
1

Technical Notes
MS Visual Studio IDE Add-in

version 3.2.3

May 2013

This document contains information about the ElectricAccelerator integration with the Microsoft Visual Studio
IDE. Topics include:

Overview 2

New Features and Improvements 2

Known Issues 2

Installation 3

Important Notes 4

Using the Visual Studio IDE Add-in Interface 5

Add-in Settings 9

Uninstalling the Visual Studio IDE Add-in 14

Setting Environment Variables for Visual Studio 14

Troubleshooting and Getting Help 18

Electric Cloud
ElectricAccelerator

version 7.0

Overview

2

Overview
ElectricAccelerator® integrates with the Microsoft Visual Studio IDE. The ElectricAccelerator Visual Studio IDE
Add-in allows you to build Visual Studio solutions and projects from within the Visual Studio IDE using Electric
Make® (eMake). The add-in provides an Electric Cloud build menu and toolbar. The existing build menu
remains intact for non-eMake builds.

IMPORTANT: The ElectricAccelerator Visual Studio IDE Add-in is different from the ElectricAccelerator
Solution Support Add-in, which is a command line add-in used by eMake to convert Visual Studio projects
into NMAKE makefiles.

Support Information
The ElectricAccelerator Visual Studio IDE Add-in supports the following versions of Visual Studio:

l Visual Studio 2012

l Visual Studio 2010

l Visual Studio 2008

l Visual Studio 2005

Note: The Visual Studio 2010 and 2012 add-in does not currently support Xbox builds, Windows Mobile
configurations, or Custom build rules.

New Features and Improvements
for 3.2.3

l Added a new menu item that enables you to build with generated makefiles locally. (VSP-601)

for 3.2.2

l Corrected an issue that resulted in Exception of type 'System.Exception' thrown (VSP-584).

l Corrected an issue that caused the add-in to return Error HRESULT_FAIL (VSP-582).

l The add-in can now parse @ECLOUD_BUILD_ID@ when it is used in an annotation file path (VSP-
578).

l Fixed the registration of the add-in for Visual Studio 2012 (VSP-570).

Known Issues
l The ElectricAccelerator Visual Studio IDE Add-in does not run on a system that has never had Visual

Studio 2005 installed on it. On such systems, the IDE add-in throws an exception similar to the following:
3:Error: Adding Build menu item: Could not load file or assembly 'stdole, Version=7.0.3300.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a' or one of its dependencies. The system cannot
find the file specified.

Workaround: Install the Office 2003 Update: Redistributable Primary Interop Assemblies
(http://www.microsoft.com/download/en/details.aspx?DisplayLang=en&id=20923).
(VSP-510)

http://www.microsoft.com/download/en/details.aspx?DisplayLang=en&id=20923

Installation

3

Installation
You must install Electric Make on the build machine for the add-in to work properly.

Installation for all Windows platforms

If you used a previous version of the Visual Studio IDE Add-in installer to perform a cluster upgrade, launching
the installer may display a dialog stating “invalid command name...”

Workaround: Uninstall the existing Visual Studio IDE Add-in and then rerun the installer.

Installing the Visual Studio IDE Add-in
To install the Visual Studio IDE Add-in locally (you can also install the Solution Support Add-in locally), run the
installer provided.

1. Run the VSAddIn-<version>-Install.exe file.

2. Welcome screen—click Next.

3. Choose Destination Location screen—accept the default install location or click Browse to change the
location. Click Next.

4. Setup Type screen—select the setup type:

o ElectricAccelerator VS IDE Add-in Local Install
o ElectricAccelerator Solution Support Add-in Local Install
o Custom (This option allows you to select multiple setup types from this list.)

Click Next.

5. Start Copying Files screen—review your settings before continuing the installation. Click Next to
continue or Back to make changes.

6. When the wizard displays “Install finished,” your installation is complete. Click Finish to close the
installer.

The installation log file is in the install directory’s root, C:\ECloud by default.

Note: Due to an issue with previous versions’ uninstallers, an upgrade may cause the following error message:
“Cannot find script file: C:\ECloud\i686_win32\bin\unregaddin.vbs.” You can safely ignore this message.

Finish all Visual Studio installations before installing the Electric Cloud IDE Add-in. Adding a new language to
an existing Visual Studio installation with the Electric Cloud IDE Add-in causes Visual Studio to display an
empty Electric Cloud menu. The workaround is to reinstall the add-in.

Installation Options
Use this structure for options: <Install filename> [options]

The following options are available to customize your installation:

Option Description

/help Displays help information.

/mode [ARG] Sets the installation mode.
Available values: standard or silent.

Important Notes

4

Option Description

/prefix [ARG] Sets the installation directory.

/response-file [ARG] The file from which to read installer responses.

/save-response-file [ARG] The file to which installer responses are written when the
installer exits.

/temp [ARG] Sets the temporary directory used by the program.

/type [ARG] Performs the selected type of installation. Available values:
addin or uiaddin.

/version Displays installer version information.

Using response files with silent installs
A response file is a file that defines installation parameters. These parameters are the same values a user
would normally set through the installer interface or command line.

To create a response file and then use it in multiple silent installs:

1. Run an installation with the /save-response-file <filename> option and your desired settings.

This creates the response file in the directory where you ran the installer.

2. Use the resulting response file for silent identical installs by using the /response-file <filename>
and /mode silent options.

Important Notes
Maximum PDBs
ECADDIN_MAX_PDB_FILES is now set to 16 by default. If you have fewer than 16 agents, you can decrease this
value to be equal to or less than the number of agents.

Electric Make
The add-in checks for the presence of eMake when Visual Studio starts. If it cannot be found, its
Build/Rebuild/Clean functions are disabled.

When eMake is run from Visual Studio, it must be run through an intermediate application named
ecspawn.exe. This program ensures that eMake responds correctly to CTRL-C and that child processes are
grouped together. This application is displayed in the Task Manager and should not be terminated; it stops
when the build finishes or when the build is canceled.

Do not run non-eMake builds while running eMake builds and vice-versa.

ElectricInsight
The add-in checks for the presence ElectricInsight when Visual Studio starts. If it cannot be found, the Run
ElectricInsight function is disabled.

When you run ElectricInsight from Visual Studio, Visual Studio looks for the currently running instance of
einsight. In this case, the annotation file is not loaded (or reloaded). Manually open the annotation file from
ElectricInsight, or close ElectricInsight and select Run ElectricInsight again.

Using the VisualStudio IDEAdd-in Interface

5

Solving common issues
If you encounter issues, make sure you have done the following:

l Initialize Visual Studio

Use the psexec method to initialize Visual Studio as shown:

psexec -u ECloudInternalUser1 "C:\Program Files\Microsoft Visual Studio 8\
Common7\IDE\devenv.exe"

As an alternative, disable profiles for Visual Studio by running this regedit script:

REGEDIT4
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\8.0\Profile]
"AppidSupportsProfiles"="0"

l Disable the Windows error reporting service on the agent/EFS hosts.This avoids popup windows for
crashed applications.

l Set the maximum number of parallel project builds to 1.

l Initialize the Customer Experience Improvement Program.

Using the Visual Studio IDE Add-in Interface
Main Menu and Toolbar

When you run Visual Studio, you are presented with the Electric Cloud main menu and toolbar (displayed in the
following screenshot):

The menu has the following functions:

l Build Solution - Builds the current solution with eMake using the Cluster Manager specified and/or local
agents.

l Build Solution Locally - Builds the current solution locally with eMake butwithout using remote agents
or local agents (this function is equivalent to turning off the Cluster Manager and local agents). This
function is hidden by default. See "Build Solution Locally" on page 6 for additional information about this
function.

l Rebuild Solution - Rebuilds the current solution.

Using the VisualStudio IDEAdd-in Interface

6

l Clean Solution - Cleans the current solution.

l Build <project> - Builds the current project or selection.

l Rebuild <project> - Rebuilds the current project or selection.

l Clean <project> - Cleans the project or selection.

l Cancel - Cancels a running eMake build.

l Run ElectricInsight - Runs ElectricInsight with the current annotation file (if it exists).

l Settings - Opens the solution settings dialog.

l About - Displays add-in information.

The build options use the solution settings and Tools > Options settings to create the eMake command. The
add-in creates a makefile [<solution name>.ecmak] with the devenv call and calls eMake using the
environment and command-line options specified.

An example solution rebuild:

mysolution.ecmak:
all:

devenv C:/mysolution.sln /rebuild Debug /useenv

The project and configuration are taken from the current context. The command is dependent on the menu item.

When a build is running, you can cancel it by selecting Cancel. Cancel is available only during a running build,
rebuild, or clean.

At any time, you may run ElectricInsight to view the annotation file. ElectricInsight loads the specified annotation
file or defaults to emake.xml. If ElectricInsight is already running, it gets the focus. In this case, you must
manually reopen the file. The Settings selection displays the solution settings dialog.

The toolbar provides the same functionality as the Electric Cloud main menu and is customizable.

Build Solution Locally
You can choose to build a solution locally with eMake butwithout using remote agents or local agents. You
may want to use this function if a distributed incremental build is slow, or if a local Visual Studio incremental
build causes unnecessary rebuilding of objects.

To make this function visible in the menu, set the environment variable ECUIADDIN_LOCAL_BUILD=true.

Using the VisualStudio IDEAdd-in Interface

7

The following screenshot illustrates the menu with the Build Solution Locally function.

Advisories for Build Solution Locally

l The eMake local build does not support autodepend. This means changes in header files may not
cause dependent source files to be recompiled.

l The eMake local build does not produce an annotation.

l Because history is not generated, unexpected conflicts may occur on subsequent eMake cluster builds.

Output Pane
Output from an eMake build is displayed in the EC Build output pane (displayed in the following screenshot).

Using the VisualStudio IDEAdd-in Interface

8

Context-Sensitive Menus
The add-in provides additional context-sensitive menus.

The following screenshot illustrates the Solution menu.

The following screenshot illustrates the Project menu.

Add-in Settings

9

The following screenshot illustrates the Selection menu.

Add-in Settings
Note: See the ElectricAccelerator Solution Support Add-in Technical Notes for environment variable
descriptions.

Global Options
Global options are stored in the standard Visual Studio Tools > Options dialog under the Electric Cloud entry.
Three panes are available: Add-in, Advanced, and General. This information is stored in the registry under:
HKCU\SOFTWARE\Electric Cloud\ECUIAddIn

Add-in pane
The following screenshot illustrates the Add-in pane.

Add-in Settings

10

Debugging

l Debug Log Name - Specify the name of the debug log (sets ECADDIN_DEBUG_LOG_FILENAME). The
default is C:\ecdebug<unique>.log.

Note: This file represents a file on the agent (not the build computer) that parses the solution.

l Do Not Delete Temp Makefiles - Do not delete temporary makefiles when the build completes (sets
ECADDIN_DONT_RM_TMP_MAKEFILES=true).

l Do Not Use Unique Names - Do not use unique names for temporary files (sets ECADDIN_DONT_USE_
UNIQUE=true).

l Enable Debug Log - Enable debug logging (sets ECADDIN_DEBUG=true).

Options

l Continue On Error - Continue when an error occurs (sets ECADDIN_CONTINUE_ON_ERROR=true, which
adds /I to the eMake call).

l Disable Solution Support Add-in - Disable the Solution Support Add-in (sets ECADDIN_DONT_
USE=true).

l Do Not Parse Projects - Prevent the Solution Support Add-in from breaking up C++ projects (sets
ECADDIN_DONT_PARSE_PROJECTS=true).

l Do Not Parse Specific Projects - Prevents the Solution Support Add-in from breaking up specified C++
projects (sets ECADDIN_DONT_PARSE_PROJECT).

l Run Deployment Locally - Run deployment projects locally using #pragma runlocal (sets ECADDIN_
RUN_DEPLOYMENT_PROJECTS_LOCALLY=true).

l Run Local Project - Run specified projects locally using #pragma runlocal (sets ECADDIN_RUN_
LOCAL_PROJECT).

l Serialize All Projects - Serialize all projects using #serialize (sets ECADDIN_SERIALIZE=true).

l Use MSBuild - Use MSBuild internally for unparsed projects (sets ECADDIN_USE_MSBUILD=true).

Performance

l Add Implicit Dependencies - Add dependencies to improve first-time build speed (sets ECADDIN_ADD_
IMPLICIT_PDB_DEPENDENCIES=true)

l Always Rescan Solution - Always recreate temporary makefiles even if the solution has not changed.

l Enable Incremental Link - Enable incremental linking (sets ECADDIN_ENABLE_INCREMENTAL_
LINK=true).

l Force /Z7 - Force compiler option /Z7 (sets ECADDIN_FORCE_Z7).

l Maximum PDB Files - Maximum number of PDB files used when splitting (sets ECADDIN_MAX_PDB_
FILES).

l Remove Dependencies - Remove dependencies and references to prevent Visual Studio from building
dependent projects (sets ECADDIN_REMOVE_DEPENDENCIES=true).

Add-in Settings

11

Advanced pane
The following screenshot illustrates the Advanced pane.

Advanced

l Auto Depend - Allows eMake to automatically determine dependencies. The default is Yes.

l EMake Options - A list of eMake options in the form --emake-<option>=<value> separated by a
carriage return.

l Environmental Variables - A list of environment variables in the form <variable>=<value> separated
by a carriage return. Do not use “set”.

l Exclude Environment - A list of environment variables to exclude from eMake (--emake-exclude-env),
separated by ‘:’ [a colon].

l History - Specifies the emake history option (--emake-history). Values can be create, merge, or read.

l History File - Specifies the history file to use (--emake-historyfile). The default is eMake.data.

l Max Agents - Specifies the maximum number of agents to use during the build (--emake-maxagents).

l Monitor - Allows the build to be monitored by ElectricInsight (--emake-monitor).

l Registry Root - Specifies the registry root (--emake-reg-roots). You can specify multiple roots
separated by ‘:’ [a colon].

l Use Environment - Determines whether to add /useenv to the devenv call.

l Visual Studio Setup file - Visual Studio setup file for command line builds (default is vsvars32.bat).

Add-in Settings

12

General pane
The following screenshot illustrates the General pane.

Annotation

l Annotation Detail - Specifies the level of annotation detail (--emake-annodetail) from the following:
o Basic
o Environment
o File
o History
o Lookup
o Registry
o Waiting

l Annotation File - Specifies the annotation file (--emake-annofile). Required if annotation detail is set.

l Annotation Upload - Specifies whether to upload the annotation file (--emake-annoupload).

Local Agent

l Max Local Agents - Specifies the maximum number of local agents (--emake-maxlocalagents).

l Use Local Agents - Switches on local agents (--emake-localagents).

l Yield Local Agents - If using more than N local agents, then eMake releases the number agents over N
every T seconds so they can be used by another eMake that is looking for local agents (--emake-
yield-localagents=N,T).

Misc

l Makefile - Specifies a makefile to use rather than the default that the add-in generates.

Add-in Settings

13

Settings

l Build Class - Specifies the build class (--emake-class).

l Build Label - Specifies the build label (--emake-build-label).

l Cluster Manager - The eMake Cluster Manager (--emake-cm). If this field is empty, an eMake build is
performed with local agents when Use Local Agents is selected. When Use Local Agents is not selected,
a local eMake build (without remote or local agents) is performed.

l Resource - Specifies the build resource (--emake-resource).

l Root - Specifies the eMake root (--emake-root). You can specify multiple paths separated by ‘:’ [a
colon].

l Use 64-bit eMake - Use the 64-bit version of eMake.

Solution Settings
Four settings panes are available: Add-in, General, Advanced, and Command Line.

For the Add-in, General, and Advanced panes, available fields and their descriptions are analogous to those in
global options.

The following screenshot illustrates the Command Line pane.

This pane is read-only. It shows a preview of the environment settings and the command line arguments that
will be used with eMake.

Uninstalling the VisualStudio IDEAdd-in

14

Inheriting Options
The add-in inherits its global options (Tools > Options) from the environment settings unless you explicitly set
the options. Local options (Electric Cloud > Settings) inherit global options in the same manner.

To inherit global options, leave the corresponding solution settings field blank or select <inherit from global
defaults>.

Using Macros
If file name settings include any variables that contain invalid DOS file name characters, such as a ‘\’ [a
backslash] or ‘:’ [a colon], this will result in an error at run-time.

Uninstalling the Visual Studio IDE Add-in
To uninstall the Visual Studio IDE Add-in, go to the Control Panel >Add/Remove programs and select
ElectricAccelerator VS IDE Add-in.

Setting Environment Variables for Visual Studio
You can control the way the add-in works by setting these environment variables on the Electric Make machine.

Note: Environment variables can be true or false. Valid boolean values are “0”, “no”, “false”, “off” and “1”, “yes”,
“true”, “on”. Case is not significant.

Setting Environment Variables for VisualStudio

15

Environment Variable Description Usage

ECADDIN_DEBUG Setting this variable to any value causes debug
log files to remain in C:\ecdebug<ID>.log on
the agent host. These files are used for
troubleshooting by Electric Cloud engineers.
Normally, you do not need to set this value.

debugging

ECADDIN_DEBUG_LOG_FILENAME Specifies the debug log name. Requires
ECADDIN_DEBUG. Use '$1' in the file
specification to insert a unique ID. For example,
C:\ecdebug_$1.log. Use a file location
outside of emake root. The log file is stored on
the agent.

debugging

ECADDIN_DONT_RM_TMP_MAKEFILES Retains makefiles created during the build but
normally deleted when the build finishes. This
environment variable can have any value; it just
needs to be set.

debugging

ECADDIN_DONT_USE_UNIQUE Does not use unique names for temporary
makefiles. Use with ECADDIN_DONT_RM_TMP_
MAKEFILES.

debugging

ECADDIN_ECBREAKPOINT Determines whether to invoke ecbreakpoint on
failed jobs.

debugging

ECADDIN_ECBREAKPOINT_PROJECTS Determines whether to invoke ecbreakpoint for
specified projects. Use a semi-colon to delimit
projects.

debugging

ECADDIN_ADD_IMPLICIT_PDB_
DEPENDENCIES

Adds dependencies to improve first-time build
speed.

performance

ECADDIN_MAX_PDB_FILES Specifies the maximum number of PDB files
produced (set to 16 by default).

performance

ECADDIN_REMOVE_DEPENDENCIES Removes project dependencies (on by default). performance

ECADDIN_USE_DEVENV_FOR_PROJECT Uses devenv (instead of MSBuild) to build
specific projects. Supply a list of projects
(separated by a semicolon) to be built with
devenv.

ECADDIN_CONTINUE_ON_ERROR Allows the build to continue after an error has
occurred. Off by default for the Solution Support
Add-in. On by default for the Visual Studio IDE
Add-in.

switch

ECADDIN_CREATE_MISSING_
DEPENDENCIES

Creates missing dependencies to avoid
missing dependency warnings.

switch

ECADDIN_DISALLOW_BSC Does not generate browse information files. switch

Setting Environment Variables for VisualStudio

16

Environment Variable Description Usage

ECADDIN_DISALLOW_PCH Does not generate/use precompiled header
files (implied by ECADDIN_MAX_PDB_FILES)

switch

ECADDIN_DISALLOW_PDB Does not generate PDB files. switch

ECADDIN_DISALLOW_SBR Does not generate browse information files
from sources.

switch

ECADDIN_DONT_ADD_PCH_LOCATION Prevents the add-in from adding the location of
the PCH file in all cases. This variable is
relevant only if ECADDIN_MAX_PDB_FILES or
ECADDIN_DISALLOW_PCH is switched on.

switch

ECADDIN_DONT_PARSE_PROJECT This variable takes a list of project names
separated by semi-colons and without white
spaces. This variable is useful for deploying the
add-in. If for any reason the add-in cannot build
some of your projects, this variable allows you
to work around the problem.

When using this variable, you may experience
an the warning MSB4098. You can ignore this
warning because any project references are
now converted into additional dependencies.
MSBuild, however, does not provide a
mechanism to turn off this warning.

switch

ECADDIN_DONT_PARSE_PROJECTS This variable takes any non-blank value and its
behavior is similar to ECADDIN_SERIALIZE. It
calls devenv on each project (the add-in does
not convert each project into individual
compile/link steps).

switch

ECADDIN_DONT_USE Disables the add-in. This environment variable
can have any value, it just needs to be set. Also,
you can disable the add-in on each host by
using the Visual Studio Add-in Manager (on the
Tools menu). Note: This is a “light-weight”
uninstall program that disables one individual
machine at a time.

switch

ECADDIN_DISABLE_MINIMAL_REBUIL
DS

Disables minimal rebuilds (off by default). switch

ECADDIN_ENABLE_INCREMENTAL_LIN
K

Inserts a call to ectouch.exe. switch

ECADDIN_EXPAND_LINKER_OBJECTS Expand linker objects to one line per object.
Prevents errors when link line length is
exceeded.

switch

Setting Environment Variables for VisualStudio

17

Environment Variable Description Usage

ECADDIN_FORCE_Z7 Enables /Z7 compiler options for all C++ files. switch

ECADDIN_INCLUDE_CMAKELISTS Excludes any source file with the name
CMakeLists.txt (false is default). Set ECADDIN_
INCLUDE_CMAKELISTS=true to execute the file.

switch

ECADDIN_MSBUILD_PARAMETERS Add extra parameters to msbuild command line. switch

ECADDIN_NORMALIZE_PATHS Normalizes all paths in the makefile. The
default value is false.

switch

ECADDIN_RUN_DEPLOYMENT_
PROJECTS_LOCALLY

Runs deployment projects locally using
#pragma runlocal.

switch

ECADDIN_RUN_LOCAL_LIB A list of projects where the librarian tool should
be run locally (using #pragma runlocal).

switch

ECADDIN_RUN_LOCAL_LINK A list of projects where the linker should be run
locally (using #pragma runlocal).

switch

ECADDIN_RUN_LOCAL_PROJECT Use this variable if your build uses a local
resource (for example, a resource only on the
Electric Make host (for example, a database).
You do not need to set this variable if your
project build includes web deployment; this is
handled by the add-in. The value of this
variable is a list of project names separated by
semi-colons. Each project name must be the
unique Visual Studio identifier for the project
(for example, solution1/project1.vcproj).
Do not add quotation marks or white spaces.

switch

ECADDIN_SERIALIZE Causes each project to be built serially. It
inserts ‘#pragma allserial’ into each
makefile. This variable is equivalent to setting
ECADDIN_DONT_PARSE_PROJECTS.

switch

ECADDIN_UP_TO_DATE_CHECK Pre-parses the projects to determine whether
there is anything to build. Prevents
unnecessary rebuilding of static build steps.

switch

ECADDIN_USE_DEVENV Use devenv for all unparsed projects (the
default is msbuild).

switch

ECADDIN_USE_MSBUILD Allows you to use MSBuild internally for
projects that the add-in cannot parse (on by
default).

switch

ECADDIN_USE_RELATIVE_PATHS Use relative paths in the makefile to reduce line
lengths.

switch

ElectricAccelerator

18

Troubleshooting and Getting Help
Contacting Technical Support:

Before you contact our technical support staff, please have the following information available.

l Your name, title, company name, phone number, fax number, and email address

l Operating system and version number

l Product name and release version

l Problem description

Hours: 8AM - 5PM PST (Monday-Friday, except Holidays)

Phone: 408-419-4300, Option #2

Email: support@electric-cloud.com

Copyright © 2002 - 2013 Electric Cloud, Inc. All rights reserved.

Electric Cloud® believes the information in this publication is accurate as of its publication date. The information
is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” ELECTRIC CLOUD, INC. MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION IN THIS
PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any Electric Cloud software described in this publication requires an
applicable software license.

Trademarks

Electric Cloud, ElectricAccelerator, ElectricCommander, ElectricInsight, and Electric Make are registered
trademarks or trademarks of Electric Cloud, Incorporated.

Electric Cloud products—ElectricAccelerator, ElectricCommander, ElectricInsight, and Electric Make—are
commonly referred to by their “short names”—Accelerator, Commander, Insight, and eMake—throughout
various types of Electric Cloud product-specific documentation.

All other trademarks used herein are the property of their respective owners.

	Overview
	New Features and Improvements
	Known Issues
	Installation
	Installing the Visual Studio IDE Add-in
	Installation Options

	Important Notes
	Using the Visual Studio IDE Add-in Interface
	Main Menu and Toolbar
	Output Pane
	Context-Sensitive Menus

	Add-in Settings
	Global Options
	Solution Settings
	Inheriting Options
	Using Macros

	Uninstalling the Visual Studio IDE Add-in
	Setting Environment Variables for Visual Studio
	Troubleshooting and Getting Help

