of the pipeline.

Argument type: String

pluginName

The name of the plugin. This is the plugin key for a promoted plugin
or a plugin key and version for an unpromoted plugin.

Argument type: String

procedureName

The name of the procedure. It can be be a path to the procedure.
When using this procedure, you must also use projectName.

Argument type: String

62

ElectricFlow Perl APl Commands

Arguments Descriptions

The name of the process.

processName

Argument type: String

The name of the process step.
processStepName

Argument type: String

The name of the project that must be ungiue among all projects. It

can be a path to the project. The project name is ignored for
projectName credentials, procedure, steps, and schedules when itis specified as

a path.

Argument type: String

The unique identifier for a property sheet that is assigned
propertySheetId automatically when the property sheetis created.

Argument type: UUID

The name of the Release that owns the property.
releaseName

Argument type: String

The name of the repository for artifact management.
repositoryName

Argument type: String

The name of the resource.
resourceName

Argument type: String

The name of a pool containing one or more resources.
resourcePoolName

Argument type: String

The name of the resource template.
resourceTemplateName
Argument type: String

The name of the schedule, which can be the path to the schedule.
scheduleName When using this argument, you must also enter projectName.

Argument type: String

The name of the snapshot, which can be the path to the snapshot.
snapshotName
Argument type: String

The name of the stage.
stageName
Argument type: String

The name of the state definition.
stateDefinitionName
Argument type: String

63

ElectricFlow

Arguments Descriptions
The name of the state.
stateName
Argument type: String
The name of the step. It can be a path to the step. When using this
stepName argument, you must also enter projectName and procedureName.
Argument type: String
System object names include:
admin|directoryl|licensing|log|plugins|priority|proje
systemObjectName cts|
Argument type: SystemObjectName
The name of the task in a stage in a pipeline.
taskName

Argument type: String

transitionDefinitionName

The name of the transition definition.

Argument type: String

The name of the transition.

transitionName

Argument type: String

The full name of the user. For Active Directory and LDAP, the name
userName can be user@domain

Argument type: String

workflowDefinitionName

The name of the workflow definition.

Argument type: String

The name of the workflow.

workflowName

Argument type: String

The name of the workspace.
workspaceName

Argument type: String

The name of the zone.
zoneName

Argument type: String

Positional arguments

Arguments to locate the object, beginning with the top-level object locator.

Response

For the specified object, returns the effective permissions for the current user.

64

ElectricFlow Perl APl Commands

ec-perl
syntax: $<object>->checkAccess ({<optionals>});

Example

Scmdr->checkAccess ({projectName =>"Production"});

ectool

syntax: ectool checkAccess [optionals]
Example
ectool checkAccess —--projectName "Production"

Back to Top

createAclEntry

Creates an access control list entry (ACE) on an object for a given principal.

You must specify the principalType, principalName, and locator options for the object to modify.

Arguments Descriptions

This is either user or group

principalType
Argument type: PrincipalType
This is either a user or a group name.
principalName
Argument type: PrincipalName
Locators:
The name of the application that must be unique among all
applicationName projects.

Argument type: String

The name of the application tier.
applicationTierName

Argument type: String

The name of the artifact.
artifactName

Argument type: String

65

ElectricFlow

Arguments

Descriptions

artifactVersionName

The name of the artifact version.

Note: An artifact version name is interpreted by the server as
the artifactVersionName aftribute for the
artifactVersion in question. This name is parsed and
interpreted as "groupId:artifactKey:version" and the
object is searched either way you specify its name. The
ElectricFlow server interprets the name form correctly.

Argument type: String

changePermissionsPrivilege

<allow|deny>—Determines whether the principal can modify
access control for the object.

Argument type: Access

The name of the component.

componentName

Argument type: String

The name of the email configuration (emailConfig).
configName

Argument type: String

The name of the credential specified in one of these formats:

o relative(for example, "cred1")-The credential is assumed
to be in the project that contains the requested target
object.

. e absolute(for example,
credentialName "orojects/BuildProject/credentials/cred1"-The credential
can be from any specified project, regardless of the project
for the target object.
When using this argument, you must also enter projectName.
Argument type: String
The name of the environment that must be unique among all
environmentName projects.

Argument type: String

environmentTemplateName

The name of the environment template.

Argument type: String

environmentTemplateTierName

The name of the environment template tier.

Argument type: String

environmentTierName

The name of the environment tier.

Argument type: String

66

ElectricFlow Perl APl Commands

Arguments Descriptions
<allow|deny>—Determines whether the principal can invoke this
o object as part of a job. This privilege is only relevant for a few
executebPrivilege objects such as procedures and procedure steps.
Argument type: Access
The name of the flow.
flowName
Argument: String
The name of the flow runtime.
flowRuntimeName

Argument: String

flowRuntimeStateName

The name of the flow state.

Argument: String

flowStateName

The name of the flow state.

Argument: String

flowTransitionName

The name of the flow transition.

Argument: String

The name of the gateway.

gatewayName

Argument type: String

The name of a group.
groupName

Argument type: String

The unique ElectricFlow-generated identifier (a UUID) for a job
‘ that is assigned automatically when the job is created. The system
jobld also accepts a job name assigned to the job by its name template.

Argument type: UUID

The unique identifier for a job step thatis assigned automatically
jobStepId when the job step is created.

Argument type: UUID

<allow|deny>—Determines whether the principal can change the
modifyPrivilege contents of the object.

Argument type: Access

The name of the email notifier.
notifierName

Argument type: String

67

ElectricFlow

Arguments Descriptions

The object identifier returned by findObjects and getObjects.
objectId

Argument type: String

(Optional) The type of object.
objectType

Argument type: String

The path to the property.
path

Argument type: String

The name of the pipeline.
pipelineName

Argument type: String

The name of the plugin. Itis the plugin key for a promoted plugin or
pluginName the plugin key and version for an unpromoted plugin.

Argument type: String

The name of the procedure. When using this argument, you must
procedureName also enter projectName.

Argument type: String

The name of the process.
processName

Argument type: String

The name of the process step.
processStepName

Argument type: String

projectName

The name of the project.

Argument type: String

The unique identifier for a property sheet that is assigned
automatically when the property sheetis created.

propertySheetId

Argument type: UUID

<allow|deny>—Determines whether the principal can examine
readPrivilege the contents of the object.

Argument type: Access

The name of the Release.
releaseName

Argument type: String

The name of the repository for artifact management.
repositoryName

Argument type: String

68

ElectricFlow Perl APl Commands

Arguments Descriptions

The name of the resource.
resourceName

Argument type: String

The name of a pool containing one or more resources.
resourcePoolName

Argument type: String

resourceTemplateName

The name of the resource template.

Argument type: String

The name of the schedule. When using this argument, you must
also enter projectName.

scheduleName

Argument type: String

The name of the snapshot.
snapshotName

Argument type: String

The name of the stage.
stageName

Argument type: String

stateDefinitionName

The name of the state definition.

Argument type: String

The name of the state.

stateName

Argument type: String

The name of the step. When using this argument, you must also
stepName enter projectName and procedureName.

Argument type: String

systemObjectName

System object names include:
admin|artifacts|directoryl|emailConfigs|forceAbort|l
icensing]|
log|plugins|priority|projects|repositories|resource
s|server| session|test|workspaces|zonesAndGateways

Argument type: SystemObjectName

taskName

The name of the task.

Argument type: String

transitionDefinitionName

The name of the transition definition.

Argument type: String

69

ElectricFlow

Arguments Descriptions

The name of the transition.
transitionName

Argument type: String

The full name of the user.
userName

Argument type: String

The name of the workflow definition.
workflowDefinitionName

Argument type: String

The name of the workflow.

workflowName

Argument type: String

The name of the workspace.
workspaceName

Argument type: String

The name of the zone.
zoneName

Argument type: String

Positional arguments
principalType, principalName, and locator options.

Response
None or status OK message.

ec-perl
syntax: $<object>->createAclEntry (<principalType> <principalName>, {<optionals>});

Example

Scmdr->createAclEntry ("user", "j smith", {"projectName"=>"Sample Project",
"readPrivilege"=>"allow", "modifyPrivilege"=>"deny", "executePrivilege"=>"deny",
"changePermissionsPrivilege"=>"deny"}) ;

ectool
syntax: ectool createAclEntry <principalType> <principalName> [optionals]
Example
ectool createAclEntry user "j smith" --projectName "Sample Project" --readPrivilege
allow

--modifyPrivilege deny --executePrivilege deny --changePermissionsPrivilege deny

Back to Top

70

ElectricFlow Perl APl Commands

deleteAclEntry

Deletes an access control entry (ACE) in an access control list (ACL) on an object for a given principal (user or
group).

You must specify principalType, principalName, and locator arguments.

Arguments Descriptions

A user or a group: <user |group>. The defaultis to user.

principalType

Argument type: PrincipalType

The name of the user or the group.
principalName

Argument type: PrincipalName

(Optional) The name of the application that must be unique among
applicationName all projects

Argument type: String

(Optional) The name of the application tier.
applicationTierName

Argument type: String

(Optional) The name of the artifact.
artifactName

Argument type: String

(Optional) The name of the artifact version.

Note: An artifact version name is interpreted by the server as
the
artifactVersionName attribute for the artifactVersionin

question.
artifactVersionName

This name is parsed and interpreted as
"grouplId:artifactKey:version" and the objectis searched
either way you specify its name. The ElectricFlow server interprets
the name form correctly.

Argument type: String

(Optional) The name of the component.
componentName

Argument type: String

(Optional) The name of the email configuration.
configName

Argument type: String

71

ElectricFlow

Arguments Descriptions
(Optional) The name of the credential specified in one of these
formats:

o relative(for example, "cred1")-The credential is assumed
to be in the project that contains the requested target
object.

ialN
credentiallame e absolute(for example,
"/projects/BuildProject/credentials/cred1"-The credential
can be from any specified project, regardless of the project
for the target object.
Argument type: String
(Optional) The name of the environment that must be unique
environmentName among all projects.

Argument type: String

environmentTemplateName

(Optional) The name of the environment template that must be
unique among all projects.

Argument type: String

environmentTemplateTierName

(Optional) Name of the environment template tier that must be
unique among all tiers for the environment template.

Argument Type: String

environmentTierName

(Optional) The name of the environment tier.

Argument type: String

flowName

(Optional) The name of the flow.

Argument type: String

flowRuntimeName

(Optional) Name of the flow runtime.

Argument Type: String

flowRuntimeStateName

(Optional) Name of the flow state.

Argument Type: String

flowStateName

(Optional) The name of the flow state.

Argument type: String

flowTransitionName

(Optional) The name of the flow transition.

Argument type: String

ElectricFlow Perl APl Commands

Arguments

Descriptions

gatewayName

(Optional) The name of the gateway.

Argument type: String

groupName

(Optional) The name of a group whose ACL entry you want to
delete.

Argument type: String

jobId

(Optional) The unique ElectricFlow-generated identifier (a UUID)
for a job thatis assigned automatically when the job is created.
The system also accepts a job name assigned to the job by its
name template.

Argument type: UUID

jobStepId

(Optional) The unique identifier for a job step thatis assigned
automatically when the job step is created.

Argument type: UUID

notifierName

(Optional) The name of the email notifier with the ACE that you
want to delete.

Argument type: String

objectId

(Optional) An object identifier returned by findObjects and
getObjects.

Argument type: String

objectType

(Optional) The type of object.
Argument type: String

path

(Optional) Path to the property.
Argument type: String

pipelineName

(Optional) The name of the pipeline.
Argument type: String

pluginName

(Optional) The name of the plugin with the ACE that you want to
delete.

Argument type: String

procedureName

(Optional) The name of the procedure with the ACE that you want
to delete. When you use this argument, you must also enter
projectName for the project of which this procedure is a member.

Argument type: String

73

ElectricFlow

Arguments Descriptions

(Optional) The name of the process.
processName

Argument type: String

(Optional) The name of the process step.
processStepName

Argument type: String

projectName

(Optional) The name of the project with the ACE that you want to
delete.

Argument type: String

(Optional) The unique identifier for a property sheet that is
assigned automatically when the property sheetis created.

propertySheetId

Argument type: UUID

(Optional) The name of the Release which owns the property.
releaseName

Argument type: String

(Optional) The name of the repository for artifact management.
repositoryName

Argument type: String

(Optional) The name of the resource with the ACE that you want to
resourceName delete.

Argument type: String

(Optional) The name of a pool containing one or more resources.
resourcePoolName

Argument type: String

resourceTemplateName

(Optional) Name of the resource template.

Argument Type: String

(Optional) The name of the schedule with the ACE that you want to
delete. When you use this argument, you must also enter the

scheduleName projectName from which this schedule runs procedures.
Argument type: String
(Optional) The name of the snapshot.
snapshotName
Argument type: String
(Optional) The name of the stage definition.
stageName

Argument type: String

stateDefinitionName

(Optional) The name of the state definition.

Argument type: String

74

ElectricFlow Perl APl Commands

Arguments Descriptions
(Optional) The name of the state.
stateName
Argument type: String
(Optional) The name of the step with the ACE that you want to
delete. When using this argument, you must also enter
stepName projectName and procedureName to indicate where this step
resides.
Argument type: String
(Optional) System object names include:
admin|directoryl|licensing|log|plugins|priority]
systemObjectName projects|resources|server|session|workspaces
Argument type: SystemObjectName
(Optional) The name of the task.
taskName

Argument type: String

transitionDefinitionName

(Optional) The name of the transition definition.

Argument type: String

(Optional) The name of the transition.

transitionName

Argument type: String

(Optional) The name of the user with the ACE that you want to
userName delete.

Argument type: String

workflowDefinitionName

(Optional) The name of the workflow definition.

Argument type: String

(Optional) The name of the workflow.

workflowName

Argument type: String

(Optional) The name of the workspace with the ACL entry that you
workspaceName wantto delete.

Argument type: String

(Optional) The name of the zone.
zoneName

Argument type: String

Positional arguments

principalType, principalName

75

ElectricFlow

Response
None or a status OK message.

ec-perl
syntax: $<object>->deleteAclEntry (<principalType>, <principalName>, {<optionals>});

Example

Scmdr->deleteAclEntry ('user', 'j smith', {projectName => 'Default'});

ectool
syntax: ectool deleteAclEntry <principalType> <principalName> [optionals]

Example
ectool deleteAclEntry "user" "j smith" --projectName "Default"

Back to Top

getAccess

Retrieves access control list (ACL) information associated with an object, including inherited ACLs.

You must specify object locators to find the object to which you need to verify access.

Arguments Descriptions

(Optional) The name of the application that must be unique among

applicationName all projects

Argument type: String

(Optional) The name of the application tier.
applicationTierName
Argument type: String

(Optional) The name of the artifact.
artifactName
Argument type: String

(Optional) The name of the artifact version.

Note: An artifact version name is interpreted by the server as
the artifactVersionName attribute for the
artifactVersion in question. This name is parsed and
interpreted as "groupId:artifactKey:version" and the
objectis searched either way you specify its name. The
ElectricFlow server interprets the name form correctly.

artifactVersionName

Argument type: String

(Optional) The name of the component.
componentName
Argument type: String

76

ElectricFlow Perl APl Commands

Arguments Descriptions
(Optional) The name of the email configuration.
configName
Argument type: String
(Optional) The name of the credential specified in one of these
formats:

o relative(for example, "cred1")-The credential is assumed
to be in the project that contains the requested target
object.

credentialName e absolute(for example,

"/projects/BuildProject/credentials/cred1"—-The credential
can be from any specified project, regardless of the project
for the target object.

Argument type: String

emulateRestoreInheritance

(Optional) Whether or not to include one level of broken
inheritance if it exists. This argumentis used for seeing what
access would look like if the lowest level of broken inheritance was
restored.

<Boolean flag- 0|1 |true|false> Ifsetto true or 1, this
argument returns ACL information to what it would be if inheritance
were restored on this object.

Argument type: Boolean

environmentName

(Optional) The name of the environment that must be unique
among all projects.

Argument type: String

environmentTemplateName

(Optional) Name of the environment template.

Argument type: String

environmentTemplateTierName

(Optional) Name of the environment template tier.

Argument type: String

environmentTierName

(Optional) The name of the environment tier.

Argument type: String

flowName

(Optional) The name of the flow.

Argument type: String

flowRuntimeName

(Optional) Name of the flow runtime.

Argument Type: String

77

ElectricFlow

Arguments

Descriptions

flowRuntimeStateName

(Optional) Name of the flow state.

Argument Type: String

flowStateName

(Optional) The name of the flow state.

Argument type: String

flowTransitionName

(Optional) The name of the flow transition.

Argument type: String

gatewayName

(Optional) The name of the gateway.

Argument type: String

groupName

(Optional) The name of the group.
Argument type: String

JjobId

(Optional) The unique ElectricFlow-generated identifier (a UUID)
for a job that is assigned automatically when the job is created.
The system also accepts a job name assigned to the job by its
name template.

Argument type: String

jobStepId

(Optional) The unique identifier for a job step that is assigned
automatically when the job step is created.

Argument type: String

notifierName

(Optional) The name of the email notifier with the ACL.
Argument type: String

objectId

(Optional) An object identifier returned by findObjects and
getObjects.

Argument type: String

objectType

(Optional) The type of object.
Argument type: String

path

(Optional) Property path.
Argument type: String

pipelineName

(Optional) The name of the pipeline.

Argument type: String

pluginName

(Optional) The name of the plugin with the ACL.

Argument type: String

78

ElectricFlow Perl APl Comman

ds

Arguments Descriptions
(Optional) The name of the procedure with the ACL. When using
procedureName this argument, you must also enter projectName.
Argument type: String
(Optional) The name of the process.
processName
Argument type: String
(Optional) The name of the process step.
processStepName

Argument type: String

projectName

(Optional) The name of the project that contains the ACL that must
be unique among all projects.

Argument type: String

(Optional) The unique identifier for a property sheet thatis
assigned automatically when the property sheetis created.

propertySheetId

Argument type: UUID

(Optional) The name of the Release.
releaseName

Argument type: String

(Optional)The name of the repository for artifact management.
repositoryName

Argument type: String

(Optional)The name of the resource with the ACL.
resourceName

Argument type: String

(Optional)The name of a pool with one or more resources.
resourcePoolName

Argument type: String

resourceTemplateName

(Optional) Name of the resource template.

Argument type: String

(Optional) The name of the schedule with the ACL.

scheduleName .

Also requires projectName

(Optional) The name of a snapshot.
snapshotName

Argument type: String

(Optional) The name of the stage definition.
stageName

Argument type: String

stateDefinitionName

(Optional) The name of the state definition.

79

ElectricFlow

Arguments Descriptions
stateName (Optional) The name of the state.
(Optional) The name of the step containing the ACL. When using
stepName this argument, you must also enter projectName
Argument type: String
(Optional) System objects include:
admin|artifactVersions|directory|emailConfigs|loglp
systemObjectName lugins|
server|session|workspaces
Argument type: SystemObjectName
(Optional) The name of the task.
taskName

Argument type: String

transitionDefinitionName

(Optional) The name of the transition definition.

Argument type: String

transitionName

(Optional) The name of the transition.

Argument type: String

userName

(Optional) The name of the user with the ACL.

Argument type: String

workflowDefinitionName

(Optional) The name of the workflow definition.

Argument type: String

(Optional) The name of the workflow.

workflowName

Argument type: String

(Optional) The name of the workspace with the ACL.
workspaceName

Argument type: String

(Optional) The name of the zone.
zoneName

Argument type: String

Positional arguments

Arguments to specify the object, beginning with the top-level object locator.

Response

One or more object elements, each consisting of one or more aclEntry elements. Each object

represents

an object in the ACL inheritance chain starting with the most specific object. Each ac1Entry identifies a

user or

80

ElectricFlow Perl APl Commands

group and the privileges granted or denied by the entry, and includes a breakInheritance elementif
applicable.

ec-perl

syntax: $<object>->getAccess ({<optionals>});
Example

Scmdr->getAccess ({projectName => "Quarterly Summary Results"});

ectool

syntax: ectool getAccess [optionals]
Example
ectool getAccess --projectName "Quarterly Summary Results"

Back to Top

getAclEntry

Retrieves an access control entry (ACE) list on an object for a given principal.

You must specify a principalType, principalName, and an object locator to specify the ACE.

Arguments Descriptions

Type of principal for this ACE: user or group.

principalType

Argument type: PrincipalType

Name of the user or group for the ACE.
principalName

Argument type: PrincipalName

(Optional) The name of the application that must be unique among
applicationName all projects

Argument type: String

(Optional) The name of the application tier.
applicationTierName

Argument type: String

(Optional) The name of the artifact.
artifactName

Argument type: String

81

ElectricFlow

Arguments

Descriptions

artifactVersionName

(Optional) The name of the artifact version.

Note: An artifact version name is interpreted by the server as
the artifactVersionName aftribute for the
artifactVersion in question. This name is parsed and
interpreted as "groupId:artifactKey:version" and the
object is searched either way you specify its name. The
ElectricFlow server interprets the name form correctly.

Argument type: String

(Optional) The name of the component.

componentName
Argument type: String
(Optional) The name of the email configuration.
configName
Argument type: String
(Optional) The name of the credential specified in one of these
formats:

o relative(for example, "cred1")-The credential is assumed
to be in the project that contains the requested target
object.

credentialName e absolute(for example,
"/projects/BuildProject/credentials/cred1"—The credential
can be from any specified project, regardless of the project
for the target object.
Argument type: String
(Optional) The name of the environment that must be unique
environmentName among all projects.

Argument type: String

environmentTemplateName

(Optional) Name of the environment template.

Argument type: String

environmentTemplateTierName

(Optional) Name of the environment template tier.

Argument type: String

environmentTierName

(Optional) Name of the environment tier.

Argument type: String

flowName

Name of the flow that must be unique within the project.

Argument Type: String

82

ElectricFlow Perl APl Commands

Arguments

Descriptions

flowRuntimeName

(Optional) Name of the flow runtime.

Argument Type: String

flowRuntimeStateName

(Optional) Name of the flow state.

Argument Type: String

flowStateName

Name of the flow state that must be unique within the flow.

Argument Type: String

flowTransitionName

Name of the flow transition that must be unique within the flow
state.

Argument Type: String

(Optional) The name of the gateway.

gatewayName
Argument type: String
(Optional) The name of the group.
groupName
Argument type: String
(Optional) The unique ElectricFlow-generated identifier (a UUID)
for a job that is assigned automatically when the job is created.
jobId The system also accepts a job name assigned to the job by its
name template.
Argument type: UUID
(Optional) The unique identifier for a job step that is assigned
jobStepId automatically when the job step is created.
Argument type: String
(Optional) The name of the email notifier.
notifierName
Argument type: String
(Optional) This is an object identifier returned by findObjects
objectId and getObjects.
Argument type: String
(Optional) The type of object.
objectType
Argument type: String
(Optional) The property path.
path

Argument type: String

83

ElectricFlow

Arguments Descriptions
(Optional) The name of the pipeline.
pipelineName
Argument type: String
(Optional) The name of the plugin. The plugin key for a promoted
pluginName plugin or the plugin key and version for an unpromoted plugin.
Argument type: String
(Optional) The name of the procedure with the ACL. When using
procedureName this argument, you must also enter projectName.
Argument type: String
(Optional) The name of the process.
processName
Argument type: String
(Optional) The name of the process step.
processStepName

Argument type: String

projectName

(Optional) The name of the project.

Argument type: String

(Optional) The unique identifier for a property sheet thatis
assigned automatically when the property sheetis created.

propertySheetId

Argument type: String

(Optional) The name of the Release.
releaseName

Argument type: String

(Optional) The name of the repository for artifact management.
repositoryName

Argument type: UUID

(Optional) The name of the resource.
resourceName

Argument type: String

(Optional) The name of a pool containing one or more resources.
resourcePoolName

Argument type: String

resourceTemplateName

(Optional) The name of the resource template.

Argument type: String

scheduleName

(Optional) The name of a schedule. When using this argument,
you must also enter projectName.

Argument type: String

84

ElectricFlow Perl APl Commands

Arguments Descriptions

(Optional) The name of a snapshot.
snapshotName

Argument type: String

(Optional) The name of the stage definition.
stageName

Argument type: String

stateDefinitionName

(Optional) The name of the state definition.

Argument type: String

stateName

(Optional) The name of the state.

Argument type: String

stepName

(Optional) The name of the step. When using this argument, you
must also enter projectName and procedureName.

Argument type: String

systemObjectName

(Optional) System objects include:

admin|artifactVersions|directory|emailConfigs|loglp

lugins|
server|session|workspaces

Argument type: SystemObjectName

taskName

(Optional) The name of the task.
Argument type: String

transitionDefinitionName

(Optional) The name of the transition definition.

Argument type: String

transitionName

(Optional) The name of the transition.

Argument type: String

userName

(Optional) The full name of the user.

Argument type: String

workflowDefinitionName

(Optional) The name of the workflow definition.

Argument type: String

workflowName

(Optional) The name of the workflow.

Argument type: String

workspaceName

(Optional) The name of the workspace.

Argument type: String

85

ElectricFlow

Arguments Descriptions

(Optional) The name of the zone.
zoneName

Argument type: String

Positional arguments

principalType, principalName, and arguments to specify the object, beginning with the top-level object
locator.

Response
One aclEntry element.

ec-perl
syntax: Scmdr->getAclEntry (<principalType>, < principalName>, {<optionals>});

Example

Scmdr->getAclEntry ("user", "j smith", {projectName => "Sample Project"});

ectool
syntax: ectool getAclEntry <principalType> <principalName> [optionals]
Example
ectool getAclEntry user "j smith" --projectName "Sample Project"
Back to Top

modifyAclEntry

Modifies an ACE (access control entry) in an access control list (ACL) on an object for a given principal.
Note: If a privilege is not specified, an object inherits it from its parent object ACL.

You must specify principalType, principalName, and object locator arguments to identify the target ACL.

Arguments Descriptions

Type of principal for this access control entry: user or group.

principalType

Argument type: PrincipalType

Name of the user or group for this access control entry.
principalName

Argument type: PrincipalName

(Optional) The name of the application that must be unique among
applicationName all projects.

Argument type: String

86

ElectricFlow Perl APl Comman

ds

Arguments

Descriptions

applicationTierName

(Optional) The name of the application tier.

Argument type: String

artifactName

(Optional) The name of the artifact.
Argument type: String

artifactVersionName

(Optional) The name of the artifact version.

An artifact version name is interpreted by the server as the
artifactVersionName aftribute for the artifactversionin
question. This name is parsed and interpreted as
"grouplId:artifactKey:version" and the objectis searched
either way you specify its name. The ElectricFlow server interprets
the name form correctly.

Argument type: String

changePermissionsPrivilege

(Optional) <allow|deny> —Determines whether the principal can
modify access control for the object.

Argument type: Access

(Optional) The name of the component.

componentName
Argument type: String
(Optional) The name of the email configuration.
configName
Argument type: String
(Optional) The name of the credential specified in one of these
formats:

o relative(for example, "cred1")-The credential is assumed
to be in the project that contains the requested target
object.

ialN
credentiallame e absolute(for example,
"/projects/BuildProject/credentials/cred1"-The credential
can be from any specified project, regardless of the project
for the target object.
Argument type: String
(Optional) The name of the environment that must be unique
environmentName among all projects.

Argument type: String

environmentTemplateName

(Optional) The name of the environment template.

Argument type: String

87

ElectricFlow

Arguments Descriptions

(Optional) The name of the environment template tier.
environmentTemplateTierName

Argument type: String

(Optional) The name of the environment tier.
environmentTierName
Argument type: String

(Optional) <allow|deny> —Determines whether the principal can
o invoke this object as part of a job. This privilege is only relevant for
executebPrivilege a few objects such as procedures and procedure steps.

Argument type: Access

(Optional) The name of the flow that must be unique within the

flowName project.

Argument Type: String

(Optional) The name of the flow runtime.
flowRuntimeName

Argument Type: String

(Optional) The name of the flow state.
flowRuntimeStateName
Argument Type: String

(Optional) The name of the flow state that must be unique within
flowStateName the flow.

Argument Type: String

(Optional) The name of the flow transition that must be unique

flowTransitionName within the flow state.

Argument Type: String

(Optional) The name of the gateway.
gatewayName
Argument type: String

(Optional) The name of the group with the ACE.
groupName
Argument type: String

(Optional) The unique ElectricFlow-generated identifier (a UUID)
for a job that is assigned automatically when the job is created.
jobId The system also accepts a job name assigned to the job by its
name template.

Argument type: UUID

88

ElectricFlow Perl APl Commands

Arguments Descriptions

(Optional) The unique identifier for a job step thatis assigned
jobStepId automatically when the job step is created.

Argument type: UUID

(Optional) <allow|deny> —Determines whether the principal can
modifyPrivilege change the contents of the object.

Argument type: Access

(Optional) The name of the email notifier with the ACE.
notifierName

Argument type: String

(Optional) The object identifier returned by findObjects and
objectId getObjects.

Argument type: String

(Optional) The type of object.
objectType

Argument type: String

(Optional) The property path.
path

Argument type: String

(Optional) The name of the pipeline.
pipelineName

Argument type: String

(Optional) The name of the plugin with the ACE.
pluginName

Argument type: String

(Optional) The name of the procedure with the ACL entry. When
procedureName using this argument, you must also enter projectName.

Argument type: String

(Optional) The name of the process.
processName

Argument type: String

(Optional) The name of the process step.
processStepName

Argument type: String

projectName

(Optional) The name of the project with the ACE.

Argument type: String

propertySheetId

(Optional) The unique identifier for a property sheet thatis
assigned automatically when the property sheet is created.

Argument type: UUID

89

ElectricFlow

Arguments Descriptions

(Optional) <allow|deny> —Determines whether the principal can
readPrivilege examine the contents of the object.

Argument type: Access

(Optional) The name of the Release.
releaseName

Argument type: String

(Optional) The name of the repository for artifact management.
repositoryName

Argument type: String

(Optional) The name of the resource containing the ACE.
resourceName

Argument type: String

(Optional) The name of a resource pool.
resourcePoolName

Argument type: String

resourceTemplateName

(Optional) The name of the resource template.

Argument type: String

(Optional) The name of the schedule with the ACE. When using
this argument, you must also enter projectNamne.

scheduleName

Argument type: String

(Optional) The name of a snapshot.
snapshotName

Argument type: String

(Optional) The name of the stage.
stageName

Argument type: String

stateDefinitionName

(Optional) The name of the state definition.

Argument type: String

(Optional) The name of the state.

stateName

Argument type: String

(Optional) The name of the step with the ACE. When using this
stepName argument, you must also enter projectName.

Argument type: String

ElectricFlow Perl APl Commands

Arguments Descriptions

(Optional) System object names include:
admin|artifacts|directory|emailConfigs|forceAbort|
licensing|log|plugins|priority|projects|
repositories|resources|server|session|test|

systemObjectName

workspaces | zonesAndGateways

Argument type: SystemObjectName

(Optional) The name of the task in a stage in a pipeline.
taskName

Argument type: String

(Optional) The name of the transition definition.
transitionDefinitionName
Argument type: String

(Optional) The name of the transition.
transitionName

Argument type: String

(Optional) The username containing the ACE.
userName

Argument type: String

The name of the workflow definition.
workflowDefinitionName
Argument type: String

The name of the workflow.

workflowName

Argument type: String

The name of the workspace containing the ACE.
workspaceName

Argument type: String

The name of the zone.
zoneName

Argument type: String

Positional arguments

principalType, principalName, and arguments to specify the object, beginning with the top-level
object locator

Response
Retrieves a modified ACE element..

ec-perl
syntax: Scmdr->modifyAclEntry (<principalType>, <principalName>, {<optionals>});

91

ElectricFlow

Example

Scmdr->modifyAclEntry ("user", "j smith", {projectName => "Sample Project",
snapshotName => "LastGood", });

ectool
syntax: ectool modifyAclEntry <principalType> <principalName> [optionals]
Example
ectool modifyAclEntry "user" "j smith" --projectName "Sample Project"

—-snapshotName "LastGood"

Back to Top

restoreAclInheritance

Restores the ACL (access control list) inheritance for the specified object.

Note: You must use object locators to specify the object where you want to restore ACL inheritance.

Arguments Descriptions

applicationName all projects

Argument type: String

(Optional) The name of the application that must be unique among

(Optional) The name of the application tier.
applicationTierName
Argument type: String

(Optional) The name of the artifact.
artifactName
Argument type: String

(Optional) The name of the artifact version.

the artifactVersionName attribute for the
artifactVersion in question.
artifactVersionName This name is parsed and interpreted as
"groupId:artifactKey:version" and the objectis

server interprets the name form correctly.

Argument type: String

Note: An artifact version name is interpreted by the server as

searched either way you specify its name. The ElectricFlow

(Optional) The name of the component.
componentName

Argument type: String

(Optional) The name of the email configuration.
configName
Argument type: String

92

ElectricFlow Perl APl Commands

Arguments Descriptions

(Optional) The name of the credential specified in one of these
formats:

o relative(for example, "cred1")-The credential is assumed
to be in the project that contains the requested target
object.

credent ialName e absolute(for example,
"/projects/BuildProject/credentials/cred1"-The credential
can be from any specified project, regardless of the project
for the target object.

When using this argument, you must also enter projectNamne.

Argument type: String

(Optional) The name of the environment that must be unique
environmentName among all projects.

Argument type: String

Name of the environment template.
environmentTemplateName

Argument type: String

(Optional) Name of the environment template tier.
environmentTemplateTierName

Argument type: String

(Optional) The name of the environment tier.
environmentTierName

Argument type: String

(Optional) Name of the flow that must be unique within the project.
flowName

Argument Type: String

(Optional) Name of the flow runtime.
flowRuntimeName

Argument Type: String

(Optional) Name of the flow state.
flowRuntimeStateName

Argument Type: String

(Optional) Name of the flow state that must be unique within the
flowStateName flow.

Argument Type: String

Name of the flow transition that must be unique within the flow

flowTransitionName state.

Argument Type: String

93

ElectricFlow

Arguments Descriptions

(Optional) The name of the gateway.

gatewayName

Argument type: String

(Optional) The name of the group with the ACL inheritance that
groupName you want to restore.

Argument type: String

(Optional) The unique ElectricFlow-generated identifier (a UUID)
for a job thatis assigned automatically when the job is created.
jobId The system also accepts a job name assigned to the job by its
name template.

Argument type: UUID

(Optional) The unique identifier for a job step thatis assigned
jobStepId automatically when the job step is created.

Argument type: UUID

(Optional) The name of the email notifier with the ACL inheritance
that you want to restore.

Also requires projectName and procedureName;
notifierName projectName, procedureName, and stepName; jobId or
JjobStepId

Argument type: String

(Optional) This is an object identifier returned by findObjects
objectId and getObjects.

Argument type: String

(Optional) The type of object.

objectType
Argument type: String
(Optional) Property path.
path
Argument type: String
(Optional) The name of the pipeline.
pipelineName
Argument type: String
(Optional) The name of the plugin with the ACL inheritance that
pluginName you want to restore.

Argument type: String

94

ElectricFlow Perl APl Comman

ds

Arguments Descriptions

(Optional) The name of the procedure with the ACL inheritance

that you want to restore. When using this argument, you must also
procedureName enter projectName

Argument type: String

(Optional) The name of the process.
processName

Argument type: String

(Optional) The name of the process step.
processStepName

Argument type: String

(Optional) The name of the project with the ACL inheritance that
projectName you want to restore.

Argument type: String

(Optional) The unique identifier for a property sheet thatis
propertySheetId assigned automatically when the property sheet is created.

Argument type: UUID

(Optional) The name of the Release.
releaseName

Argument type: String

(Optional) The name of the repository for artifact management.
repositoryName

Argument type: String

(Optional) The name of the resource whose ACL inheritance you
resourceName want to restore.

Argument type: String

(Optional) The name of a pool containing one or more resources.
resourcePoolName

Argument type: String

resourceTemplateName

(Optional) Name of the resource template.

Argument type: String

(Optional) The name of the schedule with the ACL inheritance that
you want to restore. When using this argument, you must also

scheduleName enter projectName

Argument type: String

(Optional) The name of a snapshot.
snapshotName

Argument type: String

95

ElectricFlow

Arguments

Descriptions

stageName

(Optional) The name of the stage definition.

Argument type: String

stateDefinitionName

The name of the state definition.

Argument type: String

stateName

(Optional) The name of the state.

Argument type: String

stepName

(Optional) The name of the step with the ACL inheritance that you
want to restore. When using this argument, you must also enter
projectName and procedureName.

Argument type: String

systemObjectName

(Optional) The name of the system object whose ACL inheritance
you want to restore.

System objects include:
admin|artifactVersions|directory|emailConfigs]|
loglplugins|server|session|workspaces

Argument type: SystemObjectName

taskName

(Optional) The name of the task.
Argument type: String

transitionDefinitionName

(Optional) The name of the transition definition.

Argument type: String

(Optional) The name of the transition.

transitionName

Argument type: String

(Optional) The name of the user with the ACL inheritance that you
userName want to restore.

Argument type: String

workflowDefinitionName

(Optional) The name of the workflow definition.

Argument type: String

(Optional) The name of the workflow.

workflowName

Argument type: String

(Optional) The name of the workspace with the ACL inheritance
workspaceName that you want to restore.

Argument type: String

96

ElectricFlow Perl APl Commands

Arguments Descriptions

(Optional) The name of the zone.
zoneName

Argument type: String

Positional arguments
Arguments to locate the object, beginning with the top-level object locator.

Response
None or a status OK message.

ec-perl
syntax: Scmdr->restoreAclInheritance ({<optionals>});

Example

Scmdr->restoreAclInheritance ({projectName => "Software tools"});

ectool

syntax: ectool restoreAclInheritance [optionals]
Example
ectool restoreAclInheritance --projectName "Software tools"

Back to Top
API Commands - Applications

createApplication on page 97
deleteApplication on page 98
getApplication on page 99
getApplications on page 100
modifyApplication on page 101

createApplication

Creates a new application for a project.

You must specify the projectName and applicationName.

Arguments Descriptions

projectName
Argument Type: String

Name for the project that must be unique among all projects.

97

ElectricFlow

Arguments Descriptions

Name of the application that must be unique among all projects.
applicationName

Argument Type: String

(Optional) Comment text describing this object that is not
description interpreted at all by ElectricFlow.

Argument Type: String

Positional arguments

projectName, applicationName

Response
Returns an application element.

ec-perl

syntax:s<object>->createApplication (<projectName>, <applicationName>,

{<optionals>});

Example

Sec->createApplication ("Default", "Deploy", {description => "QA testing"});

ectool
syntax: ectool createApplication <projectName> <applicationName> [optionals]
Example
ectool createRApplication "Default" "Deploy" --description "QA testing"
Back to Top

deleteApplication

Deletes an application.

You must specify the projectName and applicationName.

Arguments

Descriptions

projectName

Name for the project that must be unique among all projects.

Argument Type: String

applicationName

Name of the application that must be unique among all projects.

Argument Type: String

Positional arguments

projectName, applicationName

98

ElectricFlow Perl APl Commands

Response
None or a status OK message.

ec-perl
syntax: $<object>->deleteApplication (<projectName>, <applicationName>);

Example

Sec->deleteApplication ("Default", "Undeploy"):;

ectool
syntax: ectool deleteRpplication <projectName> <applicationName>

Example
ectool deleteApplication "Default" "Undeploy"

Back to Top

getApplication

Retrieves an application by name.

You must specify the projectName and applicationName.

Arguments Descriptions

Name for the project that must be unique among all projects.
projectName
Argument Type: String

Name of the application that must be unique among all projects.
applicationName
Argument Type: String

(Optional) The revision ID of the versioned object.
applicationEntityRevisionId
Argument type: UUID

Positional arguments

projectName, applicationName

Response
Retrieves the specified application element.

ec-perl
syntax: $<object>->getApplication (<projectName>, <applicationName>, {<optionals>});

Example

Sec->getApplication ("Default", "Deploy", {applicationEntityRevisionId => "4fa765dd-
73f1-11e3-b67e-b0a420524153"}) ;

99

ElectricFlow

ectool
syntax: ectool getApplication <projectName> <applicationName> [optionals]

Example

ectool getApplication "Default" "Deploy" --applicationEntityRevisionId 4fa765dd-73f
1-11e3-b67e-b0a420524153

Back to Top

getApplications

Retrieves all applications in a project.

You must specify the projectName.

Arguments Descriptions

Name for the project that must be unique among all projects.
projectName
Argument Type: String

(Optional) <Boolean flag - 0|1 | true| false>

If setto 1 or true, the search results include the revisions of

includeEntityRevisions .
application.

Argument type: Boolean

(Optional) Name of the master component.
referenceComponentName

Argument Type: String

(Optional) Project to which the master component belongs.
referenceComponentProject
Argument Type: String

Positional arguments

projectName

Response
Retrieves zero or more application elements.

ec-perl
syntax: $<object>->getApplications (<projectName>, {<optionals>});

Example
Sec->getApplications ("Default", {referenceComponentProject => "Financial Summarie

s"});

ectool
syntax: ectool getApplications <projectName> [optionals]

100

ElectricFlow Perl APl Commands

Example
ectool getApplications "Default" --referenceComponentProject "Financial Summaries"

Back to Top

modifyApplication
Modifies an existing application.

You must specify the projectName and the applicationName.

Arguments Descriptions

Name for the project that must be unique among all projects.
projectName
Argument Type: String

Name of the application that must be unique within the project.

applicationName

Argument Type: String

(Optional) Comment text describing this object; not interpreted at
description all by ElectricFlow.

Argument Type: String

(Optional) New name for an existing object thatis being renamed.
newName

Argument Type: String

Positional arguments

projectName, applicationName

Response
Returns a modified application element.

ec-perl

syntax:s<object>->modifyApplication (<projectName>, <applicationName>,
{<optionals>});

Example
Sec->modifyApplication ("Default", "Deploy config", {newName=> "Deploy WAR file", de
scription => "Pet store website"});
ectool
syntax:ectool modifyApplication <projectName> <applicationName> [optionals]
Example
ectool modifyApplication "Default" "Deploy config" --newName "Deploy WAR file" --de

scription "Pet Store website"

Back to Top

101

ElectricFlow

API Commands - Application Tier

createApplicationTier on page 102
deleteApplicationTier on page 103
getApplicationTier on page 104
getApplicationTiers on page 104
getApplicationTiersinComponent on page 105

modifyApplicationTier on page 106

createApplicationTier

Creates a new application tier in the application.

You must specify the projectName, applicationName, and applicationTierName.

Arguments Descriptions

Name for the project that must be unique among all projects.
projectName
Argument Type: String

Name of the application that must be unique among all projects.
applicationName
Argument Type: String

Name of the tier that must be unique within the application.
applicationTierName
Argument Type: String

(Optional) Comment text describing this object that is not

description interpreted at all by ElectricFlow.

Argument Type: String

Positional arguments

projectName , applicationName, applicationTierName

Response
Returns an application tier element.

ec-perl

syntax:s<object>->createApplicationTier (<projectName>, <applicationName>,
<applicationTierName>, {<optionals>});

Example

Sec->createApplicationTier ("Default", "Deploy", "Heat Clinic", {description => "Web
setup"});

102

ElectricFlow Perl APl Commands

ectool

syntax: ectool createApplicationTier <projectName> <applicationName>
<applicationTierName> [optionals]

Example

ectool createApplicationTier "Default" "Deploy" "Heat Clinic" --description "Web se

tup"

Back to Top

deleteApplicationTier

Deletes a tier from an application.

You must specify the projectName, applicationName, and applicationTierName.

Arguments

Descriptions

projectName

Name for the project that must be unique among all projects.

Argument Type: String

applicationName

Name of the application that must be unique among all projects.

Argument Type: String

applicationTierName

Name of the tier that must be unique within the application.

Argument Type: String

Positional arguments

projectName , applicationName, applicationTierName

Response
None or a status OK message.

ec-perl

syntax: $<object>->deleteApplicationTier (<projectName>, <applicationName>,

<applicationTierName>) ;

Example

Sec->deleteApplicationTier ("Default", "Undeploy", "Tomcat");

ectool

syntax: ectool deleteApplicationTier <projectName> <applicationName>

<applicationTierName>

Example

ectool deleteApplicationTier "Default" "Undeploy" "Tomcat"

Back to Top

103

ElectricFlow

getApplicationTier

Retrieves an application tier by name.

You must specify the projectName, applicationName, and applicationTierName.

Arguments Descriptions

Name for the project that must be unique among all projects.
projectName
Argument Type: String

Name of the application that must be unique among all projects.
applicationName
Argument Type: String

Name of the tier that must be unique within the application.
applicationTierName
Argument Type: String

(Optional) The revision ID of the versioned object.
applicationEntityRevisionId
Argument type: UUID

Positional arguments

projectName , applicationName, applicationTierName

Response
Returns an application tier element.

ec-perl

syntax: $<object>->getApplicationTier (<projectName>, <applicationName>,
<applicationTierName>, {<optionals>});

Example
Sec->getApplicationTier ("Default", "Deploy", "Tomcat", {applicationEntityRevisionId

=> "4fa765dd-73fl-11e3-b67e-b0a420524153"}) ;

ectool

syntax: ectool getApplicationTier <projectName> <applicationName>
<applicationTierName> [optionals]

Example

ectool getApplicationTier "Default" "Deploy" "Tomcat" --applicationEntityRevisionId
4fa765dd-73f1-11e3-b67e-b0a420524153

Back to Top

getApplicationTiers

Retrieves all application tiers in an application.

104

ElectricFlow Perl APl Commands

You must specify the projectName and applicationName arguments.

Arguments Descriptions

Name for the project that must be unique among all projects.
projectName
Argument Type: String

Name of the application that must be unique among all projects.
applicationName
Argument Type: String

(Optional) The revision ID of the versioned object.
applicationEntityRevisionId
Argument type: UUID

Positional arguments

projectName, applicationName

Response
Returns zero or more application tier elements.

ec-perl

syntax: $<object>->getApplicationTiers (<projectName>, <applicationName>,
{<optionals>});

Example

Sec->getApplicationTiers ("Default", "Deploy", {applicationEntityRevisionId => "4fa7
65dd-73f1-11e3-b67e-b0a420524153"}) ;

ectool
syntax:ectool getApplicationTiers <projectName> <applicationName> [optionals]
Example
ectool getApplicationTiers "Default" "Deploy" --applicationEntityRevisionId 4fa765d

d-73f1-11e3-b67e-b0a420524153

Back to Top

getApplicationTiersInComponent

Retrieves all application tiers that are used by the given component.

You must specify the projectName and the componentName arguments.

Arguments Descriptions

Name for the project that must be unique among all projects.
projectName
Argument Type: String

105

ElectricFlow

Arguments Descriptions

Name of the component.

componentName
Argument Type: String

(Optional) The revision ID of the versioned object.

applicationEntityRevisionId
Argument type: UUID

(Optional) Name of an application to which this componentis

applicationName scoped.

Argument Type: String

Positional arguments

projectName, componentName

Response
Returns zero or more application tier elements used by the specified component.

ec-perl
syntax:s<object>->getApplicationTiersInComponent (<projectName>, <componentName>,
{<optionals>});

Example

Sec->getApplicationTiersInComponent ("Default", "WAR file", {applicationName => "Sna
pshot"});

ectool
syntax:ectool getApplicationTiersInComponent <projectName> <componentName>
[optionals]

Example

ectool getApplicationTiersInComponent "Default" "WAR file" --applicationName "Snaps
hot"

Back to Top

modifyApplicationTier

Modifies an existing tier in the application.

You must specify the projectName, applicationName, and applicationTierName arguments.

106

ElectricFlow Perl APl Commands

Arguments

Descriptions

projectName

Name for the project that must be unique among all projects.

Argument Type: String

applicationName

Name of the application that must be unique within the project.

Argument Type: String

applicationTierName

Name of the tier that must be unique within the application.

Argument Type: String

description

(Optional) Comment text describing this object, which is not
interpreted by ElectricFlow.

Argument Type: String

newName

(Optional) New name for an existing object that is being renamed.

Argument Type: String

Positional arguments

projectName, applicationName,

Response

applicationTierName

Returns an updated application tier element.

ec-perl

syntax:s<object>->modifyApplicationTier (<projectName>,
<applicationName>,<applicationTierName>, {<optionals>});

Example

Sec->modifyApplicationTier ("Default", "Publish README", "App Server", {newName=> "D
eploy README", description=> "Revised README file"});

ectool

syntax:ectool modifyApplicationTier <projectName> <applicationName>
<applicationTierName> [optionals]

Example
ectool modifyApplicationTier "Default" "Publish README" "App Server" --newName "De
ploy README" --description "Revised README file"

Back to Top

API Commands - Artifact Management

addDependentsToArtifactVersion on page 108

cleanupAtrtifactCache on page 110

107

ElectricFlow

cleanupRepository on page 110
createArtifact on page 111
createArtifactVersion on page 113
createRepository on page 114
deleteArtifact on page 115
deleteArtifactVersion on page 116
deleteRepository on page 116
findArtifactVersions on page 117
getArtifact on page 121

getArtifacts on page 122
getArtifactVersion on page 122
getArtifactVersions on page 124
getManifest on page 124
getRepositories on page 125
getRepository on page 126
getRetrievedArtifacts on page 126
modifyArtifact on page 127
modifyArtifactVersion on page 128
modifyRepository on page 130
moveRepository on page 131
publishArtifactVersion on page 132
removeDependentsFromArtifactVersion on page 135
resolveRoute on page 137
retrieveArtifactVersions on page 137

updateArtifactVersion on page 142

addDependentsToArtifactVersion

Adds an artifact version query to an existing artifact. Dependent artifact versions are retrieved when the parent
artifact version is retrieved.

You must specify an artifactVersionName.

108

ElectricFlow Perl APl Commands

Arguments Descriptions

The name of the artifact version.

An artifact version name is interpreted by the server as the
artifactVersionName aftribute for the artifactversionin
question. This name is parsed and interpreted as
"groupld:artifactKey:version" and the objectis searched
either way you specify its name. The ElectricFlow server interprets
the name form correctly.

artifactVersionName

Argument type: String

(Optional) One or more artifact version queries. The most current
match of each query is retrieved when the primary artifact is
retrieved.

Dependent artifact version query strings are in this form:
<groupld>:<artifactKey>:<versionRange>
(versionRange is optional).

The version range syntax is standard number interval notation. ()
marks exclusive ranges and [] marks inclusive ranges.

dependentArtifactVersions

Argument type: Collection

Positional arguments

artifactVersionName

Response
Returns one or more dependent artifact versions.

ec-perl
syntax: Scmdr->addDependentsToArtifactVersion (<artifactVersionName>,
{<optionals>});

Example

Add a dependency on cmdr:SDK:1.2.0 and the most current version of core:infra tha
t
is greater than or equal to 2.1.0.

Scmdr->addDependentsToArtifactVersion (artifactVersionName => "myGroup:myAKey:1.0.
0-55", {dependentArtifactVersions => ["cmdr:SDK:1.2.0", "core:infra:[2.1.0,]1"1});

ectool
syntax: ectool addDependentsToArtifactVersion <artifactVersionName> [optionals]

Example

ectool addDependentsToArtifactVersion "myGroup:myAKey:1.0.0-55"
—-—-dependentArtifactVersions "cmdr:SDK:1.2.0" "core:infra:[2.1.0,]1"

Back to Top

109

ElectricFlow

cleanupArtifactCache

Deletes stale artifact versions from an artifact cache. A "stale artifact version" is one whose metadata was
previously deleted from the ElectricFlow server.

Note: If you are notlogged in as "admin", you cannot use this command. However, using the force option
overrides admin login privileges.

You must specify a cacheDirectory.

Arguments Descriptions

The directory where stale artifact versions are stored.

cacheDirectory
Argument type: String
<Boolean flag- 0|1 | true | false> If setto "true", this option can
be used so you can cleanup the artifact cache if you are not
force logged in as "admin".

Argument type: Boolean

Positional arguments

cacheDirectory

Response
Returns a list of directories that were deleted.

ec-perl
syntax: $cmdr->cleanupArtifactCache (<cacheDirectory>) ;

Example

Scmdr->cleanupArtifactCache ("/var/artifact-cache");

ectool
syntax: ectool cleanupArtifactCache <cacheDirectory>

Example
ectool cleanupArtifactCache "/var/artifact-cache"

Back to Top

cleanupRepository

Deletes stale artifact versions from the repository backing-store. A "stale artifact version" is one whose metadata
was previously deleted from the ElectricFlow server.

Note: If you are notlogged in as "admin", you cannot use this command. However, using the force option
overrides
admin login privileges.

You must specify a backingStoreDirectory.

110

ElectricFlow Perl APl Commands

Arguments Descriptions

The repository directory where artifact versions are stored.
backingStoreDirectory

Argument type: String

<Boolean flag - 0|1 | true | false> If setto "true", this option can
be used so you can cleanup the repository even if the g/alv s in the
directory specified do not match up with any artifacts reported by
force the server. By default, this is false, and helps users avoid deleting
arbitrary directory trees if they did not specify the repository
backing store properly.

Argument type:Boolean

Positional arguments

backingStoreDirectory

Response
Returns a list of directories that were deleted.

ec-perl
syntax: $cmdr->cleanupRepository (<backingStoreDirectory>);

Example

use strict;
use ElectricCommander;

my $cmdr = ElectricCommander->new ({debug => 1});
Scmdr->login ("admin", "changeme");
Scmdr->cleanupRepository ("/var/repository-data") ;

ectool

syntax: ectool cleanupRepository <backingStoreDirectory>
Example
ectool cleanupRepository "/var/repository-data"

Back to Top

createArtifact

Creates a new artifact.

You must specify groupId and artifactKey.

111

Ele

ctrickFlow

Arguments Descriptions
A user-generated group name for this artifact. This field is limited to
alphanumeric characters, spaces, spaces, underscores, hyphens,
groupId and periods.
Argument type: String
A user-specified identifier for this artifact. This field is limited to
alphanumeric characters, spaces, underscores, hyphens, and
artifactKey

periods.

Argument type: String

artifactVersionNameTemplate

(Optional) A template for the names of artifact versions published
to this artifact. This option overrides the value setin the server
settings for "artifact name template." The global setting can be
manipulated in the Server Settings page (Go to Administration >
Server, and select the Settings link).

Argument type: String

description

(Optional) A plain text or HTML description for this object.

If using HTML, you must surround your text with

<html> ... </html>tags. The only HTML tags allowed in the
textare: <a>
 <div> <dl> <i> <1i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

Argument type: String

Positional arguments
groupld, artifactKey

Response
Returns an artifact element.

ec-perl

syntax: Scmdr->createArtifact (<groupId>, <artifactKey>, {<optionals>});

Example

Scmdr->createArtifact ("thirdPartyTools"™, "SDK", {description => "3rd party tools SD

K"}) 7

ectool

syntax: ectool createArtifact <groupId> <artifactKey> [optionals]

Example

ectool createArtifact "thirdPartyTools" "SDK" --description "3rd party tools SDK"

Back to Top

112

ElectricFlow Perl APl Commands

createArtifactVersion

Creates a new artifact version.

You must specify version.

Arguments Descriptions

The version component of the GAV
(groupId/artifactVersionId/version)coordinates.

version

Argument type: String

(Optional) A user-specified identifier for this artifact. This field is

_ limited to alphanumeric characters, spaces, underscores,

artifactKey hyphens, and periods.

Argument type: String

(Optional) The name of the artifact.
artifactName

Argument type: String

(Optional) The set of artifact versions on which this

dependentArtifactVersions artifactVersion depends.

Argument type: Collection

(Optional) A plain text or HTML description for this object.

If using HTML, you must surround your text with

<html> ... </html>tags. The only HTML tags allowed in the
textare: <a>
 <div> <dl> <i> <1i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

description

Argument type: String

(Optional) The groupId component of the GAV
(groupId/artifactVersionId/version)coordinates.

groupld This field is limited to alphanumeric characters, spaces, spaces,
underscores, hyphens, and periods.

Argument type: String

(Optional) The unique identifier for the job step thatis used to
jobStepId make a project association.

Argument type: UUID

(Optional) The name of the artifact repository.
repositoryName
Argument type: String

Positional arguments

version

113

ElectricFlow

Response
Returns an artifactVersion on page 774 element.

ec-perl

syntax:scmdr->createArtifactVersion (<version>, {<optionals>});
Examples
Scmdr->createArtifactVersion(l.1l, {artifactName => test:testl});

Scmdr->createArtifactVersion(l.2, {artifactName => testl:test2});

ectool

syntax: ectool createArtifactVersion <version> [optionals]
Examples

ectool createArtifactVersion 1.1 --artifactName test:testl
ectool createArtifactVersion 1.2 --artifactName testl:test2

Back to Top

createRepository

Creates a repository for one or more artifacts.

You must specify a repositoryName.

Arguments Descriptions

The name of the artifact repository.

repositoryName

Argument type: String

(Optional) A plain text or HTML description for this object.

If using HTML, you must surround your text with

<html> ... </html>tags. The only HTML tags allowed in the
description textare: <a>
 <div> <dl> <i> <1i>

<p> <pre> <style> <table> <tc> <td> <th>
<tr>

Argument type: String

(Optional) <Boolean flag -0 | 1 | true | false>— When the value is

repositoryDisabled 1 or true, the repository is disabled. The defaultis 0 or false.

Argument type: Boolean

The URL to use to communicate with the repository server.
url
Argument type: String

The name of the zone where this repository resides.
zoneName

Argument type: String

114

ElectricFlow Perl APl Commands

Positional arguments

repositoryName

Response
Returns a repository element.

ec-perl
syntax: Scmdr->createRepository (<repositoryName>, {<optionals>});
Example
Scmdr->createRepository ("myRepos", {repositoryDisabled => "true", url =>

"https://test.ecloud.com:8200"}) ;

ectool
syntax: ectool createRepository <repositoryName> [optionals]
Example
ectool createRepository myRepos —--repositoryDisabled "true" --url

"https://test.ecloud.com:8200"

Back to Top

deleteArtifact

Deletes an existing artifact element and all artifact versions.

You must specify an artifactName.

Arguments Descriptions

The name of the artifact to delete.
artifactName
Argument type: String

Positional arguments

artifactName

Response
None or a status OK message.

ec-perl
syntax: Scmdr->deleteArtifact (<artifactName>) ;

Example

Scmdr->deleteArtifact ("ElectricFlow:SDK") ;

ectool
syntax: ectool deleteArtifact <artifactName>

115

ElectricFlow

Example
ectool deleteArtifact "ElectricFlow:SDK"

Back to Top

deleteArtifactVersion

Deletes artifact version metadata from the ElectricFlow database.
(This API call does not delete or remove artifacts stored on the repository machine.)

You must specify an artifactVersionName.

Arguments Descriptions

The name of the artifact version.

Note: An artifact version name is interpreted by the server as
the artifactVersionName aftribute for the
artifactVersion in question. This name is parsed and
interpreted as "groupId:artifactKey:version" and the
objectis searched either way you specify its name. The
ElectricFlow server interprets the name form correctly.

artifactVersionName

Argument type: String

Positional arguments

artifactVersionName

Response
None or a status OK message.

ec-perl
syntax: Scmdr->deleteArtifactVersion (<artifactVersionName>) ;

Example

Scmdr->deleteArtifactVersion ("myGroup:myKey:1.0.0-55") ;

ectool
syntax: ectool deleteArtifactVersion <artifactVersionName>

Example
ectool deleteArtifactVersion "myGroup:myKey:1.00.0-55"

Back to Top

deleteRepository

Deletes artifact repository metadata from the ElectricFlow database.
(This API call does not delete or remove artifacts stored on the repository machine.)

116

ElectricFlow Perl APl Commands

You must enter a repositoryName.

Arguments Descriptions

The name of the artifact repository.
repositoryName

Argument type: String

Positional arguments

repositoryName

Response
None or a status OK message.

ec-perl

syntax: $Scmdr->deleteRepository (<repositoryName>) ;
Example

Scmdr->deleteRepository ("cmdrReposOne") ;

ectool

syntax: ectool deleteRepository <repositoryName>
Example
ectool deleteRepository "cmdrReposOne"

Back to Top

findArtifactVersions

This command returns the most current artifact version that matches the filter criteria and its dependent artifact
versions.

This APl implicitly searches for artifact versions in the "available" state, and if run in a job step, registers

the step as a retriever for the returned artifact versions.

Because of the complexity of specifying filter criteria, this APl is not supported by ecfool. However, all
of its capabilities are supported through the Perl API.

Note: The retrieveArtifactVersions APl uses this APl to find the appropriate artifact version in the
ElectricFlow server

and then retrieves the artifact version from a repository. You may prefer to use the
retrieveArtifactVersions API

instead of this APl because while this API returns slightly different information, it also has the side-effect of
"retriever

step registration" mentioned above.

You must specify an artifactName or a groupId with an artifactKey.

117

ElectricFlow

Arguments Descriptions
User-specified identifier for this artifact. This field is limited to
alphanumeric characters, spaces, underscores, hyphens, and
periods.

i £ K

artifactkey This is the artifactKey component of the GAV
(GroupId/ArtifactVersionId/Version) coordinates.
Argument type: String
The name of an artifact.

artifactName

Argument type: String

artifactVersionName

The name of an artifact version (atifact\ersion).
Argument type: String

118

ElectricFlow Perl APl Commands

Arguments Descriptions
A list of zero or more filter criteria definitions used to define objects
to find.
Each element of the filter list is a hash reference containing one
filter criterion. You may specify several filter criteria, in which case
an object must meet all filter criteria to be included in the result.
See the code example below for instructions on forming the list
and passing it to the ElectricFlow Perl API.
Two types of filters:
Property filters are used to select objects based on the value of
the object's intrinsic or custom property.
Boolean filters ("and", "or", "not") are used to combine one or more
filters using Boolean logic.
Each property filter consists of a property name to testand an
operator to use for comparison. The property can be either an
intrinsic property defined by ElectricFlow or a custom property
added by the user. Each operator takes zero, one, or two operands
to compare against the desired property.
Property filter operators are:

between (2 operands)
contains (1)
filters

equals (1)
greaterOrEqual (1)
greaterThan (1)

in (1)

lessOrEqual (1)
lessThan (1)

like (1)

notEqual (1)
notLike (1)
isNotNull (0)

isNull (0)

A Boolean filter is a Boolean operator and an array of one or more
filters that are operands. Each operand can be either a property
filter or a Boolean filter.

Boolean operators are:

not (1 operand)

and (2 or more operands)

119

ElectricFlow

Arguments Descriptions

or (2 or more operands)

Argument type: Collection

A user-generated group name for this artifact. This field may
consist of alphanumeric characters, spaces, underscores,
hyphens, and periods.

This is the groupId component of the GAV

groupId (GroupId/ArtifactVersionId/Version)coordinates. The
defaultis the name of the project that owns the job step requesting
the artifact when a job step makes such as request.

This argument is required when there is no job step.

Argument type: String

<Boolean flag -0 |1 |true|false>
Options are:
includeDependents e 0/false - dependentartifacts are not retrieved.

e 1/true—dependent artifacts are retrieved.

Argument type: Boolean

The unique identifier for the job step that is making the request.

This job step is marked as a retriever for the matching artifact
jobStepld versions.

Argument type: UUID

The range of versions to search. Version range syntax is standard
number interval notation. () marks exclusive ranges and [] marks
versionRange inclusive ranges.

Argument type: String

Positional arguments
None

Response
Returns zero or more artifactVersion elements. In addition, this APl returns a searchDetails element
with
text describing how the server evaluated candidate artifact versions and ultimately decided to return the
result
artifactVersion and its dependents.

ec-perl

syntax: Scmdr->findArtifactVersions ({<optionals>});

120

ElectricFlow Perl APl Commands

Example 1

Find the most current core:infra artifact version whose version is 1.x.x.
Scmdr->findArtifactVersions ({groupId => "core",
artifactKey => "infra",
versionRange => "[1.0, 2.0)"});

Or alternatively
Scmdr->findArtifactVersions ({artifactName => "core:infra",
versionRange => "[1.0,2.0)"});

Example 2

Find the most current core:infra artifact version with QA approval level 3 or abo
ve.
Scmdr->findArtifactVersions ({groupId => "core",
artifactKey => "infra",
filter => {propertyName => "galevel",
operator => "greaterOrEqual",
operandl => "3"}});

ectool
Not supported.

Back to Top

getArtifact

Retrieves an artifact by name.

You must specify an artifactName.

Arguments Descriptions

The name of the artifact.
artifactName
Argument type: String

Positional arguments

artifactName

Response
Returns an artifact element.

ec-perl
syntax: $cmdr->getArtifact (<artifactName>);

Example

Scmdr-> getArtifact ("myGroup:myKey") ;

ectool
syntax: ectool getArtifact <artifactName>

121

ElectricFlow

Example
ectool getArtifact "myGroup:myKey"

Back to Top

getArtifacts

Retrieves all artifacts in the system.

Arguments Descriptions

None

Positional arguments
None

Response
Returns zero or more artifact elements.

ec-perl
syntax: Scmdr->getArtifacts ();

Example

Scmdr->getArtifacts ();

ectool
syntax: ectool getArtifacts

Example
ectool getArtifacts

Back to Top

getArtifactVersion

Retrieves an artifact version by its name.

You must specify an artifactVersionName.

122

ElectricFlow Perl APl Commands

Arguments

Descriptions

artifactVersionName

The name of the artifact version to retrieve.

Note: An artifact version name is interpreted by the server as
the artifactVersionName aftribute for the
artifactVersion in question. This name is parsed and
interpreted as "groupId:artifactKey:version" and the
object is searched either way you specify its name. The
ElectricFlow server interprets either name form correctly.

Argument type: String

includeRetrieverJobs

(Optional) <Boolean flag - 0]1|true|false>

If setto 1 or true, this argumentincludes jobId and jobName in
returned information. A retriever job is any job that has retrieved
the artifact version.

Argument type: Boolean

includeRetrieverJobSteps

(Optional) <Boolean flag - 0|1 |true|false>

If setto 1 or true, this argumentincludes jobId, jobName, and
jobStepId information. A retriever job is any job that has retrieved
the artifact version. Because there is no bound to how many job
steps may retrieve a given artifact version, the server limits the
response to the most recent 200 job steps.

Argument type: Boolean

maxRetrievers

(Optional) If one of the includeRetriever® options are specified,
return at most "this many" of the most recent retrievers. Without this
option, the ElectricFlow server will return all retrievers.

Argument type: String

Positional arguments

artifactVersionName

Response

Returns one artifactVersion element. If includeRetrieverJobs Or includeRetrieverJobSteps is

set,

the artifactVersion element will contain zero or more retriever child elements, each containing
retriever information for one job or job step.

ec-perl

syntax: $Scmdr->getArtifactVersion (<artifactVersionName>, {<optionals>});

Example

Scmdr->getArtifactVersion ("myGroup:myKey:1.0.0-55", {includeRetrieverJobs => "tru

e"});

ectool

syntax: ectool getArtifactVersion <artifactVersionName> [optionals]

123

ElectricFlow

Example
ectool getArtifactVersion "myGroup:myKey:1.0.0-55" --includeRetrieverJobs "true"

Back to Top

getArtifactVersions

Retrieves all artifact versions in the system, filtered by artifact name, retriever job ID, and/or retriever job step ID.

You must specify search filter criteria to find the artifact versions you need.
If you do not provide any options, all artifact versions in the system are returned.

Arguments Descriptions

The name of the artifact for the versions to retrieve.

artifactName

Argument type: String

The job ID to use when retrieving an artifact.
retrieverJobId

Argument type: UUID

The job step ID to use when retrieving an artifact.
retrieverJobStepId

Argument type: UUID

Positional arguments
None

Response
Returns zero or more artifactVersion elements.

ec-perl
syntax: $Scmdr->getArtifactVersions ({<optionals>});

Example

Scmdr->getArtifactVersions ({artifactName => "myGroup:myKey"}) ;

ectool
syntax: ectool getArtifactVersions [optionals]

Example
ectool getArtifactVersions --artifactName "myGroup:myKey"

Back to Top

getManifest

Retrieves the manifest for a specified artifact version. The manifest includes a list of files and directories
in the artifact version and its checksum file.

124

ElectricFlow Perl APl Commands

You must specify the artifactVersionName.

Arguments Descriptions

The name of the artifact version whose manifest you want to

artifactVersionName retrieve.

Argument type: String

Positional arguments
None

Response

Returns manifest information for the specified artifact version: returns an XML stream containing any
number of file elements, including the file name, file size, and "sha1" hashes for every file in the
artifactVersionName.

ec-perl

syntax: $cmdr->getManifest (<artifactVersionName>) ;

Example

my (Smanifest,$diagnostics) = S$cmdr->getManifest ("myGroup:myKey:1.0.0-55");
ectool

syntax: ectool getManifest <artifactVersionName>

Example

ectool getManifest myGroup:myKey:1.0.0-55

Back to Top
getRepositories
Retrieves all artifact repository objects known to the ElectricFlow server.
Arguments Descriptions
None -

Positional arguments
None

Response
Returns zero or more repository elements.

ec-perl
syntax: $cmdr->getRepositories ();

125

ElectricFlow

Example

Scmdr->getRepositories ();

ectool
syntax: ectool getRepositories

Example
ectool getRepositories

Back to Top

getRepository

Retrieves an artifact repository by its name.

You must specify a repositoryName.

Arguments Descriptions

The name of the artifact repository to retrieve.
repositoryName
Argument type: String

Positional arguments

repositoryName

Response
Returns one repository element.

ec-perl
syntax: $cmdr->getRepository (<repositoryName>) ;
Example
Scmdr->getRepository ("myRepository") ;

ectool
syntax: ectool getRepository <repositoryName>
Example
ectool getRepository "myRepository"

Back to Top

getRetrievedArtifacts

Retrieves artifacts during a job.

You must specify an jobId.

126

ElectricFlow Perl APl Commands

Arguments

Descriptions

jobId

The unique ElectricFlow-generated identifier (a UUID) for a job
that is assigned automatically when the job is created. The system
also accepts a job name assigned to the job by its name template.

Argument type: UUID

componentName

(Optional) Name of the component.

Argument type: String

resourceName

(Optional) Name of the resource.

Argument type: String

Positional arguments

jobId

Response

Returns retrieved artifacts from the job.

ec-perl

syntax: Scmdr->getRetrievedArtifacts (<jobId>, {<optionals>});

Example

Scmdr->getRetrievedArtifacts ("4fa765dd-73f1-11e3-b67e-b0ad420524153",
=> "WAR files"});

ectool

syntax:ectool getRetrievedArtifacts <jobId> [optionals]

Example

{componentName

ectool getRetrievedArtifacts "4fa765dd-73f1-11e3-b67e-b0ad420524153" --componentName

"WAR files"

Back to Top

modifyArtifact

Modifies an existing artifact.

You must specify an artifactName.

Arguments

Descriptions

artifactName

The name of the artifact to modify.

Argument type: String

127

ElectricFlow

Arguments Descriptions

(Optional) A template for the names of artifact versions published
to this artifact. This option overrides the value setin the server
settings for "artifact name template." The global setting can be
artifactVersionNameTemplate manipulated in the Server Settings page (Administration > Server,
select the Settings link).

Argument type: String

(Optional) A plain text or HTML description for this object.

If using HTML, you must surround your text with

<html> ... </html>tags. The only HTML tags allowed in the
textare: <a>
 <div> <dl1> <i> <1i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

description

Argument type: String

Positional arguments

artifactName

Response
Returns a modified artifact element.

ec-perl
syntax: Scmdr->modifyArtifact (<artifactName>, {<optionals>});

Example
Scmdr->modifyArtifact ("thirdParty-SDK", {description => "contains artifact versions

for SDK"}):;

ectool
syntax: ectool modifyArtifact <artifactName> [optionals]

Example

ectool modifyArtifact "thirdParty-SDK" --description "contains artifact versions fo
r SDK"

Back to Top

modifyArtifactVersion

Modifies an existing artifact version.

You must specify an artifactVersionName.

128

ElectricFlow Perl APl Commands

Arguments Descriptions

The name of the artifact version to modify.

Note: An artifact version name is interpreted by the server as
the artifactVersionName aftribute for the
artifactVersion in question. This name is parsed and
interpreted as "groupId:artifactKey:version" and the
object is searched either way you specify its name. The
ElectricFlow server interprets either name form correctly.

artifactVersionName

Argument type: String

(Optional) The state of the artifact version.
artifactVersionState <publishing|available|unavailable>

Argument type: ArtifactVersionState

(Optional) One or more artifact version queries. The most current
match for each query is retrieved when the primary artifact is
retrieved. Dependent artifact version query strings are in this form:
<groupld>:<artifactKey>:<versionRange>
dependentArtifactVersions (version range is optional)

Note: The absence of this argument does not clear or modify
the dependent artifact version list for this artifact version.

Argument type: Collection

(Optional) A plain text or HTML description for this object.

If using HTML, you must surround your text with

<html> ... </html>tags. The only HTML tags allowed in the
textare: <a>
 <div> <dl> <i> <1i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

description

Argument type: String

(Optional) New name for this artifact version.
newName

Argument type: String

(Optional) <Boolean flag - 0]1|true|false>

The defaultis 0 or false where dependencies are notremoved."
removeAllDependentArtifactve If this argument is setto 1 or true, all dependent artifacts will be
rsions removed from this artifact version. Subsequent "retrieves" will no

longer retrieve dependent artifacts for this artifact version.

Argument type: Boolean

(Optional) The name of the artifact repository.
repositoryName
Argument type: String

Positional arguments

artifactVersionName

129

ElectricFlow

Response
Returns a modified artifact version element.

ec-perl
syntax: Scmdr->modifyArtifactVersion (<artifactVersionName>, {<optionals>});
Example
Scmdr->modifyArtifactVersion ("myGroup:myKey:1.0.1-42375", {artifactVersionState =>

"unavailable"}) ;

ectool

syntax: ectool modifyArtifactVersion <artifactVersionName> [optionals]
Example

ectool modifyArtifactVersion "myGroup:myKey:1.0.1-57385" --artifactVersionState una
vailable

Back to Top

modifyRepository
Modifies an existing artifact repository.

You must specify a repositoryName.

Arguments Descriptions

The name of the artifact repository.

repositoryName
Argument type: String
(Optional) A plain text or HTML description for this object.
If using HTML, you must surround your text with
<html> ... </html>tags. The only HTML tags allowed in the
description textare: <a>
 <div> <dl> <i> <1i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>
Argument type: String
(Optional) New name of the repaository.
newName

Argument type: String

(Optional) <Boolean flag - 0]1|true|false>

This argument marks the repository as enabled (0 or false)or
repositoryDisabled disabled (1 or true). If you do not specify this, the state of the
repository is unchanged.

Argument type: Boolean

130

ElectricFlow Perl APl Commands

Arguments Descriptions

(Optional) The URL used to communicate with the artifact

url repository.

Argument type: String

(Optional) The name of the zone where this repository resides.
zoneName

Argument type: String

Positional arguments

repositoryName

Response
Returns a modified repository element.

ec-perl
syntax: Scmdr->modifyRepository (<repositoryName>, {<optionals>});

Example

Scmdr->modifyRepository ("cmdrRepository", {newName => "flowRepository"});

ectool
syntax: ectool modifyRepository <repositoryName> [optionals]
Example
ectool modifyRepository "cmdrRepository" --newName "flowRepository"
Back to Top
moveRepository

Moves an artifact repository in front of another, specified repository or to the end of the list.
This APl does not move artifact version data to another repository server machine. Only the repository
order in which ElectricFlow searches to retrieve an artifact version is changed.

You must specify a repositoryName.

Arguments Descriptions

The name of the artifact repository you need to move.

repositoryName
Argument type: String
(Optional) Moves this repository (repositoryName) to a place
. before the name specified by this option. If omitted
beforeRepositoryName repositoryName is moved to the end.

Argument type: String

131

ElectricFlow

Positional arguments

repositoryName

Response
Returns a modified repository element or an error if the repository does not exist.

ec-perl
syntax: Scmdr->moveRepository (<repositoryName>, {<optionals>});

Example

Scmdr->moveRepository ("reposThree", {beforeRepositoryName => "reposOne"});

ectool

syntax: ectool moveRepository <repositoryName> [optionals]

Example

ectool moveRepository "reposThree" --beforeRepositoryName "reposOne"
Back to Top

publishArtifactVersion

Publishes an artifact version to an artifact repository.

Note: This APl wraps the "publish" function in the ElectricCommander: :ArtifactManagement
Perl module and hides some additional functionality implemented in that module.

You must specify an artifactName or a groupId with an artifactKey.

Arguments Descriptions

The name of an artifact.

artifactName
Argument type: String
User-specified identifier for this artifact. This field is limited to
alphanumeric characters, spaces, underscores, hyphens, and
artifactKey periods.

Argument type: String

<Boolean flag- 0|1 |true|false> Defaultis "true".

Controls whether or not the artifact version is compressed during
transport, which improves performance for cases where artifact
version files are compressible, saving network bandwidth. Where
compress artifact version files are not compressible, performance is reduced.
Another consideration is that the artifact version is stored
compressed/uncompressed based on this setting in the repository
backing-store.

Argument type: Boolean

132

ElectricFlow Perl APl Commands

Arguments

Descriptions

dependentArtifactVersions

One or more artifact version queries. The most current match of
each query is retrieved when the primary artifact is retrieved.
Dependent artifact version query strings are in this form:
<groupld>:<artifactKey>:<versionRange> (versionRange
is optional).

The version range syntax is standard number interval notation.

() marks exclusive ranges and [] marks inclusive ranges.

Argument type: Collection

A plain text or HTML description for this object.

If using HTML, you must surround your text with

<html> ... </html>tags. The only HTML tags allowed in the
textare: <a>
 <div> <dl> <i> <1i>

description
<p> <pre> <style> <table> <tc> <td> <th>
<tr>
Argument type: String
Semi-colon delimited list of file-path patterns indicating which
files/directories under "frombirectory" to exclude when
publishing an artifact version. Defaults to "empty," which means no
excludebatterns files are excluded. See more information on "pattern syntax"
below.
Argument type: Collection
<Boolean flag - 0|1 |true|false> Defaultis "true".
If true, follow symbolic links and record the target file contents with
FollowsSvmlinks the symbolic link name in the artifact. If false, record the symbolic
Y link as a symbolic link. Following symbolic links causes the publish
API to remain compatible with previous releases.
Argument type: Boolean
The directory containing files to publish as the artifact version. A
. subset of files can be published based on includePatterns and
fromDirectory excludePatterns.
Argument type: String
A user-generated group name for this artifact. This field is limited to
alphanumeric characters, spaces, underscores, hyphens, and
groupld periods.

Argument type: String

133

ElectricFlow

Arguments Descriptions
Semi-colon delimited list of file-path patterns indicating which
files/directories under "fromDirectory" to publish in the artifact
version. Defaults to "empty," which means all files will be included.
includePatterns Conversely, if only two files are "included," no other files except
those two will be included. See more information on "pattern
syntax" below.
Argument type: Collection
The name of the artifact repository where you want to publish.
repositoryName
Argument type: String
Unique identifier for the artifact version in the form:
major.minor.patch-qualifier-buildNumber
major, minor, patch,and buildNumber are integers and
qualifier can contain any character except the following:
<> 2/
version If a version argument is provided, but does not follow the above
format, the version will be considered 0.0.0-<user-specified-
version-arg>-0 implicitly.
See the examples below.
Argument type: String

Version number examples

Interpretation
User Input

Major.Minor.Patch Qualifier Build Number
1 1.0.0 0
1.0 1.0.0 0
1.0-frank 1.0.0 frank 0
1.0-36 1.0.0 36
1.0-frank-36 1.0.0 frank 36

Pattern syntax

Include / exclude patterns are expressed as relative paths under the fromDirectory.

Pattern syntax and behavior is the same as Ant and uses the following wildcard specifiers:

? - matches a single character

* - matches any number of characters, but only at a single directory level

134

ElectricFlow Perl API Commands

** - matches any number of directory levels

Examples:
Use *.txt to match any . txt file in the top-level directory.
Use */*.txt to match any . txt file in any child directory.

Use **/*.txt to match any . txt file atany level.

Positional arguments
None

Response

Returns one artifactVersion element.

ec-perl
syntax: Scmdr->publishArtifactVersion ({<optionals>});
Example
Add version 1.0.0-55 for artifact myGroup:myKey with a dependency on cmdr:SDK:1.2
.0,
and the most current version of core:infra that is greater than or equal to 2.1.
0.

Note: In the Perl API, the argument must be specified as singular even though it
can take multiple values.

Scmdr->publishArtifactVersion ({artifactName => "myGroup:myKey",
version => "1.0.0-55",

dependentArtifactVersion => ["cmdr:SDK:1.2.0", "core:infra:{2.
L,1"1h)
ectool
syntax: ectool publishArtifactVersion [optionals]
Example
ectool publishArtifactVersion --artifactName "myGroup:myKey" --version "1.0.0-55"

--dependentArtifactVersion "cmdr:SDK:1.2.0":"core:infra"

Back to Top

removeDependentsFromArtifactVersion

Removes a list of dependent artifact versions from an existing artifact version.

You must specify the artifactVersionName.

135

ElectricFlow

Arguments Descriptions

The name of the artifact version from which you want to remove
dependents.

Note: An artifact version name is interpreted by the server as
the artifactVersionName aftribute for the
artifactVersionName artifactVersion in question. This name is parsed and
interpreted as "groupId:artifactKey:version" and the
objectis searched either way you specify its name--the
ElectricFlow server interprets either name form correctly.

Argument type: String

(Optional) One or more artifact version queries. The most current
match of each query is retrieved when the primary artifact is
retrieved.

Dependent artifact version query strings are in this form:
<groupld>:<artifactKey>:<versionRange>

dependentArtifactVersions - -
(versionRange is optional).

The version range syntax is standard number interval notation.
() marks exclusive ranges and [] marks inclusive ranges.

Argument type: Collection

Positional arguments

artifactVersionName

Response
None or status OK message.

ec-perl
syntax: Scmdr->removeDependentsFromArtifactVersion (<artifactVersionName>,
{<optionals>});

Example

Note: In the Perl API, the argument must be specified as singular
even though it can take multiple values.

Scmdr->removeDependentsFromArtifactVersion (myGroup:myKey:1.0.0-55,
{dependentArtifactVersion => ["cmdr:onlineHelp:1.0.0"});

ectool

syntax: ectool removeDependentsFromArtifactVersion <artifactVersionName> [optionals]

Example

ectool removeDependentsFromArtifactVersion myGroup:myKey:1.0.0-55
—--dependentArtifactVersions "cmdr"onlineHelp:1.0.0"

Back to Top

136

ElectricFlow Perl APl Commands

resolveRoute

Resolves the network route to an artifact repository.

You must specify the toRepositoryName.

Arguments Descriptions

Name of the artifact repository.
toRepositoryName
Argument type: String

(Optional) Identifier of the agent requesting the route to a
fromAgentId destination agent or artifact repository.

Argument type: Long

(Optional) Name of the resource requesting the route to a

fromResourceName destination agent or artifact repository.

Argument type: String

Positional arguments

toRepositoryName

Response
None or a status OK message.

ec-perl
syntax:scmdr->resolveRoute (<toRepositoryName>, {<optionals>});

Examples

Scmdr->resolveRoute ("Web Server", {fromResourceName => "Agent 2"});

ectool
syntax: ectool resolveRoute <toRepositoryName> [optionals]
Example
ectool resolveRoute "Web Server" --fromResourceName "Agent 2"
Back to Top

retrieveArtifactVersions

Retrieves the most recent artifact version, including its dependents, from an artifact repository.

Note: This APl wraps the "retrieve" function in the ElectricCommander: :ArtifactManagement
Perl module and hides some additional functionality implemented in that module.

You must specify search criteria options to locate the artifact versions you want to retrieve.

137

ElectricFlow

Arguments Descriptions
User-specified identifier for this artifact. This field is limited to
alphanumeric characters, spaces, underscores, hyphens, and
artifactKey periods.
Argument type: String
The name of the artifact.
artifactName

Argument type: String

artifactVersionName

The name of the artifact version.

Argument type: String

cacheDirectory

The directory where the artifact version is stored.

Note: The artifact version files are stored in a subdirectory
under this cache directory.

Argument type: String

138

ElectricFlow Perl APl Commands

Arguments

Descriptions

filters

A list of zero or more filter criteria definitions used to define objects
to find.

Each element of the filter list is a hash reference containing one
filter criterion. You may specify several filter criteria, in which case
an object must meet all filter criteria to be included in the result.
See the code example below for instructions on forming the list
and passing it to the ElectricFlow Perl API.

Two types of filters:

e Property filters are used to select objects based on the
value of the object's intrinsic or custom property.

e Boolean filters ("and", "or", "not") are used to combine
one or more filters using Boolean logic.

Each property filter consists of a property name to testand an
operator to use for comparison. The property can be either an
intrinsic property defined by ElectricFlow or a custom property
added by the user. Each operator takes zero, one, or two operands
to compare against the desired property.

Property filter operators are:
between (2 operands)
contains (1)
equals (1)
greaterOrEqual (1)
greaterThan (1)
in (1)
lessOrEqual (1)
lessThan (1)
like (1)
notEqual (1)
notLike (1)
isNotNull (0)
isNull (0)

A Boolean filter is a Boolean operator and an array of one or more
filters that are operands. Each operand can be either a property
filter or a Boolean filter.

Boolean operators are:
not (1 operand)
and (2 or more operands)

or (2 or more operands)

139

ElectricFlow

Arguments Descriptions

Argument type: Collection

A user-generated group name for this artifact.

This field may consist of alphanumeric characters, spaces,
groupld

underscores, hyphens, and periods.

Argument type: String

includeDependents

<Boolean flag - 0|1]|true|false> The defaultis 1 or true.
If the value is 1 or true:

e The artifact and its dependents are retrieved.

e The published artifact version includes the artifact's
dependents, such as a list of one or more artifact
versions.

e The dependent artifact versions are stored in a
subdirectory under the cacheDirectory orif
toDirectory is specified, under the oDirectory/ec_
dependent_artifacts directory.

If the value is 0 or false, only the artifactis retrieved. The artifact
version does notinclude the dependent artifacts.

Argument type: Boolean

overwrite

Options are:

e true - deletes previous contentin the directory and
replaces the content with your new version.

e false - (existing behavior) if the directory does not
exist, one will be created and filled with the artifact's
content. If the directory exists, a new directory is created
with a unique name and the artifact contents is supplied
there.

e update - this is similar to a merge operation—two
artifact versions can be moved into the same directory,
butindividual files with the same name will be
overwritten.

Argument type: String

140

ElectricFlow Perl APl Commands

Arguments Descriptions

A space-separated list of artifact repository names.

Retrieval is attempted from each specified repository in a specified
order until it succeeds or all specified repositories have rejected
the retrieval.

repositoryNames If not specified, and if this request is made in a job step context, a

preferred list of repository names is obtained from the Resource
definition in the server. If that list is empty, the global repository list
is used.

Argument type: String

Number of retry attempts for the operation. The defaultis 1.
retryNumber The time between retry attempts is 20 seconds.

Argument type: Integer

Used to retrieve an artifact version to a specific directory without
imposing the structure of a cache directory.

Specify the full path to the new directory.

e Ifthe artifact version is in a local cache directory. it will

be copied out of the cache.
toDirectory
e Ifthe artifact version is notin a cache directory, it will be

downloaded directly to the specified directory, without
putting itinto a cache. toDirectory overrides
cacheDirectory for downloads.

Argument type: String

The range of versions to search.

Version range syntax is standard number interval notation. ()

versionRange) .)
marks exclusive ranges and [] marks inclusive ranges.

Argument type: String

Positional arguments
None

Response
Returns one or more artifactVersion elements.

ec-perl

syntax: Scmdr->retrieveArtifactVersions {<optionals>});
Examples

Retrieve the most current core:infra artifact version whose version is 1.x.x.
Scmdr->retrieveArtifactVersions ({groupId => "core",
artifactKey => "infra",

141

ElectricFlow

versionRange => "[1.0,2.0)"});
Or alternatively...
Scmdr->retrieveArtifactVersions ({artifactName => "core:infra",
versionRange => "[1.0,2.0)"});

ectool
syntax: ectool retrieveArtifactVersions [optionals]
Example
ectool retrieveArtifactVersions --artifactName "core:infra" --versionRange "[1.0,2.
O) n

Note: The filter option does not perform as expected if using ectool. If you need the filter option,
write your retrieveArtifactVersions APl call in ec-perl.

Back to Top

updateArtifactVersion

Updates an artifact version by adding or replacing one or more files in the existing file and publishes the result
as a new artifact version to an artifact repository.

Note: This APl wraps the "update" function in the ElectricCommander: :ArtifactManagement
Perl module and hides some additional functionality implemented in that module.

You must specify search criteria options to locate the artifact versions you want to update.

Arguments Descriptions

User-specified identifier for this artifact. This field is limited to

alphanumeric characters, spaces, underscores, hyphens, and
artifactKey periods.

Argument type: String

The name of the artifact.

artifactName

Argument type: String

A plain text or HTML description for this object.

If using HTML, you must surround your text with

<html> ... </html>tags. The only HTML tags allowed in the
description textare: <a>
 <div> <dl> <i> <1i>

<p> <pre> <style> <table> <tc> <td> <th>
<tr>

Argument type: String

142

ElectricFlow Perl APl Commands

Arguments

Descriptions

excludePatterns

Semi-colon delimited list of file-path patterns indicating which
files/directories under "fromDirectory" to exclude when
publishing an artifact version. Defaults to "empty," which means no
files are excluded. See more information on "pattern syntax"
below.

Argument type: Collection

followSymlinks

<Boolean flag - 0|1|true|false> The defaultis 1 or true.

If 1 or true, ElectricFlow follows symbolic links and record the
target file contents with the symbolic link name in the artifact.

If 0 or false, ElectricFlow records the symbolic link as a symbolic
link. Following symbolic links causes the publish API to remain
compatible with previous releases.

Argument type: Boolean

fromDirectory

The directory containing files to publish as the artifact version. A
subset of files can be published based on includePatterns and
excludePatterns.

Argument type: String

groupld

A user-generated group name for this artifact. This field is limited to
alphanumeric characters, spaces, spaces, underscores, hyphens,
and periods.

Argument type: String

includePatterns

Semi-colon delimited list of file-path patterns indicating which
files/directories under "fromDirectory" to publish in the artifact
version. Defaults to "empty," which means all files will be included.
Conversely, if only two files are "included," no other files except
those two will be included. See more information on "pattern
syntax" below.

Argument type: Collection

newVersion

Unique identifier for the new artifact version in the form:
major.minor.patch-qualifier-buildNumber
major, minor, patch,and buildNumber are integers and
qualifier can contain any character except the following:

\:<>| 2%/

If a version argument is provided, but does not follow the above
format, the version will be considered 0.0.0-<user-specified-
version-arg>-0 implicitly.

See examples below.

Argument type: String

143

ElectricFlow

Arguments Descriptions

The path of the original artifact under which one or more files will
path be added or replaced. The default path is the root.

Argument type: String

Unique identifier for the artifact version in the form:
major.minor.patch-qualifier-buildNumber

major, minor, patch,and buildNumber are integers and
qualifier can contain any character except the following:

\:<>| 2%/

version If a version argument is provided, but does not follow the above
format, the version will be considered 0.0.0-<user-specified-
version-arg>-0 implicitly.

See examples below.

Argument type: String

Positional arguments
None

Response
Publishes a new artifact version to an artifact repository.

ec-perl
syntax:scmdr->updateArtifactVersion ({<optionals>}) ;
Examples

Update the current myGroup:myKey artifact version to version 1.0.0-55.
Scmdr->updateArtifactVersion ({artifactName => "myGroup:myKey",
newVersion => "1.0.0-55"});

ectool

syntax: ectool updateArtifactVersion [optionals]

Example

ectool updateArtifactVersion --artifactName "myGroup:myKey" --newVersion "1.0.0-55"
Back to Top

API Commands — Change History

getDeploymentHistoryltems on page 145
getEntityChange on page 146
getEntityChangeDetails on page 147
pruneChangeHistory on page 148

144

ElectricFlow Perl APl Commands

reverton page 149
searchEntityChange on page 150

getDeploymentHistoryItems

Retrieves all the deployment history items for a specific environment.

You must specify projectName .

Arguments Descriptions

The name of the project that must be unique among all projects.
projectName

Argument type: String

(Optional) The application that owns the deployment history item.
applicationName

Argument type: String

(Optional) The name of the environment where the application
environmentName runs.

Argument type: String

(Optional) The name for the project to which the environment or
environmentProjectName environment template belongs.

Argument type: String

(Optional) <Boolean flag- 0|1 | true| false>
latest If this is setto 1 or true, only the latest deployment information is

returned.

Argument type: Boolean

(Optional) The process that owns the deployment history item.
processName

Argument type: String

(Optional) The snapshot that owns the deployment history item.
snapshotName

Argument type: String

Positional arguments

projectName

Response
Returns zero or more deployment history items.

ec-perl

syntax: $<object>->getDeploymentHistoryItems (<projectName>, {<optionals>});

145

ElectricFlow

Example

Sec->getSnapshot ("Tutorials", {applicationName => "Deploy"});

ectool
syntax: ectool getSnapshot <projectName> [optionals]
Example
ectool getSnapshot "Tutorials" --applicationName "Deploy"
Back to Top

getEntityChange

Retrieves the entity changes.

You must specify entityId, entityPath, or entityType.

Arguments Descriptions

Entity ID.
entityId
Argument Type: String

Path to the entity.
entityPath
Argument Type: String

Type of entity.
entityType
Argument Type: String

(Optional) Login ID of the user who modified the object.
modifiedBy
Argument Type: String

(Optional) Changes since this time, the start time for changes.

This is the time line:

timeSince ZTO Since Until Now

Argument Type: Long

146

ElectricFlow Perl APl Commands

Arguments Descriptions

(Optional) Changes up to this time, the end time for changes.
If this argument is not specified, the defaultis Now.

This is the time line:

timeUntil 2010 Since Until Now

>

Argument Type: Long

Positional arguments
entityId, entityPath,orentityType

Response
Returns entity changes during the time interval between timeSince and timeUntil.

ec-perl

Enter one of these commands:
syntax: $<object>->getEntityChange (<entityId>, {<optionals>});
syntax: $<object>->getEntityChange (<entityPath>, {<optionals>});
syntax: $<object>->getEntityChange (<entityType>, {<optionals>});

Example
Ifthe entityType is component:

Sec->getEntityChange ("WAR file", {timeUntil => 1600});

ectool

Enter one of these commands:
syntax:ectool getEntityChange <entityId> [optionals]
syntax:ectool getEntityChange <entityPath> [optionals]
syntax:ectool getEntityChange <entityType> [optionals]

Example

Ifthe entityType is component:
ectool getEntityChange "WAR file" --timeUntil 1600

Back to Top

getEntityChangeDetails

Retrieves the differences between entities.

147

ElectricFlow

You must specify entityId, entityType, and revisionNumber

Note: When ElectricFlow exports entity changes in XML, as well as listing the ec_change history revision
id as changeHistoryRevisionId, itnow also lists this as revisionNumber.

Arguments Descriptions

The entity ID.
entityId

Argument type: UUID

The entity type.
entityType

Argument type: String

The revision number of the entity.
revisionNumber

Argument type: Integer

Positional arguments

entityld, entityType, revisionNumber

ResponseDetails.
Returns an entityChange element.

ec-perl

syntax: $<object>->getEntityChangeDetails (<entityId>, <entityType>,
<revisionNumber>) ;

Example
Sec->getEntityChangeDetails ("4fa914dd-73f1-11e3-b67e-b0a420524153", "Process", "4")

’

ectool

syntax: ectool getEntityChangeDetails <entityId> <entityType> <revisionNumber>
Example
ectool getSnapshots "4fa914dd-73f1-11e3-b67e-b0a420524153" "Process" "4"

Back to Top

pruneChangeHistory

Prunes obsolete-for-days data from the Change History tables.

You must enter daysToKeep.

148

ElectricFlow Perl APl Commands

Arguments Descriptions

Number of days of Change History data to keep.
daysToKeep The minimumis 7.

Argument type: Long

(Optional) Use this argument with caution. It is used most often for
testing. It overrides the specified daysToKeep value and prunes
the entire Change History, keeping nothing discardable.
forcePruneall The forcePruneall value = <Boolean flag -0 |1 | true| false>.
The defaultis 0 or false.

Argument type: Boolean

Positional arguments
daysToKeep

Response
None or a status OK message.

ec-perl
syntax: $<object>->pruneChangeHistory (<daysToKeep>, {<optionals>});

Example

Sec->pruneChangeHistory (14, {forcePruneAll => 0});

ectool
syntax:ectool pruneChangeHistory <daysToKeep> [optionals]

Example
ectool pruneChangeHistory 14 --forcePruneAll 0

Back to Top

revert

Reverts the state of the object to a previous state.
You must enter objectID, objectType, and revisionNumber.
You must have the Read, Modify, and Execute permissions to access to this API call.

Note: When ElectricFlow exports entity changes in XML, as well as listing the ec_change history revision
id as changeHistoryRevisionId, it now also lists this as revisionNumber.

149

ElectricFlow

Arguments Descriptions

Object ID.
objectId
Argument type: UUID

Object type.
objectType
Argument Type: String
Revision number of the object.
revisionNumber

Argument Type: Integer

Positional arguments

objectID, objectType, revisionNumber

Response
None or a status OK message.

ec-perl
syntax: $<object>->revert (<objectID>, <objectType>, <revisionNumber>);

Example

Sec->revert ("4fa914dd-73fl1-11e3-b67e-b0ad420524153", "property", 3);

ectool
syntax:ectool revert <objectID> <objectType> <revisionNumber>

Example
ectool revert "4fa914dd-73fl1-11e3-b67e-b0a420524153" "property" 3

Back to Top

searchEntityChange

Searches for entity changes.

You must enterthe entityId, entityPath, or entityType.

Arguments Descriptions

The entity ID.
entityId
Argument Type: String

Path to the entity.
entityPath
Argument Type: String

150

ElectricFlow Perl APl Commands

Arguments Descriptions
Type of entity.
entityType
Argument Type: String
(Optional) The login ID of the user who modified the object.
modifiedBy
Argument Type: String
(Optional) Start of the time interval for changes.
ElectricFlow searches for changes since this time.
This is the time line:
timeSince 2010 Since Until Now
|| 1,
Argument type: Long
(Optional) End of the time interval for changes.
ElectricFlow searches for changes up to this time.
If this argument is not specified, the defaultis Now.
This is the time line:
timeUntil
2010 Since Until Now
| .
Argument Type: Long

Positional arguments
entityId, entityPath,OrentityType

Response
Returns entity changes during the time interval.

ec-perl

Enter one of these commands:
syntax: $<object>->searchEntityChange (<entityId>, {<optionals>});
syntax: $<object>->searchEntityChange (<entityPath>, {<optionals>});

syntax: $<object>->searchEntityChange (<entityType>, {<optionals>});

151

ElectricFlow

Example

Ifthe entityType is component:

Sec->searchEntityChange ("component"”, {timeUntil => 1600});

ectool

Enter one of these commands:
syntax:ectool searchEntityChange <entityId> [optionals]
syntax:ectool searchEntityChange <entityPath> [optionals]
syntax:ectool searchEntityChange <entityType> [optionals]
Example

Ifthe entityType is component:
ectool searchEntityChange "component" --timeUntil 1600

Back to Top

API Commands - Components

addComponentToApplicationTier on page 152

copyComponent on page 153

createComponent on page 155

deleteComponent on page 157

getComponent on page 158

getComponents

getComponentsinApplicationTier on page 160

modifyComponent

removeComponentFromApplicationTier on page 162

addComponentToApplicationTier

Adds the specified component to the specified application tier.

You must specify the projectName, applicationName, applicationTierName, and componentName.

152

ElectricFlow Perl APl Commands

Arguments Descriptions

Name for the project that must be unique among all projects.
projectName
Argument Type: String

Name of the application that must be unique among all projects.
applicationName
Argument Type: String

Name of the tier that must be unique within the application.
applicationTierName
Argument Type: String

Name of the component.
componentName
Argument Type: String

(Optional) Name of the project that contains the component.
componentProjectName
Argument Type: String

Positional arguments

projectName, applicationName, applicationTierName, componentName

Response
Returns the component and application tier elements.

ec-perl

syntax: $<object>->addComponentToApplicationTier (<projectName>, <applicationName>,
<applicationTierName>, <componentName>, {<optionals>});

Example

Sec->addComponentToApplicationTier ("default", "Take snapshot", "Web server", "VC
Scomponent") ;

ectool

syntax: ectool addComponentToApplicationTier <projectName> <applicationName>
<applicationTierName> <componentName> [optionals]

Example

ectool addComponentToApplicationTier "default" "Take snapshot" "Web server" "VCS
component"

Back to Top

copyComponent

Creates a new component based on an existing one.

You must specify the projectName, componentName, and newComponentName.

153

ElectricFlow

Arguments Descriptions
The name for the project that must be unique among all projects.
projectName
Argument Type: String
The name of the component.
componentName
Argument Type: String
The name of the new component.
newComponentName

Argument Type: String

applicationTierName

(Optional) The name of the tier that must be unique within the application.

Argument Type: String

description

(Optional) Comment text describing this object. It is not interpreted by
ElectricFlow.

Argument Type: String

fromApplicationName

(Optional) The name of source application.

Argument Type: String

toApplicationName

(Optional) The name of source application.

Argument Type: String

Positional arguments

projectName, component

Response

Returns the new component.

ec-perl

syntax: $<object>->copyComponent (<projectName>, <componentName>, <newComponentName>,

{<optionals>});
Example

Sec->copyComponent

Name , and newComponentName

("Default", "WAR file", "New WAR file", {applicationTierName

> "Web Server Config"});

ectool
syntax: ectool copyComponent <projectName> <componentName> <newComponentName>
[optionals]
Example:
ectool copyComponent "Default" "WAR file" "New WAR file" --applicationTierName

Web Server Config"

Back to Top

154

ElectricFlow Perl APl Commands

createComponent

Creates a new component for a project.

You must specify the projectName and componentName.

Arguments Descriptions

The name for the project that must be unique among all projects.
projectName
Argument Type: String

The name of the component.
componentName
Argument Type: String

(Optional) The parameters passed as arguments to the application
actualParameters component.

Argument Type: Map

(Optional) The name of the application where the component is defined.
applicationName
Argument Type: String

(Optional) The name of the credential to attach to the component.
credentialName
Argument Type: String

(Optional) Comment text describing this object. Itis not interpreted by

description ElectricFlow.

Argument Type: String

(Optional) The key of the plugin.
pluginKey

Argument Type: String

(Optional) The name of the plugin.
pluginName

Argument Type: String

(Optional) The list of the plugin parameters.
pluginParameters
Argument Type: Map

(Optional) <Boolean flag- 0|1 |true|false>

If 1 or true, a reference of the componentis created.
reference
If 0 or false, a copy of the component is created.

Argument type: Boolean

(Optional) The name of source application.
sourceApplicationName
Argument Type: String

155

ElectricFlow

Arguments Descriptions

sourceComponentName

(Optional) The name of new component.

Argument Type: String

sourceProjectName

(Optional) The name of source project.

Argument Type: String

Positional arguments

projectName, componentName

Usage Guidelines:

o

To create a new component, use pluginKey or pluginName.
ectool example: --pluginKey or --pluginName

To create an application component by copying a master component, use applicationName,
sourceComponentName, sourceProjectName, and reference = 0.

ectool example: -—applicationName, --sourceComponentName, —--sourceProjectName,

reference 0

To create a master component by copying another master component, use sourceComponentName,
sourceProjectName,and reference = 0.

ectool example: -—sourceComponentName, --sourceProjectName, --reference 0

To create an application component by copying another application component, use
applicationName, sourceComponentName, sourceApplicationName, sourceProjectName
and reference = 0.

ectool example: --applicationName, --sourceComponentName, --

sourceApplicationName, --sourceProjectName, --reference 0

To create a master component from an application component, use sourceComponentName,
sourceApplicationName, sourceProjectName, and reference = 0.

ectool example: --sourceComponentName, --sourceApplicationName, --

sourceProjectName, --reference 0

To create a reference of the master component, use applicationName, sourceComponentName,
sourceProjectName, and reference = 1.

ectool example: -—applicationName, --sourceComponentName, —--sourceProjectName, --

reference 1

Response
Returns a version-controlled component element.

ec-perl

syntax: $<object>->createComponent (<projectName>, <componentName>, {<optionals>});

156

ElectricFlow Perl APl Commands

Example

To create a new component:

Sec->createComponent ("Default", "Cleanup DB", {pluginName => "EC-Maven"});

To create an application component by copying a master component

Sec->createComponent ("Default", "Cleanup DB", {applicationName => "Deploy",
sourceComponentName => "Backup DB", sourceProjectName => "Archive", reference =>
0});

ectool

syntax: ectool createComponent <projectName> <componentName> [optionals]

Example
To create a new component:

ectool createComponent "Default" "Cleanup DB" --pluginName "EC-Maven"

To create an application component by copying a master component:

ectool createComponent "Default" "Cleanup DB" --applicationName "Deploy" --sourc
eComponentName "Backup DB"
--sourceProjectName "Archive" --reference 0
Back to Top
deleteComponent

Deletes a component.

You must specify the projectName and componentName.

Arguments Descriptions

Name for the project that must be unique among all projects.
projectName
Argument Type: String

Name of the component.
componentName
Argument Type: String

(Optional) Name of an application to which this componentis scoped.
applicationName
Argument Type: String

Positional arguments

projectName, componentName

Response
None or a status OK message.

ec-perl
syntax: $<object>->deleteComponent (<projectName>, <componentName>, {<optionals>});

157

ElectricFlow

Example

Sec->deleteComponent ("Default", "VCScomponent", {applicationName => "Deploy"});

ectool

syntax: ectool deleteComponent <projectName> <componentName> [optionals]

Example

ectool deleteComponent "Default" "VCScomponent" --applicationName "Deploy"

Back to Top

getComponent

Retrieves a component by name.

You must specify the projectName and componentName.

Arguments Descriptions

Name for the project that must be unique among all projects.
projectName
Argument Type: String

Name of the component.
componentName
Argument Type: String

applicationEntityRevision| (Optional) The revision ID of the versioned object.

d Argument type: UUID

(Optional) Name of an application to which this componentis scoped.
applicationName
Argument Type: String

Positional arguments

projectName, componentName

Response
Retrieves the component element.

ec-perl
syntax: $<object>->getComponent (<projectName>, <componentName>, {<optionals>});
Example
Sec->getComponent ("Default", "WAR file", {applicationEntityRevisionId => "4fa765

dd-73fl1-11e3-b67e-b0a420524153"}) ;

ectool

syntax: ectool getComponent <projectName> <componentName> [optionals]

158

ElectricFlow Perl APl Commands

Example

ectool getComponent "Default" "WAR file" --applicationEntityRevisionId "4fa765d
d-73f1-11e3-b67e-b0a420524153"

Back to Top

getComponents

Retrieves all components in a project.

You must specify the projectName.

Arguments Descriptions

Name for the project that must be unique among all projects.
projectName
Argument Type: String

applicationEntityRevisio (Optional) The revision ID of the versioned object.

nld Argument type: UUID

(Optional) Name of the application. You can search for components scoped to

applicationName an application.

Argument Type: String

Positional arguments

projectName

Response
Returns zero or more component elements.

ec-perl
syntax: $S<object>->getComponents (<projectName>, {<optionals>});

Example

Sec->getComponents ("Default", {applicationEntityRevisionId => "4fa765dd-73fl-11le
3-b67e-b0a420524153"}) ;

ectool
syntax: ectool getComponents <projectName> [optionals]
Example
ectool getComponents "Default" --applicationEntityRevisionId "4fa765dd-73fl-1le

3-b67e-b0a420524153"

Back to Top

159

ElectricFlow

getComponentsinApplicationTier

Retrieves the list of components in an application tier.

You must specify the projectName, applicationName, and applicationTierName

Arguments Descriptions

Name for the project that must be unique among all projects.
projectName
Argument Type: String

Name of the application that must be unique among all projects.
applicationName
Argument Type: String

Name of the tier that must be unique within the application.
applicationTierName
Argument Type: String

applicationEntityRevisio (Optional) The revision ID of the versioned object.

nid Argument type: UUID
(Optional) <Boolean flag - 0|1 | true| false>
includeArtifactDetail If setto 1 or true, the artifact name and version are returned as part of

component response.

Argument type: Boolean

Positional arguments

projectName, applicationName, applicationTierName

Response
Returns zero or more component elements in the application tier.

ec-perl

syntax: $<object>->getComponentsInApplicationTier (<projectName>, <applicationName>,
<applicationTierName>, {<optionals>});

Example:

Sec->getComponentsInApplicationTier ("Default", "Deploy snapshot", "AWS", {applic
ationEntityRevisionId => "4fa765dd-73fl-11e3-b67e-b0a420524153"}) ;

ectool

syntax: ectool getComponentsInApplicationTier <projectName> <applicationName>
<applicationTierName> [optionals]

Example:

ectool getComponentsInApplicationTier "Default" "Deploy snapshot" "AWS" --applic
ationEntityRevisionId 4fa765dd-73fl1-11e3-b67e-b0a420524153

Back to Top

160

ElectricFlow Perl APl Commands

modifyComponent

Modifies an existing component.

You must specify the projectName and componentName.

Arguments Descriptions

Name for the project that must be unique among all projects.
projectName
Argument Type: String

Name of the component.
componentName
Argument Type: String

(Optional) Parameters passed as arguments to the application component.
actualParameters
Argument Type: Map

(Optional) Name of an application to which this component is scoped.
applicationName
Argument Type: String

(Optional) <Boolean flag - 0|1 | true| false>
clearActualParameters If this is setto 1 or true, all actual parameters will be removed.

Argument type: Boolean

(Optional) Name of the credential to attach to this component.
credentialName
Argument Type: String

(Optional) Comment text describing this component. Itis not interpreted by

description ElectricFlow.

Argument Type: String

(Optional) New name of the component.
newName

Argument Type: String

(Optional) Key for the plugin.
pluginKey

Argument Type: String

(Optional) Name of the plugin.
pluginName

Argument Type: String

(Optional) List of the plugin parameters
pluginParameters
Argument Type: Map

Positional arguments

projectName, componentName

161

ElectricFlow

Response
Returns an updated component element.

ec-perl
syntax: $<object>->modifyComponent (<projectName>, <componentName>, {<optionals>});
Example
Sec->modifyComponent ("Default", "Web Server", {credentialName => "credl", newNam

e => "Master Web Server"});

ectool
syntax: ectool modifyComponent <projectName> <componentName> [optionals]
Example
ectool modifyComponent "Default" "Web Server" --credentialName credl --newName "

Master Web Server"

Back to Top

removeComponentFromApplicationTier

Removes the specified component from an application tier.

You must specify the projectName, applicationName, applicationTierName, and componentName

Arguments Descriptions

Name for the project that must be unique among all projects.
projectName
Argument Type: String

Name of the application that must be unique among all projects.
applicationName
Argument Type: String

Name of the tier that must be unique within the application.
applicationTierName
Argument Type: String

Name of component.
componentName
Argument Type: String

(Optional) Name of the project that contains the component.
componentProjectName
Argument Type: String

Positional arguments

projectName, applicationName, applicationTierName, componentName

Response
None or a status OK message.

162

ElectricFlow Perl APl Commands

ec-perl

syntax: $<object>->removeComponentFromApplicationTier (<projectName>,
<applicationName>, <applicationTierName>, <componentName>, {<optionals>});

Example
Sec->removeComponentFromApplicationTier ("Default", "Deploy", "Config", "WAR fil
e", {componentProjectName => "Server Setup"}):;
ectool

syntax: ectool removeComponentFromApplicationTier <projectName> <applicationName>
<applicationTierName> [optionals] <componentName> [optionals]

Example

ectool removeComponentFromApplicationTier "Default" "Deploy" "Config" "WAR file"
—-—-componentProjectName "Server Setup"

Back to Top

API Commands - Credential Management

attachCredential on page 163
createCredential on page 166
deleteCredential on page 167
detachCredential on page 168
getCredential on page 170

getCredentials on page 171

getFullCredential on page 172
modifyCredential on page 173

attachCredential

Attaches a credential to an object, such as a step or a schedule.

Attaching a credential allows the credential to be passed as an actual argument by a schedule or subprocedure
step, or to be used in a getFullCredential call by a command step.

You must specify projectName, credentialName, and locator arguments to identify an object.

Arguments Descriptions

The name of the project that must be must be unique among all
projectName projects.

Argument type: String

163

ElectricFlow

Arguments Descriptions
Name of the credential in one of these forms:
o relative (for example, "cred1")-The credential is assumed
to be in the project that contains the request target object.
) e absolute (for example,
credentialName

"/projects/BuildProject/credentials/cred1"-Tthe credential
can be from any specified project, regardless of the target
object’s project.

Argument type: String

Locator arguments:

applicationName

The name of the application process to which the credential is
attached.

Argument type: String

applicationProjectName

The name of the project containing the application. If not specified,
it defaults to the Release project name.

Argument type: String

componentName

The name of the component to which the credential is attached
when attaching a credential to a component, component process,
or component process step.

Argument type: String

pipelineName

The name of the pipeline when attaching a credential to a stage
task.

procedureName

The name of a procedure when attaching a credential to a
procedure or procedure step.

Argument type: String

processName

(Optional) The name of a process when attaching a credential to a
process or process step.

Argument type: String

processStepName

The name of a process step when attaching a credential to a
process step.

Argument type: String

releaseName

The name of a Release when attaching a credential to a Release.

Argument type: String

ElectricFlow Perl APl Commands

Arguments Descriptions

The name of the schedule for running a procedure or process in
scheduleName the "named" project when attaching a credential to the schedule.

Argument type: String

The name of the stage when attaching a credential to a task.
stageName

Argument type: String

The name of the workflow state definition when attaching a
stateDefinitionName credential to a state definition.

Argument type: String

A step name in a procedure or process in the "named" project
stepName when attaching a credential to a procedure step.

Argument type: String

The name of the task when attaching a credential to the task.
taskName

Argument type: String

The name of the workflow when attaching a credential to a state
workflowDefinitionName definition.

Argument type: String

Positional arguments
projectName, credentialName, and locator arguments to identify an object.

Response
None or status OK message.

ec-perl

syntax: Scmdr->attachCredential (<projectName>, <credentialName>, {<optionals>});
Example

Scmdr->attachCredential ("Default", "QA User", {procedureName =>
"Run Build", stepName=>"Get Resources"});

ectool
syntax: ectool attachCredential <projectName> <credentialName> [optionals]
Example
ectool attachCredential "Default" "QA User" --procedureName "Run Build" --stepName

"Get Resources"

Back to Top

165

Ele

ctrickFlow

createCredential

Creates a new credential for a project.

You must specify a projectName, credentialName, username, and password

Arguments

Descriptions

projectName

The name of the project where the credential will be stored. The
name must be unique within all projects.

Argument type: String

credentialName

The name of the credential.

Argument type: String

userName

The user name of the credential.

Argument type: String

password

The password of the credential.

Argument type: String

description

(Optional) A plain text or HTML description for this object.

If using HTML, you must surround your text with <htm1> ...
</html> tags. The only HTML tags allowed in the text are: <a>

 <div> <dl> <i> <1i> <o0l> <p> <pre>
 <style> <table> <tc> <td> <th> <tr>

Argument type: String

passwordRecoveryAllowed

(Optional) <Boolean flag - 0]1|true|false>-If1 or true, the
password can be recovered by running getFullCredential from
a job step.

Argument type: Boolean

Positional arguments

projectName, credentialName, userName, password

Response
None or status OK message.

ec-perl

syntax: $cmdr->createCredential (<projectName>, <credentialName>, <userName>, <passw

ord>, {<optionals>});

Example

Scmdr->createCredential ("Default", "QA Deploy", "QA", "abcl23", {description => "Us

e during preproduction"});

166

ElectricFlow Perl APl Commands

ectool

syntax: ectool createCredential <projectName> <credentialName> <userName> <password>
[optionals]

Example

ectool createCredential "Default" "QA Deploy" "QA" "abcl23" --description "Use for
preproduction”

Back to Top

deleteCredential

Deletes a credential.

You must specify a projectName and a credentialName.

Arguments Descriptions

The name of the project that contains this credential. The project

projectName name must be unique among all projects.

Argument type: String

Name of the credential in one of these forms:
e relative (for example, "cred1")-The credential is assumed
to be in the project that contains the request target object.

e absolute (for example,

credentialName "Jprojects/BuildProject/credentials/cred1"—-The credential
can be from any specified project, regardless of the target
object’s project.

Argument type: String

Positional arguments

projectName, credentialName

Response
None or a status OK message.

ec-perl
syntax: Scmdr->deleteCredential (<projectName>, <credentialName>);

Example

Scmdr->deleteCredential ('Default', 'Build User');

ectool
syntax: ectool deleteCredential <projectName> <credentialName>

167

ElectricFlow

Example
ectool deleteCredential "Default" "Build User"

Back to Top

detachCredential

Detaches a credential from an object.

You must specify projectName and credentialName. Also, depending on where the credential is
attached, you must specify a step (using procedureName and stepName), or define a schedule
(using scheduleName).

Arguments Descriptions

The name of the project that must be unique among all projects.
projectName

Argument type: String

Name of the credential in one of these forms:

o relative (for example, "cred1")-The credential is assumed
to be in the project that contains the request target object.

credentialName e absolute (for example,
"/projects/BuildProject/credentials/cred1"-Tthe credential
can be from any specified project, regardless of the target
object’s project.

Argument type: String

(Optional) The name of the application process with the credential
applicationName that you want to detach.

Argument type: String

(Optional) The name of the project containing specified

application. If this is not specified, the default is the Release
applicationProjectName project name.

Argument type: String

(Optional) The name of the component or component process with

tN
componentiane the credential that you want to detach.
(Optional) The name of the pipeline when a credential attached to
pipelineName a stage task.
Argument type: String
(Optional) The name of the procedure with the credential that you
procedureName want to detach.

Argument type: String

168

ElectricFlow Perl APl Commands

Arguments

Descriptions

processName

(Optional) The name of the process with the credential that you
want to detach.

Argument type: String

processStepName

(Optional) The name of the process step with the credential that
you want to detach.

Argument type: String

releaseName

(Optional) The name of the Release defined by a pipeline to which
a credential attached.

Argument type: String

scheduleName

(Optional) The name of the schedule where this credential is
attached.

Argument type: String

stageName

(Optional) The name of the stage when a credential is attached to
a stage task.

Argument type: String

stateDefinitionName

(Optional) The name of the workflow state definition when a
credential is attached to a state definition.

Argument type: String

(Optional) A step name in a procedure or process in the "named"
project.

stepName

Argument type: String

(Optional) The name of the task when a credential is attached to a
taskName task.

Argument type: String

workflowDefinitionName

(Optional) The name of the workflow definition when a credential is
attached to a state definition.

Argument type: String

Positional arguments

projectName, credentialName

Response

None, or a status OK message on success, or:

NoSuchCredential if the specified credential does not exist.

NoSuchSchedule if the specified schedule does not exist.

169

ElectricFlow

ec-perl

syntax: $cmdr->detachCredential (<projectName>, <credentialName>, {<optionals>});

Examples

Scmdr->detachCredential ("Default", "Preflight User",
{procedureName => "Run Build",

stepName => "Get Sources"});

Scmdr->detachCredential ("Default", "Preflight User",
{scheduleName => "Build Schedule"});

ectool

syntax: ectool detachCredential <projectName> <credentialName> [optionals]

Examples

ectool detachCredential "Default" "Preflight User"
--procedureName "Run Build" --stepName "Get Sources"

ectool detachCredential "Test Proj" "Preflight User"
--scheduleName "Build Schedule"

Back to Top

getCredential

Finds a credential by name.

You must specify projectName and credentialName.

Arguments

Descriptions

projectName

The name of the project that must be unique among all projects.

Argument type: String

credentialName

Name of the credential in one of these forms:

¢ relative (for example, "cred1")-The credential is assumed
to be in the project that contains the request target object.

e absolute (for example,
"/projects/BuildProject/credentials/cred1"—-The credential
can be from any specified project, regardless of the target
object’s project.

Argument type: String

Positional arguments

projectName, credentialName

Response
One credential element.

170

ElectricFlow Perl APl Commands

ec-perl
syntax: Scmdr->getCredential (<projectName>, <credentialName>);
Example
Scmdr->getCredential ("QA Runs", "Build User");

ectool

syntax: ectool getCredential <projectName> <credentialName>
Example
ectool getCredential "QA Runs" "Build User"

Back to Top

getCredentials

Retrieves all credentials in a project.

You must specify a projectName.

Arguments Descriptions

The name of the project that must be unique among all projects.
projectName
Argument type: String

(Optional) <Boolean flag - 0|1 |true|false>

If setto 7 or true, only those credentials that the currently logged-

usableOnl . L .
Y in user has execute privileges for will be returned.

Argument type: Boolean

Positional arguments

projectName

Response
Zero or more credential elements.

ec-perl
syntax: Scmdr->getCredentials (<projectName>, {<optionals>});
Example
Scmdr->getCredentials ("Default", {usableOnly => 1});
ectool
syntax: ectool getCredentials <projectName> [optionals]
Example
ectool getCredentials "Default" --usableOnly 1

171

ElectricFlow

Back to Top

getFullCredential

Retrieves a credential by name, including password, from within a running step.

You must specify the credentialName and jobStepId.

Arguments Descriptions

Name of the credential in one of these forms:

e relative (for example, "cred1")-The credential is assumed
to be in the project that contains the request target object.

e absolute (for example,

credentialName
"/projects/BuildProject/credentials/cred1"—Tthe credential
can be from any specified project, regardless of the target
object’s project.
Argument type: String
The unique identifier for the job step thatis used to make a project
jobStepId association.

Argument type: UUID

Positional arguments
credentialName, jobStepId

Response

If value is supplied, only the name is returned when called by ectool. If no value is supplied,
an xPath object is returned.

ec-perl
syntax: $cmdr->getFullCredential (<credentialName>, <jobStepld>);

Example

Returns an xPath object containing the password.
my $xpath = S$cmdr->getFullCredential ("myCred", "4fa765dd-73fl-11e3-b67e-b0a42052415

3);

Parse password from response.
my $password = S$xpath->find("//password");

ectool
syntax: ectool getFullCredential <credentialName> <jobStepId>

Example

ectool getFullCredential "myCred" "4fa765dd-73fl-11e3-b67e-b0a420524153"

Back to Top

172

ElectricFlow Perl APl Commands

modifyCredential

Modifies an existing credential.

You must specify projectName and credentialName.

Arguments Descriptions

The name of the project that must be unique among all projects.

projectName Argument type: String

Name of the credential in one of these forms:

o relative (for example, "cred1")-The credential is assumed
to be in the project that contains the request target object.

credentialName e absolute (for example,
"/projects/BuildProject/credentials/cred1"-Tthe credential
can be from any specified project, regardless of the target
object’s project.

Argument type: String

(Optional) A plain text or HTML description for this object.

If using HTML, you must surround your text with

<html> ... </html>tags. The only HTML tags allowed in the
textare: <a>
 <div> <dl> <i> <1i>
<p> <pre> <style> <table> <tc> <td> <th>
<tr>

description

Argument type: String

(Optional) New name of the credential.
newName

Argument type: String

(Optional) The password for the credential. It can also be a

password certificate or other chunk of data.

Argument type: String

(Optional) <Boolean flag - 0]1|true|false>

If this is setto 1 or true, the password can be recovered by

passwordRecoveryAllowed . .
running getFullCredential from a job step.

Argument type: Boolean

The name of the user for this credential.
userName

Argument type: String

Positional arguments

projectName, credentialName

173

ElectricFlow

Response
Returns an updated credential element.

ec-perl
syntax: Scmdr->modifyCredential (<projectName>, <credentialName>, {<optionals>});

Example

Scmdr->modifyCredential ("Default", "Build User", {userName => "build"});
ectool
syntax: ectool modifyCredential <projectName> <credentialName> [optionals]

Example
ectool modifyCredential "Default" "Build User" --userName "build"

Back to Top
API Commands - Database Configuration

getDatabaseConfiguration on page 174
setDatabaseConfiguration on page 175

validateDatabase on page 177

getDatabaseConfiguration

Retrieves the current database configuration.

Arguments Descriptions

None

Positional arguments
None

Response

Returns a databaseConfiguration element, which includes the database name, user name,
database dialect, driver, URL, along with the host name and port number.

ec-perl
syntax: Scmdr->getDatabaseConfiguration () ;

Example

Scmdr->getDatabaseConfiguration () ;

ectool
syntax: ectool getDatabaseConfiguration

174

ElectricFlow Perl APl Commands

Example

ectool getDatabaseConfiguration

Back to Top

setDatabaseConfiguration

Sets the database configuration on the server. If the server is in bootstrap mode, these changes take effect
immediately and the server attempts to start. If the server is already running, these changes have no effect

until the server is restarted.

Note: If you are replacing the database you are currently using, you must restart the ElectricFlow server after
configuring the new database you want to use.

ElectricFlow assigns default values to the following three arguments that are derived

from information you enter for the arguments below. The values for these arguments can be viewed in the
XML Response for getDatabaseConfiguration. You should not need to change these values, but
"customDatabase" arguments may be used to override ElectricFlow default values. Contact

Electric Cloud Customer Support for assistance with using these arguments:

customDatabaseDialect
customDatabaseDriver
customDatabaseUrl

Arguments

Descriptions

customDatabaseDialect

Class name of the Hibernate dialect (advanced use only. The
server chooses an appropriate dialect based on the
databaseType).

Argument Type: String

customDatabaseDriver

Class name of the JDBC driver (advanced use only. The server
chooses an appropriate driver based on the databaseType).

Argument Type: String

customDatabaseUrl

The JDBC to use (advanced use only. The server composes an
appropriate URL).

Argument Type: String

The name of the database that you want the ElectricFlow server to
use. The defaultis commander.

databaseName
Argument Type: String
The type of database that you want the ElectricFlow server to use.
Supported database types are:
<builtin|mysqgl|sglserver|oracle>

databaseType

The defaultis builtin.

Argument Type: DatabaseType

175

ElectricFlow

Arguments Descriptions
The domain name or IP address of the host server machine where
hostName the database is running.

Argument Type: String

ignorePasskeyMismatch

<Boolean flag- 0|1 |true]|false> If true, ignore a passkey
fingerprint mismatch between the current passkey file and the
database configuration and discard the stored credentials.

Note: This action discards all saved passwords.

Argument Type: Boolean

ignoreServerMismatch

<Booleanflag- 0|1 |true|false> If true,ignore a hostname
mismatch between the current server and the database
configuration where the server previously started.

Argument Type: Boolean

The password required to access the database.

setDatabaseConfiguration does notallow a passwordless

password database user. Make sure the database user has a password.
Argument Type: String
The port number used to access the database. The defaultis the
port server port default.

Argument Type: String

preserveSessions

<Boolean flag - 0|1 |true|false>When a host name mismatch
between the current server and the database configuration occurs,
the default behavior is to invalidate all sessions. If this argumentis
setto true, all sessions are preserved and the server can
reconnect to running jobs. This option is used in combination with
ignoreServerMismatch

Argument Type: Boolean

userName

The name of the user required to access the database.

Argument Type: String

Positional arguments
None

Response
None or a status OK message.

ec-perl
syntax: $Scmdr->setDatabaseConfiguration ({<optionals>});

176

ElectricFlow Perl APl Commands

Example
Scmdr->setDatabaseConfiguration ({hostName => "localhost", port => 3306});

If the database type is set to the mysqgl, sglserver, or oracle and
you want to use the builtin database

Scmdr->setDatabaseConfiguration ({databaseType => "builtin", databaseName => "builti
n"});

ectool

syntax: ectool setDatabaseConfiguration <specify configuration values> [optionals]
Example
ectool setDatabaseConfiguration --hostName localhost --port 3306

If the database type is set to the mysqgl, sglserver, or oracle and
you want to use the builtin database

ectool setDatabaseConfiguration --databaseType builtin --databaseName builtin

Back to Top

validateDatabase

Performs consistency checks on the database.

Arguments Descriptions

Comma-separated list of options that specify the aspects of the
options database to validate.

Argument Type: String

Positional arguments
None

Response
None or a status OK message.

ec-perl

syntax:scmdr->validateDatabase ({<optionals>});
Example

Scmdr->validateDatabase () ;

ectool

syntax: ectool validateDatabase [optionals]

177

ElectricFlow

Example
ectool validateDatabase

Back to Top

API Commands - Directory Provider Management

createDirectoryProvider on page 178
deleteDirectoryProvider on page 182
getDirectoryProvider on page 183
getDirectoryProviders on page 184
modifyDirectoryProvider on page 184
moveDirectoryProvider on page 189

testDirectoryProvider on page 189

createDirectoryProvider

Creates a new Active Directory or LDAP directory provider.

You must specify a providerName .

Arguments Descriptions
Name for a LDAP directory provider that must be unique.
providerName This human-readable name appears in the user interface to identify

users and groups from this provider.

Argument type: String

allowNestedGroupsApprovers

(Optional) <Boolean flag -0 |1 | true | false>

Determines whether users in nested LDAP groups should be
allowed to approve a manual task when a parent LDAP group is
assigned as a approver for the task and recursive traversal of group
hierarchy is enabled for the directory provider.

Argument type: Boolean

commonGroupNameAttribute

(Optional) The attribute in a group record that contains the common
group name. If specified, this name is used only when searching for
groups from an external provider. Use this argument if the
groupNameAttribute or the uniqueGroupNameAttribute is set
to distinguishedName, which is not searchable.

Argument type: String

178

ElectricFlow Perl APl Commands

Arguments Descriptions

(Optional) A plain text or HTML description for this object.

If using HTML, you must surround your text with

<html> ... </html>tags. The only HTML tags allowed in the text
description are: <a>
 <div> <dl> <i> <1i> <p>

<pre> <style> <table> <tc> <td> <th> <tr>

Argument type: String

(Optional) The domain name from which Active Directory servers
doma inName are automatically discovered.

Argument type: String

(Optional) The attribute in an LDAP user record that contains the

user's email address. If the attribute is not specified, the account
emailAttribute name and domain name are concatenated to form an email

address.

Argument type: String

(Optional) <Boolean flag -0 | 1 | true | false> Determines whether

or not to enable external groups for the directory provider. This
enableGroups argument defaults to "true".

Argument type: Boolean

fullUserNameAttribute

(Optional) The attribute in a user record that contains the user's full
name (first and last) to display in the Ul. If this attribute is not
specified or the resulting value is empty, the user's account name is
used instead.

Argument type: String

groupBase

(Optional) The string is prepended to the basedn to construct the
directory domain name (DN) that contains group records.

Argument type: String

groupMemberAttributes

(Optional) A comma-separated attribute name list that identifies a
group member. Most LDAP configurations only specify a single
value, but if there is a mixture of POSIX and LDAP style groups in
the directory, multiple attributes may be required.

Argument type: String

179

ElectricFlow

Arguments

Descriptions

groupMemberFilter

(Optional) This LDAP query is performed in the groups directory
context to identify groups containing a specific user as a member.
Two common forms of group record in LDAP directories: POSIX
style groups where members are identified by account name, and
groupOfNames Or uniqueGroupOfNames records where members
are identified by the full user DN. Both forms are supported, so the
query is passed to parameters: "{0}" is replaced with the full user
record DN, and "{1}" is replaced with the user's account name.

Argument type: String

groupNameAttribute

(Optional) The attribute in a group record that contains the name of
the group.

Argument type: String

groupSearchFilter

(Optional) This LDAP query is performed in the context of the groups
directory to enumerate group records.

Argument type: String

managerDn

(Optional) The domain name (DN) of a user who has read-only
access to LDAP user and group directories. If this property is not
specified, the server attempts to connect as an unauthenticated
user. Not all servers allow anonymous read-only access.

Note: This user does not need to be an admin user with modify
privileges.

Argument type: String

managerPassword

(Optional) If the managerDn property is set, this password is used to
authenticate the manager user.

Argument type: String

membershipAttribute

(Optional) Attribute defined on an LDAP user or group entry used by
the LDAP provider to specify the group membership.

Argument type: String

membershipFilter

(Optional) LDAP filter to search for groups to which an LDAP user or
group belongs.

Argument type: String

nestedGroupDepthLimit

(Optional) Maximum number of group hierarchy levels that will be
traversed for retrieving nested group membership information.

Argument type: Integer

180

ElectricFlow Perl APl Commands

Arguments Descriptions

(Optional) <Boolean flag -0 |1 | true | false>

Determines whether users in nested LDAP groups should be
included when notifications for a parent LDAP group are sentand
recursive traversal of group hierarchy is enabled for the directory
provider.

notifyUsersInNestedGroups

Argument type: Boolean

(Optional) Type string for a directory provider:

providerType <ldaplactivedirectory>

Argument type: ProviderType

(Optional) This is an identifier (string) used for LDAP directory
providers so users and groups (within LDAP) can be uniquely
identified in "same name" collisions across multiple directory
providers. The realm is appended to the user or group name when
stored in the ElectricFlow server. For example, <user>@dir (where
the realm is set to "dir").

realm

Argument type: String

(Optional) <Boolean flag -0 | 1 | true | false> Determines whether
. or not to enable recursive traversal of group hierarchy for nested
traverseHierarchy group membership information. This argument defaults to "true".

Argument type: Boolean

(Optional) The server URL is in the form
protocol://host:port/basedn

Protocol is either 1dap or 1daps (for secure LDAP). The portis
implied by the protocol, but can be overridden ifitis not at the
default location (389 for 1dap, 636 for 1daps). The basedn is the
url path to the top-level directory that contains users and groups at this
site. This is typically the domain name where each partis listed with
a dc= and separated by commas.

Note: Spaces in the basedn must be URL encoded (%20).

Argument type: String

(Optional) <Boolean flag -0 |1 | true | false> Use this flag to define
whether or not SSL is used for server-agent communication, or if
you need to use SSL to communicate with your Active Directory
servers. The defaultis "true".

SSL
use Note: Transport Layer Security (TLS) has replaced Secure

Sockets Layer version 3.0 (SSLv3) on the ElectricFlow web
server and the ElectricFlow server.

Argument type: Boolean

181

ElectricFlow

Arguments Descriptions

(Optional) This string is prepended to the basedn to construct the
userBase directory DN that contains user records.

Argument type: String

(Optional) The attribute in a user record that contains the user's
userNameAttribute accountname.

Argument type: String

(Optional) This LDAP query is performed in the context of the user
directory to search for a user by account name. The string “{0}" is
userSearchFilter replaced with the user's login ID. Typically, the query compares a
user record attribute with the substituted user login ID.

Argument type: String

(Optional) <Boolean flag- 0|1 | true|false>

If 1 or true, ElectricFlow recursively searches the subtree below the

userSearchSubtree
user base.

Argument type: Boolean

Positional arguments

providerName

Response
None or status OK message.

ec-perl

syntax: $<object>->createDirectoryProvider (<providerName>, {<optionals>});
Example

Sec->createDirectoryProvider ("AD3", {url => "ldaps://pdc/dc=coname3.dc=com", provid
erType => "activedirectory"});

ectool
syntax: ectool createDirectoryProvider <providerName> {optionals]
Example
ectool createDirectoryProvider AD3 --url "ldaps://pdc/dc=coname3.dc=com" --provider

Type activedirectory

Back to Top

deleteDirectoryProvider

Deletes an Active Directory or LDAP directory provider.

You must specify a providerName.

182

ElectricFlow Perl APl Commands

Arguments Descriptions

The name of the directory provider that you want to delete.
providerName
Argument Type: String

Positional arguments

providerName

Response
None or a status OK message.

ec-perl
syntax: $<object>->deleteDirectoryProvider (<providerName>) ;

Example

Sec->deleteDirectoryProvider ('AD3"') ;

ectool

syntax: ectool deleteDirectoryProvider <providerName>

Example
ectool deleteDirectoryProvider 'AD3'

Back to Top

getDirectoryProvider

Retrieves a directory provider by name.

You must specify a providerName.

Arguments Descriptions

The name of the directory provider that must be unique.
providerName
Argument Type: String

Positional arguments

providerName

Response
One directoryProvider element.

Note: For security reasons, the managerPassword field is never returned.

ec-perl
syntax: S<object>->getDirectoryProvider (<providerName>) ;

183

ElectricFlow

Example

Sec>getDirectoryProvider ("AD3") ;
ectool
syntax: ectool getDirectoryProvider <providerName>

Example
ectool getDirectoryProvider "AD3"