
ElectricAccelerator
ElectricInsight User Guide

Version 5.0

Electric Cloud, Inc.
35 South Market Street, Suite 100

San Jose, CA 95113
www.electric-cloud.com

ElectricAccelerator ElectricInsight 5.0

Copyright © 2002–2015 Electric Cloud, Inc. All rights reserved.

Published 7/27/2015

Electric Cloud® believes the information in this publication is accurate as of its publication date. The information
is subject to change without notice and does not represent a commitment from the vendor.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” ELECTRIC CLOUD, INCORPORATED
MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION
IN THIS PUBLICATION AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any ELECTRIC CLOUD software described in this publication requires an
applicable software license.

Copyright protection includes all forms and matters of copyrightable material and information now allowed by
statutory or judicial law or hereinafter granted, including without limitation, material generated from software
programs displayed on the screen such as icons and screen display appearance.

The software and/or databases described in this document are furnished under a license agreement or
nondisclosure agreement. The software and/or databases may be used or copied only in accordance with terms
of the agreement. It is against the law to copy the software on any medium except as specifically allowed in the
license or nondisclosure agreement.

Trademarks

Electric Cloud, ElectricAccelerator, ElectricAccelerator Huddle, ElectricCommander, ElectricFlow,
ElectricInsight, and Electric Make are registered trademarks or trademarks of Electric Cloud, Incorporated.

Electric Cloud products—ElectricAccelerator, ElectricAccelerator Huddle, ElectricCommander, ElectricFlow,
ElectricInsight, and Electric Make—are commonly referred to by their “short names”—Accelerator, Huddle,
Commander, Flow, Insight, and eMake—throughout various types of Electric Cloud product-specific
documentation.

All other trademarks used herein are the property of their respective owners.

Chapter 1: Introduction 1-1
About ElectricInsight 1-1
Documentation 1-1

Chapter 2: Installing ElectricInsight 2-1
Installer Files 2-1
Installation Log File 2-2
Library Requirements for Linux Systems 2-2
Installing ElectricInsight Using the GUI 2-2
Installing ElectricInsight Using the Console with Installation Options 2-2
Installing ElectricInsight Using the Console with No Installation Options (Linux Only) 2-3
Checking for Software Updates 2-4

Chapter 3: Getting Started 3-1
Annotation 3-2
Starting ElectricInsight 3-2
Navigating the Interface 3-3

Agents & Jobs 3-3
Navigation 3-5
Overview 3-5
Legend 3-6
Job Summary 3-6
Zoom 3-6
Replay 3-7
Monitor Live Build 3-7

Chapter 4: Build, Job, and Make Information 4-1
Build Properties 4-2
Job Details Dialog 4-2

Job Details 4-3
Job Path 4-3
Annotation 4-4
Environment 4-5
Submakes 4-5

Make Details Dialog 4-6
Make Details 4-6
Make Jobs 4-7
Make Path 4-8

Searching for Jobs 4-8
Search Examples 4-9

i

Contents

Supported Search Fields 4-10
Viewing All Jobs 4-12
Using the Hyperlog 4-12

Chapter 5: Reports 5-1
Build Manifest 5-2
Build Metrics 5-2
Build Summary 5-3
Cluster Sharing 5-3
Derived Files Analysis 5-4
ElectricSimulator 5-5
Export Timeline 5-7
Files Modified Multiple Times 5-7
Job Cache Misses 5-8
Job Stats 5-9
Job Time by Type 5-10
Jobs by Agent 5-11
Jobs by File 5-12
Longest Jobs 5-12
Longest Serial Chain 5-13
Makefile Manifest 5-14
Most Read Files 5-15
Root Conflicts 5-16
Serialization Analysis 5-16
Terminator Lag 5-17
Command-Line-Enabled Reports 5-18
Creating a Custom Report 5-20

Chapter 6: Understanding Build Performance 6-1

Chapter 7: Annolib Programmer's Reference 7-1
Overview 7-1
API Commands 7-1

ii

1-1

Chapter 1: Introduction

Until now, there has been little visibility into builds to “see” why a build was slow, why a build broke, or which
dependencies were involved. ElectricInsight® (Insight) removes the “black box” around software product builds
and provides easy-to-understand performance data.

About ElectricInsight
Insight depicts how a build is structured and run, empowering build managers to pinpoint performance
problems or conflicts in a parallel build. Developed to work with ElectricAccelerator®, Insight mines information
produced by Electric Make® to provide an easy-to-understand, graphical representation of the build structure
for performance analysis.

Insight provides detailed information and reports for at-a-glance diagnostics for each job on each host in the
build cluster. Users can identify which jobs are performing, when, and with which files. Instead of manually
reading through tens of thousands of lines of information in log files, error detection and performance tuning that
used to consume hours or days can now occur in a few minutes or seconds.

By observing and tracing serialization sources or slowdowns, you can fine tune your build for maximum speed.
Insight gives you the ability to pinpoint areas to improve in your build process—and you will have answers for
these questions:

l Are any unnecessary serializations occurring?

l Is there a gap where one or more agents is not busy?

l Which job chains are the longest and can they be shortened?

l Which files are being modified (created, updated, or deleted) multiple times?

Documentation
The ElectricInsight User Guide (this document) is available online. To view the user guide, choose Help > User
Guide in the ElectricInsight application or browse to http://docs.electric-cloud.com/insight_doc/5_
0/PDF/InsightUserGuide_5_0.pdf. The ElectricInsight Release Notes are available at http://docs.electric-
cloud.com/insight_doc/5_0/PDF/InsightReleaseNotes_5_0.pdf.

ElectricAccelerator documentation is available online at http://docs.electric-cloud.com/accelerator_
doc/AcceleratorIndex.html:

l ElectricAccelerator Installation and Configuration Guide

l ElectricAccelerator Electric Make User Guide

l ElectricAccelerator cmtool Reference Guide

http://docs.electric-cloud.com/insight_doc/5_0/PDF/InsightUserGuide_5_0.pdf
http://docs.electric-cloud.com/insight_doc/5_0/PDF/InsightReleaseNotes_5_0.pdf
http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html

ElectricInsight

1-2

l ElectricAccelerator Visual Studio Integration Guide

l ElectricAccelerator Release Notes

l PDF, HTML, and mobile-optimized HTML versions of the online help that is also built into the Cluster
Manager

The documents listed above are updated periodically.

2-1

Chapter 2: Installing ElectricInsight

The Insight distribution includes the following main files:

l einsight.exe (Windows) or einsight (Linux)—The ElectricInsight program

l annolib.dll (Windows) or annolib.so (Linux)—The annolib library

Because Insight analyzes build annotation files, it is simplest to install it on the system where you run Electric
Make or on a Cluster Manager host where you can upload build annotation files.

Installer Files
ElectricInsight is available in 32- and 64-bit versions on Windows and on Linux. Electric Cloud recommends the
64-bit version for loading large annotation files or for 64-bit Linux systems that do not have 32-bit libraries (such
as ia32-lib) installed.

Note: The live build monitoring feature is not available in 64-bit ElectricInsight.

Three installer files are available:

l 32- and 64-bit Windows

l 32-bit Linux

l 64-bit Linux

Each installer file installs both the 32-bit executables and the 64-bit executables. They are installed in the
following locations.

l 32-bit executables are installed in <InstallDir>/<arch>/bin. <InstallDir> is C:\ECloud by default on
Windows and /opt/ecloud by default on Linux. <arch>is i686_win32 on Windows and i686_Linux on
Linux.

l 64-bit executables are installed in <InstallDir>/<arch>/64/bin.

l On Windows, for example, if you install in the C:\ECloud directory, the 64-bit executables are
installed in C:\ECloud\i686_win32\64\bin.

l On Linux, for example, if you install in the /opt/ecloud directory, the 64-bit executables are
installed in /opt/ecloud/i686_Linux/64/bin.

The installers set up the menu option for invoking ElectricInsight to point to the proper executable based on your
system's bitness. Also, on Windows, a shortcut pointing to the proper executable is created on your desktop.

ElectricInsight

2-2

Installation Log File
The installation log file is named einsight_install.log. By default, the file is in the following location.

l Windows: The folder defined by the TEMP environment variable (typically
C:\Users\<username>\AppData\Local\Temp)

l Linux: The /usr/tmp directory

Library Requirements for Linux Systems
On Linux systems, ElectricInsight requires the following libraries:

libX11.so.6
libXss.so.1
libXext.so.6
libXft.so.2
libfreetype.so.6
libfontconfig.so.1
libXrender.so.1
libxcb.so.1
libexpat.so.1
libXau.so.6

Installing ElectricInsight Using the GUI
To install Insight on Windows or Linux using the GUI:

1. Run the installer file to begin installation.

For Windows: ElectricInsight-<version>-Windows-Install.exe
You must run the installer as administrator. For example, on Windows systems running Windows 2008
or later, right-click the installer and click Run as administrator.

For Linux (32-bit): ElectricInsight-<version>-Linux-x86-Install

For Linux (64-bit): ElectricInsight-<version>-Linux-x86_64-Install

2. Click Next on the Welcome screen.

3. Accept the default installation location or click Browse to choose a different location, and then click
Next.

4. Click Browse to locate your license file, and click Next to continue.

The installer copies the license file to both <InstallDir>/<arch>/bin/ and <InstallDir>/<arch>/64/bin.

If you want to provide the license file after installation, you must name it license.xml and copy it to the
appropriate bin directory for your bitness: <InstallDir>/<arch>/bin or <InstallDir>/<arch>/64/bin.

5. Review your settings and click Next to continue or Back to make changes.

6. Click Finish to close the installer.

Installing ElectricInsight Using the Console with Installation
Options

You can use multiple options to run an installation with customized settings and minimal interaction. Use this
syntax:

<installer filename> [options]

Chapter 2: Installing ElectricInsight

2-3

The following options are available.

Option Description

/help Displays help information.

/licensefile Sets the license file that the installer imports. Type the full path to the license file. For
example:
ElectricInsight-5.0.0.5101-Windows-Install.exe /licensefile
C:\mylicenses

or

ElectricInsight-5.0.0.5101-Linux-x86_64 /licensefile
/opt/license.xml

/mode <mode> Sets the installation mode. The following modes are available.

l console—(Linux only) Runs the installation in the console (not the GUI).

l standard—Runs the standard installation mode, which includes all user prompts

l silent—Runs the installation without user prompts

l default—Runs the installation while accepting all installation defaults, resulting
in fewer user prompts

/prefix Sets the installation directory. Type the full path. For example:
ElectricInsight-5.0.0.5101-Windows-Install.exe /prefix C:\ecloud2

or

ElectricInsight-5.0.0.5101-Linux-x86_64 /prefix /opt/ecloud2

/temp Sets the temporary directory used by the installer.

/version Displays installer version information.

For example, to run in silent mode, specify the license file location, and specify a nondefault installation
directory, enter

ElectricInsight-5.0.0.5101-Windows-Install.exe /mode silent /licensefile C:\mylicen
ses /prefix C:\ecloud2

Installing ElectricInsight Using the Console with No
Installation Options (Linux Only)

To install Insight on Linux using the console with no installation options:

1. Run the installer file.

32-bit: ElectricInsight-<version>-Linux-x86-Install

64-bit: ElectricInsight-<version>-Linux-x86_64-Install

2. Press Enter to start the installation.

3. Press Enter to accept the default installation location (/opt/ecloud/) or enter a different location.

4. Type the location of your license file and press Enter.

ElectricInsight

2-4

Your installation is complete.

Checking for Software Updates
ElectricInsight is updated periodically to improve its functionality or to fix bugs. To see if an update is available,
click Help > Check for updates….

If you want to make these checks automatic, check the Check for updates automatically checkbox and click
OK.

3-1

Chapter 3: Getting Started

The following sections discuss what you need to know to start using Insight.

Topics:

l Annotation

l Starting ElectricInsight

l Navigating the Interface

ElectricInsight

3-2

Annotation
ElectricInsight gathers information from build annotation files to create a picture of your build. To use Insight,
you must first run your builds with the --emake-annodetail parameter.

For example, on the eMake command line, run:

% emake ... --emake-annodetail=file,waiting,history ...

Note: Collecting annotation information might cause your build to run approximately 5% slower.

Supported Annotation Detail Levels

basic Detailed information about each “job” in the build, including command arguments, output,
exit code, timing, and source location.

Basic annotation includes annotation for the JobCache add-on, which lets a build avoid
recompiling object files that it previously built, if their inputs have not changed.

env Environment variable modification information

file Filesystem operations information, excluding lookups

history Information about implicit dependencies discovered by Electric Make

lookup Filesystem operations information, including lookups

md5 MD5 checksums for files read and written by the build

registry Registry operations information

waiting Information required to reconstruct the complete dependency graph

For more information about annotation or about the JobCache add-on, see the ElectricAccelerator Electric Make
User Guide at http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html.

Annotation File Splitting
Because of limitations in the 32-bit version of the ElectricInsight tool, eMake as well as Electrify automatically
partition annotation files into 1.6 GB “chunks.” The first chunk is named using the file name that you specify with
the --emake-annofile option or with “emake.xml,” if --emake-annofile is not specified. The second chunk
uses that name as the base but adds the suffix _1, the third chunk adds the suffix _2, and so on. For example, a
four-part annotation file might consist of files named emake.xml, emake.xml_1, emake.xml_2, and emake.xml_
3.

No special action is required to load a multipart annotation file into ElectricInsight. If all parts are present in the
same directory, ElectricInsight automatically finds and loads the content of each file—simply specify the name of
the first chunk when opening the file in ElectricInsight.

For loading large annotation files, Electric Cloud recommends the 64-bit version of ElectricInsight.

Starting ElectricInsight
To start ElectricInsight:

1. Click Start > All Programs > Electric Cloud > ElectricInsight.

or

http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html

Chapter 3: Getting Started

3-3

Type einsight at the command prompt. Optionally, you can specify the target annotation file.

% einsight [build-annotation-file]

2. If you did not specify a build annotation file on the command line, click the folder icon on the toolbar or
click File > Load annotation….

3. Navigate to the annotation file of a completed build that you want to analyze and click Open.

Your build is now displayed.

Navigating the Interface
This section will familiarize you with the various portions of Insight's navigation.

Topics:

l Agents & Jobs

l Navigation

l Overview

l Legend

l Job Summary

l Zoom

l Replay

l Monitor Live Build

Agents & Jobs
In the Agents & Jobs section, each agent used in the build is represented by one row. Host names and agent
number designations appear to the left of the agent job bars. Use the view frame and arrows in the Navigation
section to view agents that are not currently visible.

ElectricInsight

3-4

The section’s x-axis is time, with the build starting at the left. The first job completed by each agent is at the
extreme left of an agent’s job bar. As you scroll to the right on an agent’s job bar, you see the progress of jobs
assigned to the agent.

The time grid helps you determine how long jobs take. The grid has major and minor grid lines. By default,
major grid lines are 60 seconds (pixels) apart and minor grid lines are 15 seconds (pixels) apart. Build
magnification is measured in pixels per second (pps). As you zoom in or out, this ratio increases or decreases.

Magnification is displayed in the lower right corner. In the example below, magnification is 8.00 pps.

To see how long some jobs took to complete, click and drag from the left edge of the first job to the end of the
last job of interest. The job ruler appears and displays a time measurement. You can also use the ruler by
dragging from right to left.

Dependencies and Waiting Jobs Popup
You can right-click a job and click Show dependencies or Show waiting jobs. Dependencies are outlined in
blue. Waiting jobs (not present in the screenshot) are outlined in red.

Chapter 3: Getting Started

3-5

For dependency details between a pair of jobs, load an annotation file that contains waiting and history level
annotation and run the Serialization Analysis report.

Terminator Activity
The terminator's activity (commit, write-to-disk, and wait-for-completion) appears on the row labeled Terminator.
The terminator activity on a per-job basis is typically small.

Navigation
In the Navigation section, the view frame indicates which part of the build the Agents & Jobs section currently
displays. If the entire build is displayed, the view frame is the same size as the scroll bar. Drag the frame to view
different build stages. You can also use the arrows on either side of the navigation bar to move the view frame.

Below the Navigation section is a field showing how long it took Insight to load build annotation information.

Overview
The Overview section displays the following build information:

l Build ID and whether it was successful

l Build duration

l Number of makes in the build

l Number of agents and hosts used by the build

l Number of jobs in the build

l Annotation details collected in the build

Keep in mind the following terminology:

l Each makefile has one or more rules (lines of text).

l A target is the rule output.

l A command is a single shell invocation in a rule.

l A job corresponds to a rule scheduled as part of a build—in most cases.

ElectricInsight

3-6

l There are jobs that parse a makefile. Jobs also have status—possible status values include normal,
conflict, rerun, reverted, and skipped. For more details about job status, see Supported Search Fields.

Note: You can hide the Overview, Legend, and Job Summary sections, by clicking the gray bar between those
sections and the Agents & Jobs section. Click it again to show the hidden sections.

Legend
The Legend section displays the total number of jobs for each type and status within the build. Click a job type
or status to list all of its instances within the build. Legend colors correspond to the job type and status for
individual jobs within agent job bars.

The Agents & Jobs section displays two dimensions of job data—job status and job type. If the job status is not
unusual, then only the job type (such as parse or rule) is displayed. If a job has an unusual status (such as
conflict or reverted), that color is used for the lower portion of the job and the upper portion retains the color of
the job type.

Job Summary
To display a job’s summary information, mouse over any job in an agent job bar. The selected job is outlined in
pink in the agent job bar.

The Job Summary section displays the following information about the selected job:

l Job ID and job type or status (for additional information about job types and status, see Supported
Search Fields)

l Start time (as an offset from the build start time)

l End time

l Job length in hours/minutes/seconds

l Output target name, if applicable

Zoom
The Tools menu contains the following magnification options:

Chapter 3: Getting Started

3-7

l Zoom in and Zoom out—you can also zoom in or out using the magnifying glass icons in the toolbar or
by pressing CTRL-[equal sign] or CTRL-[minus sign].

l Zoom to…—lets you specify a magnification factor for the display. To return to the initial, unzoomed
view, click Tools > Zoom to…, enter a zoom factor of 1.0, then click OK.

l Zoom to fit—sizes the display to fit the available space. Doing this might leave empty space to the left of
all agent job bars, which depicts the time when eMake was parsing the makefile, before agents were
assigned jobs. It is also possible that agents you are not currently viewing were working, while agents
you are viewing were not assigned to this build.

Replay
Insight lets you replay your build in the Agents & Jobs section so you can observe its progress.

You can display the replay toolbar by clicking Replay > Show toolbar.

The following screenshot shows the replay toolbar and a build replay in progress.

Replay controls:

l Play—starts the replay.

l Fast forward—increases replay speed. You can click fast forward up to three times to speed up the
replay. Clicking a fourth time returns the speed to normal.

l Pause—pauses the replay. Click play to start again.

l Stop—stops the replay.

Monitor Live Build
Insight lets you monitor a live build in the Agents & Jobs section.

Note: Live build monitoring is not available on the 64-bit version of ElectricInsight.

ElectricInsight

3-8

Follow these steps:

1. Click File > Monitor live build… to display the following dialog.

2. Provide the host and port information from the --emake-monitor command-line option:

o Host is the hostname or IP address of the Insight machine where the build will be monitored.

o Port is the port number of the Insight machine that listens for the data.

3. Click OK.

4. Make sure --emake-monitor=<hostname/IP>:<port> is added to the command line.

5. Start the build.

Note: To monitor a live build, you must launch the Insight live build monitor before you start the build.

4-1

Chapter 4: Build, Job, and Make Information

This section discusses how to view detailed build, job, and make information.

Topics:

l Build Properties

l Job Details Dialog

l Make Details Dialog

l Searching for Jobs

l Viewing All Jobs

l Using the Hyperlog

ElectricInsight

4-2

Build Properties
To view overall build properties, click File > Build Properties…. Three tabs are available: Properties,
Environment, and Performance Metrics.

The Environment tab displays build environment information, which you can copy to the clipboard:

1. Right-click anywhere in the window.

2. Click Copy to clipboard.

3. Click…for bash/ksh or…for cmd.

Job Details Dialog
To open the Job Details dialog, double-click a job in the Agents & Jobs section. Three tabs are always
available: Job Details, Job Path, and Annotation. The Submakes tab is available if the job includes submakes.
The Environment tab is available if you specified the env annotation level.

Topics:

l Job Details

l Job Path

l Annotation

l Environment

l Submakes

Chapter 4: Build, Job, and Make Information

4-3

Job Details
This tab displays summary information about the job. The following fields contain the same information as they
do on the main screen: ID, Type, Start, End, and Length.

For some job types, the Target name,Makefile, and Output fields are populated.

If the Output field is populated, you can enable Show commands to see the makefile line(s) that correspond to
the job.

The Makefile field identifies the makefile and the relevant line in that makefile that created the job. You can click
the makefile to open it in an editor. The Makefile field is empty for parse-type jobs because parse jobs are not
created from a line in a makefile. For example, there is no rule in the makefile that instructs eMake to parse the
makefile. To find which makefile a job parses, refer to the Directory and Name columns in the Job Path tab.

You can search the Output field by pressing CTRL-F. Pressing CTRL-G finds the next occurrence.

Job Path
This tab displays the path to the makefile line(s) that created the job.

The first line contains the command that invokes the top level makefile. Typically, this line invokes another
makefile. If it does, the second line displays the job ID. If it does not invoke another makefile, the second line
displays the name of the target the job executes.

ElectricInsight

4-4

If the makefile line that created the job invoked a second makefile, this pattern of makefile lines and job IDs is
repeated, chaining through makefiles until the target that created the job is reached.

Annotation
This tab displays the portion of the annotation file pertaining to the job.

Pressing CTRL-F searches for and highlight text; CTRL-G finds the next occurrence.

Chapter 4: Build, Job, and Make Information

4-5

Environment
This tab displays environment information that was used to run the job. The Environment tab is available only if your
annotation file includes env level annotation.

You can copy environment information to the clipboard:

1. Right-click anywhere in the window.

2. Click Copy to clipboard.

3. Click…for bash/ksh or…for cmd.

Submakes
This tab lists all submakes that the job runs, including their ID, Directory, and Command line make command.
The Submakes tab is available only if the job includes submakes.

Double-click an entry in the list to display the job’s detail dialog.

ElectricInsight

4-6

Make Details Dialog
To open the Make Details dialog, double-click a make command, for example, in the Job Path tab of the Job
Details dialog. Three tabs are available: Make Details, Make Jobs, and Make Path.

Topics:

l Make Details

l Make Jobs

l Make Path

Make Details
This tab displays information about make. The tab has the following fields: ID, Level, Emulation mode, Directory,
and Command line.

Chapter 4: Build, Job, and Make Information

4-7

Make Jobs
This tab lists all jobs that the makefile runs.

ElectricInsight

4-8

Make Path
This tab displays the path to the makefile line(s) that created the make.

The first line contains the command that invokes the top level makefile. Typically, this line invokes another
makefile. If it does, the second line displays the job ID. If it does not invoke another makefile, the second line
displays the name of the target the job executes.

Searching for Jobs
If you know the job ID you want to find:

1. Click Tools > Find job by ID….

2. Enter the job ID.

3. Click OK.

If you do not know the job ID, you can search for jobs using several criteria. Follow these steps:

1. Click Tools > Search jobs….

Chapter 4: Build, Job, and Make Information

4-9

2. Type in the strings you want to find (example, “gcc conflict”). You can also constrain your search by
searching for specific values in specific fields.

3. Click Search.

The values come from fields in the build annotation file.

4. You can sort your results by choosing an option from the drop-down.

5. Double-click a row to display a job’s Job Details dialog.

6. In the dialog’s lower-right corner, click Go to job.

The job is now highlighted in the Agents & Jobs section.

Search Examples
To find rule jobs involved in conflicts:

rule conflict

or

ElectricInsight

4-10

type:rule status:conflict

To find conflicts involving jobs named “export”:

conflict name:export

To find rerun jobs with names including “port”:

rerun name:*port*

To find non-reverted jobs with names ending in “Makefile”:

!reverted name:*Makefile

To find jobs for the parse type of job caching:

jobcache:parse

(For the JobCache add-on) To find jobs for the gcc type of job caching:

jobcache:gcc

To find jobs that had a job cache hit:

jobcache:hit

To combine searches to find jobs that used the gcc job cache type and had a job cache miss:

jobcache:gcc jobcache:miss

The JobCache add-on lets a build avoid recompiling object files that it previously built, if their inputs have not
changed. For more information about the add-on, see the ElectricAccelerator Electric Make User Guide at
http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html.

Supported Search Fields
The following fields are supported:

l name—the name of a job is the name of the target that created it. Continuation and parser jobs do not
have names.

l commands—search makefile command lines and output. Globbing patterns are supported (for example,
commands:gcc *foo*).

l status—possible values include:

o normal—a successfully run job

o conflict—a job involved in a conflict. Many of these jobs or jobs on which they rely are reverted.
Typically, conflicts occur when there is no history file—when the environment does not provide
Electric Make with enough information to predict all job dependencies.

o rerun—some reverted jobs must be run with correct file system context. Rerun jobs are always
serialized to guarantee correct context.

o reverted—a job is reverted when Electric Make serializes job results and the job in question was
executed before a (logically) preceding job that failed. The preceding job might have failed because
of a conflict. Reverting a job restores the Agent’s file system to the state before the job was run.

o skipped—skipped jobs are the same as reverted jobs except the skipped job did not run before the
preceding job failed.

l type: possible values include:

http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html

Chapter 4: Build, Job, and Make Information

4-11

o continuation—a continuation job occurs when commands associated with a makefile target include a
submake (also known as, recursive make). Typically, these submake commands begin with
$(MAKE). The commands below a submake, down to and including the next submake command (for
the same target), comprise a continuation job. For a target, there are as many continuation jobs as
there are submakes with commands after them.

all:
echo abc
$(MAKE) abc
echo def
echo ghi
$(MAKE) ghi
echo jkl
$(MAKE) jkl

In this example, the first continuation job starts with echo def and ends with $(MAKE) ghi. The
second and last continuation job consists of two commands involving jkl.

o end—clean-up tasks that occur at the end of makefiles (for example, removing intermediate files).

o exist—jobs corresponding to top-level targets without rules. Electric Make verifies the target exists.

o follow—one of these jobs follows every submake to handle submake output and exit status for the
parent.

o parse—jobs that parse makefiles.

o remake—jobs that remake makefiles (only for GNU make).

o rule—lists jobs corresponding to makefile rules. Sorting results by name lets you find the job that
executed a specific rule. If you have several rules (in different makefiles) with the same name, you
can display several Job Details dialogs at once.

l make—this is the ID of the makefile that created the job. The top-level makefile has ID 0 (zero). For
example, make:0 returns a list of jobs created directly from the top-level makefile.

l job—the job ID, for example, job:J01b11200

l neededby—the job in question is needed by another job. Specify the job ID of the job that needs the job
in question, for example, neededby:J01b11200. This is useful for tracking inter-job dependencies.

l length—job length, in seconds. If you specify length:12.34, you find jobs that lasted exactly 12.34
seconds only. You can also search using length:>12.34, length:>=12.34, length:==12.34,
length:<12.34, and length:<=12.34. To find jobs that lasted 10-15 seconds, specify
length:>=10.0 length:<=15.0.

l exitcode—the job exit code. To find jobs with a non-zero exit code use exitcode:!=0. In general, use
arithmetic relations (=, >, <, >=, <=) to search numerical values and use no relation symbols when
searching for string values.

l waitingJobs:<jobID>—to find prerequisite jobs of <jobID>.

l start—job start time (in seconds) after the build start time. To find other jobs that started in the first minute
of the job, use start:<60. To find jobs that took more than 60 seconds and started during the 10th
minute into the build, type length:>60 start:>=600 start:<660.

l finish—the job end time (in seconds) after the build start time.

l restarts—lists jobs restarted a specified number of times. Jobs are restarted because of cluster sharing
and agent failure.

l jobcache—lists jobs by job cache type and status. Possible values include

ElectricInsight

4-12

o hit—jobs for which eMake had a cache hit.

o miss—jobs for which eMake had a cache miss.

o newslot—jobs for which eMake created a new cache slot. The object files that were previously
cached were from compilations that used different command-line arguments, environment variables,
or working directories, or any combination of these.

o uncacheable—jobs for which something went wrong with updating the relevant cache slot.

o rootschanged—jobs for which there is no natural mapping from the old eMake roots to the new
eMake roots.

o parse—jobs with job cache type parse.

o gcc—jobs with job cache type gcc.

Note: You can restrict the search scope for the following fields only: type, status, name, make, and job.

Viewing All Jobs
If you want to list all of the build’s jobs, click Tools > View all jobs….

Using the Hyperlog
The hyperlog presents an augmented version of the familiar build output log, leveraging the extra information
provided by Electric Make to enable highlighting errors and warnings, folding of submake output, and line
numbering.

To access the hyperlog, click the Go to log button on any Job Details dialog. When the hyperlog opens, you go
directly to the corresponding job's location. You can also click Tools > View build log… to access the hyperlog.

Double-clicking any line of log output displays the corresponding job's details dialog.

Note: The hyperlog is not available when monitoring a live build because the log file doesn't exist.

5-1

Chapter 5: Reports

You can generate reports from the GUI and from the command line.

In the GUI, to display the Reports dialog, click Tools > Reports or click the View build reports icon on the
toolbar. You can open one report at a time for each Insight instance, but you can open several Insight instances.
You can run most reports by double-clicking the report name. Some reports have mandatory parameters that
you must provide before running them.

Some reports listed here can be generated through both methods, and some reports can be generated through
one method only.

With ElectricInsight's command-line reporting capability, the product can be integrated to generate batch trend
reports as part of a build automation system. For a list of all command-line-enabled reports and their associated
commands, see Command-Line-Enabled Reports.

Topics:

l Build Manifest

l Build Metrics

l Build Summary

l Cluster Sharing

l Derived Files Analysis

l ElectricSimulator

l Export Timeline

l Files Modified Multiple Times

l Job Cache Misses

l Job Stats

l Job Time by Type

l Jobs by Agent

l Jobs by File

l Longest Jobs

l Longest Serial Chain

l Makefile Manifest

l Most Read Files

l Root Conflicts

l Serialization Analysis

l Terminator Lag

l Creating a Custom Report

ElectricInsight

5-2

Build Manifest
The Build Manifest report lists all files that were read and/or written by the build.

This report can help to:

l Verify that all files read by the build are the latest version from source control

l Add all files written by the build to an archive

l Produce a list of all inputs and a list of all outputs

l Identify files that are written but never read

This report requires

--emake-annodetail=basic,file

To export the report to a .csv file, click Export.

To run a shell command:

1. Click Run Command.

2. Type a command and a pathname in the Run Shell Command dialog.

The shell command is run with each file in the filtered list as an argument. Results and errors are
displayed under their corresponding tabs.

Build Metrics
This command-line-only report prints the content of the <metrics> element in the annotation.

Chapter 5: Reports

5-3

Run:

einsight --report=BuildMetrics <annotation>

Note: On Windows, use einsight-cmd instead of einsight when running reports from the command line.

Where <annotation> is the path of the annotation file.

Results format:

name,value

Build Summary
This command-line-only report prints the information from the left-side of the main Insight display.

Run:

einsight --report=BuildSummary <annotation>

Note: On Windows, use einsight-cmd instead of einsight when running reports from the command line.

Where <annotation> is the path of the annotation file.

Results format:

name,value

Cluster Sharing
The Cluster Sharing report shows the total work time lost (sum of aborted job run-times) and net build time lost
(total work time minus overlaps) due to cluster sharing over the lifetime of the build.

This report is useful if your build aborts jobs because an agent host is de-allocated from the build. The host
might have been allocated to another build, moved to another cluster, or simply shut down. The aborted jobs
must be rerun, resulting in a slower build.

This report does not consider the effect of not using some agent hosts because other builds are using them. To
evaluate this factor, use the ElectricSimulator report.

Example

l Job A starts 5 seconds into the build.

l Job B starts 10 seconds into the build.

l Both jobs are terminated 20 seconds into the build.

The total work time lost is 15 + 10 seconds, but the net build time lost is only 15 seconds because the build time
lost by B overlaps the build time lost by A.

ElectricInsight

5-4

Derived Files Analysis
The Derived Files Analysis report lets you view a specified file’s affected outputs. For example, this report
answers the question, “If I change file X, what outputs will be affected?” A file is likely to be affected if it is
produced concurrently with, or subsequent to, reads of the specified file.

This report requires

--emake-annodetail=file,history

Chapter 5: Reports

5-5

To run the report:

1. Enter the file(s) with full paths in the input field.

2. Click Run.

The middle display area lists files that will change when the input file changes. Double-click a file in this list to
display its chain of operations in the lower display area.

Double-click an item in the lower display area to display its Job Details dialog.

To clear all fields, click Clear.

To copy the displayed chain of operations (in the lower display area) to the clipboard, click Copy Report.

ElectricSimulator
The ElectricSimulator report predicts build performance on a variety of cluster sizes. The report lets you simulate
build performance with or without gcc job caching enabled, with or without schedule optimization enabled, and
with or without parse avoidance enabled. The bottom bar in the bar chart is the best possible estimated build
time.

The report includes a Second series checkbox, which lets you set two combinations of the above simulation
options at the same time, so you can compare two predicted performances on one chart.

The report requires

--emake-annodetail=waiting

Note: The simulator time results are estimates only. They do not indicate guaranteed performance.

ElectricInsight

5-6

Setting the Parameters for Numbers of Agents
There are three parameters for number of agents:

l Min—The minimum number of agents to simulate. The default is 16.

l Max—The maximum number of agents to simulate. The default is 128.

l Interval—The number of agents to increment the count each time. The default is 16.

Setting the Simulation Options

l Optimize Schedule—Enables or disables simulation with the schedule optimization feature, which uses
performance and dependency information from previous builds to optimize the runtime ordering of jobs
in subsequent builds. Schedule optimization is enabled by default in builds, but even if you have
disabled schedule optimization, the report can accurately predict schedule optimization results.

l Parse Avoidance—Enable or disables simulation with the parse avoidance feature, which caches and
reuses parse result files to speed up both full and incremental builds by minimizing makefile parse time.
Parse avoidance is not enabled by default in builds; with parse avoidance disabled, the report attempts
to simulate the effects of parse avoidance, but it must make assumptions that make the report results
less accurate.

l Jobcache GCC—Enables or disables simulation with the JobCache add-on. The add-on lets a build
avoid recompiling object files that it previously built, if their inputs have not changed. For more
information about the add-on, see the ElectricAccelerator Electric Make User Guide at
http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html.

The annotation file includes the duration of each job that populated the cache, so that the simulator can
accurately simulate a build without JobCache by using only annotation from a build with JobCache.

Job cache annotation is included in basic annotation. Even without job cache enabled in the build, the
report attempts to simulate the effects of JobCache, but it must make assumptions that make the report
results less accurate.

For more information about basic annotation and other annotation levels, see Chapter 8, Annotation, in
the ElectricAccelerator Electric Make User Guide at http://docs.electric-cloud.com/accelerator_
doc/AcceleratorIndex.html.

Command-Line Interface Report
Run this command:

einsight --report="ElectricSimulator [minagents] [maxagents] [interval]" <annotatio
n>

Note: On Windows, use einsight-cmd instead of einsight when running reports from the command line.

Where:

[minagents] (optional) is the minimum number of agents to simulate. The default is 4.

[maxagents] (optional) is the maximum number of agents to simulate. The default is 32.

[interval] (optional) is the number of agents to increment the count each time. The default is 4.

<annotation> is the path of the annotation file.

Results format:

agents,duration

http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html
http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html

Chapter 5: Reports

5-7

Export Timeline
This command-line-only report exports the main build timeline view to a graphic.

Run:

einsight --report=ExportTimeline <filename> [mode] [scale] [rowheight] [rowspace] <
annotation>

Note: On Windows, use einsight-cmd instead of einsight when running reports from the command line.

Where:

o <filename> is the name of the PNG file to write to. (Required)

o [mode] indicates if you want the image in color or black and white. Valid values are color or bw.
Default is color. (Optional)

o [scale] is the number of seconds per pixel. Default is 2. (Optional)

o [rowheight] is the number of pixels per row of jobs. Default is 1. (Optional)

o [rowspace] is the number of pixels separating rows. Default is 1. (Optional)

o <annotation> is the path of the annotation file. (Required)

Files Modified Multiple Times
This report shows which files are modified (created, updated, or deleted) multiple times during a build.

Jobs involving these files require careful serialization to ensure the file operations sequence is performed in the
correct order.

This report requires

--emake-annodetail=file

ElectricInsight

5-8

After you run the report, filter the results:

1. Type the string you want to filter for in the Filter field.

Use an asterisk to match any number of characters, and use a question mark to match any single
character.

You can also use simple regular expressions, for example, *[xz].o and *[x-z].o

Filters are case sensitive.

2. Press Enter.

Job Cache Misses
The Job Cache Misses report provides a summary of the causes of cache misses for any job using job caching:
jobs using gcc (for the JobCache add-on) or jobs using the parse avoidance feature.

JobCache lets a build avoid recompiling object files that it previously built, if their inputs have not changed. For
more information about JobCache, see the ElectricAccelerator Electric Make User Guide at http://docs.electric-
cloud.com/accelerator_doc/AcceleratorIndex.html. Parse avoidance lets a build almost eliminate makefile parse
time by caching and reusing parse result files, if their inputs have not changed.

This report finds files that caused cache misses, counts the number of jobs missed because of changes in each
file (such as modified file contents) and displays what changed. This report lists the files that caused misses,
how many misses each file caused, and which misses each file caused.

The report requires

--emake-annodetail=jobcache

To see the list of jobs that were cache misses because of changes to a specific file, click the file. Following is a
list of misses for a file named RegistryOperation.h:

http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html

Chapter 5: Reports

5-9

Note: The sum of the miss counts might not equal the total number of jobs with cache misses, because when a
job has a miss because of two or more files, it increases the miss counts for each of those files. For example, if
two files each cause misses for two different jobs, a count of two is displayed for each file.

Job Stats
This report groups jobs based on duration and shows the percentage of jobs in each group, as well as the
percentage of total build workload represented by the jobs in each group.

ElectricInsight

5-10

Command-Line Interface Report
Run this command:

einsight --report=JobStats <annotation>

Note: On Windows, use einsight-cmd instead of einsight when running reports from the command line.

Where <annotation> is the path of the annotation file.

You can also limit results to a job class, such as "compile" or "link". To limit your results, run this command:

einsight --report="JobStats <jobclass>" <annotation>

Where <jobclass> is the only job class you want to see, which can be link, compile, parse, etc.

Results format:

duration,count,time,count percent,time percent

Job Time by Type
This report shows the portion of total job time consumed by each job type. The area covered by each color is
proportional to the total time consumed by its corresponding job type.

Chapter 5: Reports

5-11

The legend displays corresponding colors for job types. The following information is available:

l Category

l Time (s)

l % of total

l # jobs

l Average (s)

Note: To sort data, click a column heading.

Clicking a row outlines the corresponding area in the treemap in yellow and lists all jobs of that type in the Jobs
section. Double-clicking a job from the list displays that job’s details. You can also display all jobs of a specific
type by clicking an area of the treemap.

Command-Line Interface Report
Run this command:

einsight --report=JobTimeByType <annotation>

Note: On Windows, use einsight-cmd instead of einsight when running reports from the command line.

Where <annotation> is the path of the annotation file.

Results format:

class,count,percent,seconds,average

Jobs by Agent
This report lists the number of jobs run by each agent in the build.

ElectricInsight

5-12

Click an agent to display the jobs that it ran. Double-click a job to display its details.

Jobs by File
This report lists which jobs read or wrote a particular file.

Type in or browse to the file you want to analyze and click Analyze.

Longest Jobs
This report lists the build’s 10 longest jobs.

Chapter 5: Reports

5-13

To view the Job Details dialog, double-click a job ID.

Command-Line Interface Report
Run this command:

einsight --report=LongestJobs <annotation>

Note: On Windows, use einsight-cmd instead of einsight when running reports from the command line.

Where <annotation> is the path of the annotation file.

Results format:

job id,duration,name

Longest Serial Chain
This report displays the sequence of serialized jobs with the longest end-to-end runtime in the build. The
longest serial chain represents a lower bound on the build runtime. Without changing the structure or content of
the build, the runtime cannot be less than the longest serial chain.

This report requires

--emake-annodetail=waiting,history

ElectricInsight

5-14

You can display the longest serial chain overall or the longest serial chain leading to a specific job.

To display the Job Details dialog, double-click a job.

Command-Line Interface Report
Run this command:

einsight --report="LongestSerialChain [job id]" <annotation>

Note: On Windows, use einsight-cmd instead of einsight when running reports from the command line.

Where:

[job id] is a job ID (optional). Specifying a job ID means that you want to find the longest serial chain leading
to that job. If you don't specify a job ID, the report returns the longest serial chain overall.

<annotation> is the path of the annotation file.

Results format:

job,type,length,name

Makefile Manifest
This report lists all makefiles used in the build.

Chapter 5: Reports

5-15

To export the list to a file, click Export.

Most Read Files
This report lists the number of times a file was read, its name, type, and location.

Command-Line Interface Report
Run this command:

einsight --report=MostReadFiles <annotation>

Note: On Windows, use einsight-cmd instead of einsight when running reports from the command line.

Where <annotation> is the path of the annotation file.

Results format:

count,type,name,location

ElectricInsight

5-16

Root Conflicts
This report lists all root conflicts in the build.

Insight divides all conflicts found in a build into two categories:

l root conflicts, which are conflicts that are not caused by an earlier conflict

l conflicts resulting from earlier conflicts (for example, jobs that are in conflict with jobs that are rerun jobs)

Serialization Analysis
This report details dependencies between a pair of jobs. For example, you see in the Annotation tab that a job
has waitingJobs and you want to know why the jobs are waiting.

In some cases you can use this report to understand the longest serial chain, but dependencies might exist that
are not within the scope of the Serialization analysis report. For example, it is common for a rule job to be
preceded by a parse job. This type of logical dependency is not included in the Serialization analysis report.

This report requires

--emake-annodetail=waiting,history

but works best with

--emake-annodetail=waiting,history,registry

Chapter 5: Reports

5-17

1. Type the ID of the job you started first in the first job field.

2. Type the ID of the waiting job in the second job field.

3. Click Locate Dependency.

Note: If you know where the jobs of interest appear in the main jobs display, you can use the buttons next to the
job fields to select the jobs.

Terminator Lag
Terminator lag time is the time that the terminator is active after the completion of the last job in the build. The
Terminator Lag report shows the portions of terminator lag time that are used by terminator activities such as
commit, write-to-disk, and wait-for-completion.

ElectricInsight

5-18

To see the list of jobs that are associated with a category of terminator activities, click the category. To see the
details that are associated with a job, double-click the job to view the Job Details window. For a description of
the information that appears in the Job Details window, see the Job Details Dialog section.

Command-Line-Enabled Reports
This section lists all command-line-enabled reports and their associated commands. For all reports,
<annotation> is required and represents the path of the annotation file.

IMPORTANT: For Windows, use einsight-cmd instead of einsight when running reports from the
command line.

Build Metrics
einsight --report=BuildMetrics <annotation>

Results format:

name,value

Chapter 5: Reports

5-19

Build Summary
einsight --report=BuildSummary <annotation>

Results format:

name,value

ElectricSimulator
einsight --report="ElectricSimulator [<minagents>] [<maxagents>] [<stepsize>]" <ann
otation>

Where:

[<minagents>] (optional) is the minimum number of agents to simulate. Default is 4.

[<maxagents>] (optional) is the maximum number of agents to simulate. Default is 32.

[<stepsize>] (optional) is the number of agents to increment the count each time. Default is 4.

Results format:

agents,duration

Export Timeline
einsight --report=ExportTimeline <filename> [<mode>] [<scale>] [<rowheight>] [<rows
pace>] <annotation>

Where:

o <filename> is the name of the PNG file to write to. (Required)

o [<mode>] indicates if you want the image in color or black and white. Valid values are color or bw.
Default is color. (Optional)

o [<scale>] is the number of seconds per pixel. Default is 2. (Optional)

o [<rowheight>] is the number of pixels per row of jobs. Default is 1. (Optional)

o [<rowspace>] is the number of pixels separating rows. Default is 1. (Optional)

Jobs by Agent
einsight --report=JobsByAgent <annotation>

Results format:

Table that contains the job count and total time for each agent.

Job Stats
einsight --report=JobStats <annotation>

You can also limit results to a job class, such as "compile" or "link". To limit your results, run this command:

einsight --report="JobStats <jobclass>" <annotation>

Where <jobclass> is the only job class you want to see, which can be link, compile, parse, etc.

Results format:

duration,count,time,count percent,time percent

Job Time by Type
einsight --report=JobTimeByType <annotation>

ElectricInsight

5-20

Results format:

class,count,percent,seconds,average

Longest Jobs
einsight --report=LongestJobs <annotation>

Results format:

job id,duration,name

Longest Serial Chain
einsight --report="LongestSerialChain [<job id>]" <annotation>

Where [<job id>] is a job ID (optional). Specifying a job ID means that you want to find the longest serial
chain leading to that job. If you don't specify a job ID, the report returns the longest serial chain overall.

Results format:

job,type,length,name

Most Read Files
einsight --report=MostReadFiles <annotation>

Results format:

count,type,name,location

Terminator Lag
einsight --report=TerminatorLag <annotation>

Results format:

activity,count,percent,seconds,average

Creating a Custom Report
You can create custom reports and make them accessible in Insight. A report typically consists of

l a single .tcl source file containing Tcl code required to perform build annotation analysis

l the Tk code required to display the result in the Insight UI

For example, you can create a report to display the number of jobs that were run by each agent used in the
build. Use the following steps to create a custom report.

1. Create a Tcl script that uses CreateReport and ConfigureReport to declare and set attributes for a report.
Use this format:

CreateReport name ?-<option> <value> ...?

Use the following options:

-command Generates a text-only version of the report

-guicommand Generates a GUI version of the report

Chapter 5: Reports

5-21

-desc Specifies a report

-requires Specifies a list of anno detail levels required for the report. The list
must be space-separated

-cleanup Cleans up the state associated with the report. For example, when a
new anno file is loaded

You must use at least one -command option and at least one -guicommand option. For example:

set report [CreateReport "MyCustomReport"]
ConfigureReport $report -desc "The report description \
a continuation of the report description."
ConfigureReport $report -requires {basic file waiting history}
ConfigureReport $report -command RunCustomReport
ConfigureReport $report -uicommand MakeCustomReportUI

Note: Make sure the console version of the report returns the report results as a text string (do not merely
print directly with [puts]).

If you are running the Insight GUI and you invoke a custom report that has no -guicommand, Insight will run
the -command version, capture the output, and display it as raw text in the GUI.

2. Add the function to perform the analysis and display results to the Tcl script. The function is invoked with
two arguments:

o The name of the widget that the function needs to create to display results

o The name of the variable that the function needs to update with progress information, from 0.0 to 1.0.
This information controls the progress bar when the report is generated. The progressVar
argument is optional

proc CreateJobsByAgentReport {w progressVar} {

In addition to function arguments, a global variable anno is available for reports. This is a handle for the
annolib object containing the build annotation information that is currently loaded in ElectricInsight. To
access this information in your report, import the anno variable:

global anno

ElectricInsight

5-22

3. Add Tcl code to perform the analysis on the annotation information.

o Following is an example that shows how to forward iterate through all the jobs in the build, counting
the number of jobs run by each agent:

array set count {}
set end [$anno jobs end]
for {set j [$anno jobs begin]} {$j != $end} {set j [$anno job next $j]} {

set agent [$anno job agent $j]
if { $agent ne "" } {

if { [info exists count($agent)] } {
incr count($agent)

} else {
set count($agent) 1

}
}

}

o Following is the same example using reverse iteration:

array set count {}
set rend [$anno jobs rend]
for {set j [$anno jobs rbegin]} {$j != $rend} {set j [$anno job prev $j]} {

set agent [$anno job agent $j]
if { $agent ne "" } {

if { [info exists count($agent)] } {
incr count($agent)

} else {
set count($agent) 1

}
}

}

Chapter 5: Reports

5-23

4. Write Tk code to display results.

Insight includes the [Tile] widgets and the [Tablelist] widget. For this report, a simple tablelist can
display the results:

The “count” array contains the number of jobs run by
each agent.
We create a simple tablelist (multi-column listbox)
to display the results.

frame $w
ttk::label $w.label -text “Jobs by agent:” -anchor w
tablelist::tablelist $w.results -columns {

0 “Agent”
0 “Jobs run by this agent”

} -height 10 -width 80 -borderwidth 1 -stretch end \
-font TkDefaultFont -background gray98 \
-stripebackground \#e0e8f0 \
-labelcommand tablelist::sortByColumn

$w.results columnconfigure 1 -sortmode integer
grid $w.label -sticky ew
grid $w.results -sticky nsew
grid columnconfigure $w 0 -weight 1
grid rowconfigure $w 1 -weight 1

foreach agent [lsort [array names count]] {
$w.results insert end [list $agent $count($agent)]

}
return $w

}
end of procedure CreateJobsByAgentReport

5. Save the .tcl files that define your new report in one of the following directories.

o Linux:

l /opt/ecloud/ElectricInsight/reports

l $HOME/.ecloud/ElectricInsight/reports

o Windows:

l c:\ecloud\ElectricInsight\reports

l $USERPROFILE\Electric Cloud\ElectricInsight\reports

At startup, Insight scans the above directories for .tcl files defining new reports and automatically
includes the reports the next time that Insight starts. Reports that are saved in the above Electric Cloud
directories are available to all users running Insight. Reports in other locations are available to a single
user only.

6. Click Tools > Reload reports.

6-1

Chapter 6: Understanding Build Performance

This section provides guidance for using Insight to help you understand build performance issues.

l Specify the right annotation detail level

At a minimum, specify annodetail to basic. Additional detail levels enable more sophisticated analysis of
the build. For maximum performance analysis, set annodetail to “basic,lookup,waiting,history,registry”.
Because additional information might affect performance slightly, specify basic detail level only, unless
you are actively pursuing a performance issue.

l Use job details

When viewing an annotation file in Insight, you can see if your build is slow due to excessive conflicts,
over serializations, or insufficient decomposition of build steps. You can then drill-down into job details
by double-clicking individual jobs in the Agents & Jobs section.

l Use reports

o The Longest serial chain report can help estimate the best possible performance you can
reasonably get from the build.

o The Serialization analysis report can help you understand why jobs are serialized. In an optimal
parallel build, all agents are busy at the same time.

For example, the image on the left shows a build that suffers from over serialization. Using the
Serialization analysis report, you can determine why the build is serialized and adjust the build to
eliminate serializations. The image on the right shows the result of making the correct adjustments.

ElectricInsight

6-2

l Watch for the following in the Agents & Jobs section:

o One agent bar is longer than others

o If you see gaps where an agent is not running a job, carefully examine the running jobs while some
agents are idle

l Conflicts and reverted jobs

The presence of conflict and reverted jobs means the build was slower than necessary. Reverted jobs
are symptoms of job conflicts. To eliminate reversions, you must eliminate conflicts. Usually, running a
build with a history file eliminates conflicts. Typically, the most expensive job conflicts are those involving
parse jobs.

If your build ran without a history file, you might have conflicts. If you had a pre-existing history file, your
build should not contain conflicts unless the build changes affected job order and inter-dependencies.

7-1

Chapter 7: Annolib Programmer's Reference

Overview
annolib is the library used to parse annotation files. Required values are enclosed in < > (for example,
<filename>). Optional values are enclosed in ? (for example, ?count?).

Note that in ElectricInsight 5.0, several new commands are introduced to allow any number of simultaneous
iterators. The corresponding commands in earlier versions allow only one iteration to be “active” at a time; those
commands are deprecated as indicated below.

API Commands
l anno create—Create a new anno object that can be used to query information from an annotation file.

The return value is a handle that can be used in a subsequent [$anno ...] call. For example:

set anno [anno create]

$anno agents

l $anno agents—Retrieve a list of agents that participated in this build.

l $anno comparejobs <field> <jobId> <jobId>—Compare two jobs for sorting by the given field
and return -1, 0, or 1 if the first job is earlier, equal to, or later than the second job.

l $anno destroy—Release all resources associated with this anno instance and remove the command
for controlling it from the interpreter.

l $anno duration—Retrieve the length of the build that is described in the anno object. This is the
greatest time index seen in the annotation file.

l $anno environment—Dump the contents of the environment table, which was built out of the section of
the annotation file. The result is a list of name/value pairs similar to [array get]. The list is unordered.

l $anno file <command> <filename>—Query the anno object for information about a file referenced
by the build.

l $anno file isdirectory <filename>—Return a Boolean indicating whether the specified file is a
directory or not.

l $anno file operations <filename>—Return a Tcl list of lists describing the operations that
referenced this file in the build.

l $anno file type <filename>—Return the file type for the specified file.

ElectricInsight

7-2

l $anno filecount—Retrieve a count of the number of files referenced in Operations in this annotation
file.

l $anno files—Retrieve a list of the files referenced in Operations in this annotation file.

l $anno indexagents—For each agent in the annotation, construct a list of jobs that were run on that
agent, sorted in order of time in which they were invoked. This index is stored internally for use by
ElectricInsight when rendering the annotation.

l $anno load <channel> ?count?—Parse ?count? bytes of data from <channel> and create job
objects as necessary. The return value is a Boolean indicating whether parsing is complete. If ?count?
is not specified, all data is read from <channel>.

l $anno loadstring <data> ?done?—Parse the data in <data> and create job objects as necessary.
There is no return value. If ?done? is specified, it indicates whether the string represents the end of the
XML data.

l $anno jobagent <jobId>—Retrieve the name of the agent on which the job ran.

l $anno jobcommand <jobId>—Invoke commands on a particular job from the annotation.

l $anno job annolength <jobId>—Retrieve the length of the segment of the annotation file that is
describing the job.

l $anno job annostart <jobId>—Retrieve the start of the segment of the annotation file that is
describing the job.

l $anno job commands <jobId>—Retrieve a list of the commands that were associated with the job.
The result is a list of lists with the following form.

l cmdlist = {[cmd]}
cmdlist is a list containing one or more cmd

l cmd = {lines argv [output]}
cmd is a list containing lines, argv, and one or more output
lines is the actual line(s) from the makefile from where the command was issued, for example
“11-12”
argv is the actual command issued to the system

l output = {src out}
output is a list containing src and out
src is the source of the output (for example, “make”)
out is the actual string emitted by the component

l $anno job conflict <jobId>—Return registry conflict information for the specified job.

l $anno job conflictfile <jobId>—If the job is a conflict job, retrieve the name of the file that it
conflicted over.

l $anno job conflicttype <jobId>—If the job is a conflict job, retrieve the type of the conflict.

l $anno job deps <jobId>—Retrieve the list of history dependencies for the job. This might be empty if
annotation did not include history-level detail or if there were no history dependencies.

l $anno job environment <jobId>—Retrieve the environment for the job.

l $anno job exitcode <jobId>—Retrieve the exit code for the job.

l $anno job finish <jobId>—Retrieve the end time of the job in seconds.

l $anno job flags <jobId>—Retrieve the flags for the job as a Tcl list.

l $annojob isconflict <jobId>—Return a Boolean indicating whether the job is a conflict job.

Chapter 7: Annolib Programmer's Reference

7-3

l $anno job isrerun <jobId>—Return a Boolean indicating whether the job is a rerun job.

l $anno job isreverted <jobId>—Return a Boolean indicating whether the job is a reverted job.

l $anno job jobcache diffs <jobId>—Retrieve a list of differences that caused a job cache miss.
Each entry in the list is itself a list that gives the name of the file, the original state, the new state, and
whether the differences were ignored by eMake.

l $anno job jobcache length <jobId>—Retrieve the duration of the original uncached run of the
job.

l $anno job jobcache status <jobId>—Retrieve the job cache status, one of “hit”, “miss”,
“newslot”, “rootschanged”, “uncacheable”, or “unneeded”.

l $anno job jobcache type <jobId>—Retrieve the type of job caching applied to the job, such as
“gcc” or “parse”.

l $anno job length <jobId>—Retrieve the duration of the job in seconds. This is equivalent to
[$anno job jobId finish] - [$anno job jobId start], but it avoids using Tcl's [expr]
command, so it is much faster.

l $anno job make <jobId>—Retrieve the Make instance ID for the Make containing the specified job.

l $anno job makefile <jobId>—Retrieve the name of the makefile containing the rule that produced
the job, if any.

l $anno job name <jobId>—Retrieve the name for the specified job.

l $annojob neededby <jobId>—Retrieve the ID of the job that caused the job to be run.

l $anno job operations <jobId>—Retrieve the list of Operations performed by the job, in order, as a
Tcl list of lists.

l $anno job operations -type registry <jobId>—Retrieve the list of registry operations for the
specified job.

l $anno job partof <jobId>—Retrieve the ID of the job that the job continues. This is valid only for
continuation jobs; other jobs will return an empty string.

l $anno job rerunjob <jobId>—For conflict jobs, retrieve the job that was used to rerun the job.

l $annojob serialorder <jobId>—Retrieve the serial order of the job relative to the other jobs in the
build. The first job in the build has serial order 1; the final job in the build has serial order N for a build
with N jobs.

l $anno job start <jobId>—Retrieve the start time of the job in seconds.

l $anno job submakes <jobId>—Retrieve the list of submakes performed by the specified job.

l $anno job timing <jobId>—Retrieve the full timing information for the job as a list of lists of the form
{start finish agent} {start finish agent} Normally there is only one entry in the list; if
the job was restarted because of cluster sharing or agent failure, there are additional entries. Jobs that
never ran will return an empty list.

l $anno job type <jobId>—Retrieve the type of the specified job.

l $anno job waitingjobs <jobId>—Retrieve the list of jobs that waited for the job to complete before
running. This might be empty if there are no waiting jobs or if the annotation file did not include
waitingJobs annotation.

l $anno job writejob <jobId>—For conflict jobs, retrieve the job that wrote the file that the job
conflicted over.

ElectricInsight

7-4

l $anno jobcount—Return a count of the number of jobs in the annotation.

l $anno jobiterbegin—(Deprecated as of version 5.0) Initialize the job iterator to the head of the list of
jobs in the anno object.

l $anno jobitermore—(Deprecated as of version 5.0) Return a Boolean indicating whether the next
call to [$anno jobiternext] will return a valid job or not. This is used in conjunction with [anno
jobiterbegin] and [anno jobiternext] to efficiently iterate through the list of jobs in the anno
object (in serial order).

l $anno jobiternext—(Deprecated as of version 5.0) Retrieve the job with the next highest serial order
in the anno object using an iterator initialized with [anno jobiterbegin]. If the iterator has reached
the end of the list of jobs, an empty string is returned. Otherwise, the job ID for the next job is returned,
and the iterator is advanced one step.

l $anno jobs begin—Return an iterator for the first job in the build.

l $anno jobs end—Return an iterator referring to the “past-the-end” job in the build—not an actual job,
but a hypothetical placeholder for iteration.

l $anno jobs next <jobId>—Return the next job in the build after the job given by <jobId>.

l $anno jobs prev <jobId>—Return the previous job in the build before the job given by <jobId>.

l $anno jobs rbegin—Return an iterator for the last job in the build.

l $anno jobs rend—Return an iterator referring to the “before-the-first” job in the build—not an actual
job, but a hypothetical placeholder for iteration.

l $anno jobsearch <attribute pattern>—Search the jobs in the annotation for jobs that match the
criteria.

l $anno make <command> <makeId>—Invoke commands on a particular Make from the annotation.

l $anno make commandline <makeId>—Retrieve the command line for the specified Make.

l $anno make job <makeId>—Retrieve the job ID for the job that spawned the given Make instance or
an empty string, if no job spawned the Make.

l $anno make level <makeId>—Retrieve the level of the specified Make instance.

l $anno make mode <makeId>—Retrieve the emulation mode of the given Make instance.

l $anno make workingdir <makeId>—Retrieve the working directory for the specified Make instance.

l $anno makecount—Return a count of the number of Makes in the annotation.

l $anno metrics—Dump the contents of the metrics table, which was built out of the section of the
annotation file. The result is a list of name/value pairs similar to [array get]. The list is unordered.

l $anno parseoptions ?optionList?—Query or set the anno object parse options. This controls
which portions of the annotation file are processed when [anno load] is invoked.

l $anno properties—Dump the contents of the properties table, which was built out of the section of the
annotation file. The result is a list of name/value pairs similar to [array get]. The list is unordered.

l $anno refcount—Retrieve the reference count from the anno object. For testing only.

l $anno rjobiterbegin—(Deprecated as of version 5.0) Initialize the job iterator to the end of the list of
jobs in the anno object.

Chapter 7: Annolib Programmer's Reference

7-5

l $ann rjobitermore—(Deprecated as of version 5.0) Return a Boolean indicating whether the next
call to [anno rjobiternext] will return a valid job or not. This is used in conjunction with [anno
rjobiterbegin] and [anno rjobiternext] to efficiently iterate through the list of jobs in the anno
object, in reverse serial order.

l $anno rjobiternext—(Deprecated as of version 5.0) Retrieve the job with the next lowest serial
order in the anno object using an iterator initialized with [anno rjobiterbegin]. If the iterator has
reached the end of the list of jobs, an empty string is returned. Otherwise, the job ID for the next job is
returned, and the iterator is advanced one step.

l $anno sortjobs ?options? <jobList>—Sort the jobs in <jobList> according to the given criteria.

Note: This modifies the list in place.

l $anno type <command> <type>—Query the aggregate attributes of jobs by type.

l $anno type conflicttime <type>—Return the amount of time spent on jobs of this type that were
later found to be in conflict.

l $anno type jobcount <type>—Return the number of jobs of this type.

l $anno type reruntime <type>—Return the amount of time spent on jobs of this type that were rerun
jobs.

l $anno type revertedtime <type>—Return the amount of time spent on jobs of this type that were
later reverted.

l $anno type time <type>—Return the amount of time spent on jobs of this type that were not conflict,
reverted, or rerun jobs.

l $anno types—Retrieve a list of known types of jobs.

	Chapter 1: Introduction
	About ElectricInsight
	Documentation

	Chapter 2: Installing ElectricInsight
	Installer Files
	Installation Log File
	Library Requirements for Linux Systems
	Installing ElectricInsight Using the GUI
	Installing ElectricInsight Using the Console with Installation Options
	Installing ElectricInsight Using the Console with No Installation Options (Li...
	Checking for Software Updates

	Chapter 3: Getting Started
	Annotation
	Starting ElectricInsight
	Navigating the Interface
	Agents & Jobs
	Navigation
	Overview
	Legend
	Job Summary
	Zoom
	Replay
	Monitor Live Build

	Chapter 4: Build, Job, and Make Information
	Build Properties
	Job Details Dialog
	Job Details
	Job Path
	Annotation
	Environment
	Submakes

	Make Details Dialog
	Make Details
	Make Jobs
	Make Path

	Searching for Jobs
	Search Examples
	Supported Search Fields

	Viewing All Jobs
	Using the Hyperlog

	Chapter 5: Reports
	Build Manifest
	Build Metrics
	Build Summary
	Cluster Sharing
	Derived Files Analysis
	ElectricSimulator
	Export Timeline
	Files Modified Multiple Times
	Job Cache Misses
	Job Stats
	Job Time by Type
	Jobs by Agent
	Jobs by File
	Longest Jobs
	Longest Serial Chain
	Makefile Manifest
	Most Read Files
	Root Conflicts
	Serialization Analysis
	Terminator Lag
	Command-Line-Enabled Reports
	Creating a Custom Report

	Chapter 6: Understanding Build Performance
	Chapter 7: Annolib Programmer's Reference
	Overview
	API Commands

