
1

Technical Notes
MS Visual Studio Solution Support Add-in

version 3.2.3

May 2013

This document contains information about the ElectricAccelerator Solution Support Add-in. Topics include:

Overview 2

New Features and Improvements 2

Known Issues 2

Prerequisites 3

Getting Started 3

Important Notes 4

Incremental Linking 4

PDB Splitting 5

Removing Project References and Dependencies 6

Setting Environment Variables for Visual Studio 6

Using the ecdevenv.exe Utility 9

Troubleshooting and Getting Help 10

Electric Cloud
ElectricAccelerator

version 7.0

Overview

2

Overview
The ElectricAccelerator® Solution Support Add-in is a command line add-in used by Electric Make® (eMake) to
convert Visual Studio projects into NMAKE makefiles.

IMPORTANT: The ElectricAccelerator Solution Support Add-in is different from the ElectricAccelerator Visual
Studio IDE Add-in, which allows you to build Visual Studio solutions and projects from within the Visual
Studio IDE using eMake.

Support Information
The ElectricAccelerator Solution Support Add-in supports all .NET versions of Visual Studio (2002, 2003, 2005,
2008, 2010, and 2012).

New Features and Improvements
for 3.2.3

l Corrected a compile failure issue. (VSP-632)

l Removed sticky from ECADDIN_RUN_LOCAL_LINK/LIB. (VSP-630)

l If ModuleDefinitionFile contained spaces only, it would cause a build failure. This issue was fixed. (VSP-
629)

l Fixed a missing LIBPATH paths issue. (VSP-628)

l Corrected a build failure that could occur if a space is present in custom build step output. (VSP-627)

l Fixed a linker error that occurs when the lib file does not exist. (VSP-626)

l User macros that contain '-' would cause the build to fail. This issue was fixed. (VSP-625)

l Fixed an issue that caused a user-defined manifest to be excluded from the resultant executable. (VSP-
621)

l Fixed a C# build failure issue that was caused by a space in the solution name. (VSP-614)

for 3.2.2

l Added the environment variable ECADDIN_NORMALIZE_PATHS, allowing you to normalize all paths in
the makefile (VSP-577).

l Fixed an issue that resulted in referenced assemblies not being copied (VSP-576).

l Corrected an issue that resulted in files being copied to an incorrect target directory (VSP-575).

l Specifying a directory as an output file for browse information now resolves correctly and no longer
causes eMake to throw an error (VSP-572).

l Fixed the registration of the add-in for Visual Studio 2012 (VSP-570).

for 3.2.1

l Added support for Visual Studio 2012 (VSP-538).

l Corrected an issue where user macros were not passed to the environment (VSP-558).

Known Issues
This version of the add-in has the following known issues:

Prerequisites

3

l For Visual Studio 2012, the project build order under eMake may be different to Visual Studio if project
dependencies are not fully defined.

Workaround: If a build fails because a prerequisite project has not been built, add an explicit project
dependency in the solution.

l Visual Studio 2008 builds may break or may not be optimized after upgrading from an earlier version.

Workaround: See knowledge base article KBEA-00065.

l Microsoft Visual C++ 2010 projects that contain “custom build rules” will not be parallelized at the project
item level.

Prerequisites
The Microsoft Visual C++ 2005 SP1 Redistributable Package is required for all versions of Visual Studio.

Getting Started
Before you can use ElectricAccelerator to build your Visual Studio project, you must have already installed and
run Visual Studio on each agent host for each user (all ECloudInternalUsers).

If you currently invoke Visual Studio from inside a makefile, you are ready. If you invoke Visual Studio directly
from the command line or through a batch file, you must create a makefile for Electric Make to run. For example:

all:

devenv /build Release foo.sln

-- or --

all:

devenv /build Release foo.sln /project bar.vcproj

The makefile must invoke devenv with whatever options you currently use. Ensure the correct version of
devenv is in your path:

devenv /?

and usual Visual Studio environment variables are set.

You may want to ensure the add-in is installed on the agent hosts. To check this, start Visual Studio on the
agent host and go to Tools > Add-In Manager. The dialog should contain the add-in, which should be enabled
for general and command-line use.

The Solution Support add-in may not be compatible with other build-related add-ins.

If running a local build, the Solution Support add-in recognizes it is a local build and does not perform any
operations. Visual Studio behaves as if the add-in were not there.

If your builds fail with messages about not finding certain files (header files, DLLs, libraries, and so on):

Ensure you explicitly define all inter-project dependencies in your solution. Visual Studio uses an internal build
order for projects within a solution. This “order” allows projects to be built in a certain order even without explicit
declaration of project dependencies. Verify that all source files are in the eMake root definition.

If your build fails with a message that an application folder could not be created:

For example:

The Application Data folder could not be created. make: *** [all] Error -1

https://electriccloud.zendesk.com/entries/105076-kbea-00065-the-build-breaks-after-upgrading-to-visual-studio-2008
https://electriccloud.zendesk.com/entries/105076-kbea-00065-the-build-breaks-after-upgrading-to-visual-studio-2008

Important Notes

4

The build runs on agent hosts using the user account that owns the agents. This error message usually means
this user does not have an initialized Visual Studio environment. Visual Studio must be invoked on each agent
host by the user who owns ElectricAccelerator agents on that host. You may need to contact your
ElectricAccelerator administrator.

If you are setting --emake-root, do not include Microsoft Visual Studio directories.

For example:

emake --emake-cm=<MyCM> --emake-root=”C:/Program Files/<MyCom>;C:/Program Files/
Common Files/<MyCom>”

Important Notes
Upgrading the add-in
When you upgrade from Solution Support Add-in v3.0 to v3.0.2 or later, “debug” builds using PDB files will
generate many conflicts on the first build. Subsequent builds will be fine. This occurs because the build order
may have changed between v3.0 and v3.0.2.

Electric Cloud recommends regenerating history whenever you upgrade the add-in.

Setting the path for 64-bit or Xbox builds
To run 64-bit or Xbox builds, you must set the path manually.

Solving common issues
If you encounter issues, make sure you have done the following:

l Initialize Visual Studio

Use the psexec method to initialize Visual Studio as shown:

psexec -u ECloudInternalUser1 "C:\Program Files\Microsoft Visual Studio 8\
Common7\IDE\devenv.exe"

As an alternative, disable profiles for Visual Studio by running this regedit script:

REGEDIT4
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\8.0\Profile]
"AppidSupportsProfiles"="0"

l Disable the Windows error reporting service on the agent/EFS hosts. This avoids popup windows for
crashed applications.

l Set the maximum number of parallel project builds to 1.

l Initialize the Customer Experience Improvement Program.

If you continue to encounter issues, go to the Electric Cloud ElectricAccelerator Knowledge Base and search for
“Visual Studio”.

Incremental Linking
Using the add-in
Visual Studio supports incremental linking with the /INCREMENTAL linker option. This does not function in
eMake because eMake updates the timestamp of the exe/dll when it copies it back to the build machine (from
the agent) to prevent any problems due to clock skew.

https://electriccloud.zendesk.com/forums/70688-accelerator-kb
https://electriccloud.zendesk.com/forums/70688-accelerator-kb

PDBSplitting

5

To work around this problem, we can “touch” the exe after the link with its current timestamp. This explicit
modification of the timestamp instructs eMake to preserve the timestamp, hence keeping the validity of its
incremental status.

To enable this feature with the add-in, set ECADDIN_ENABLE_INCREMENTAL_LINK=true. This inserts a call to
ectouch.exe, which performs the action stated above. ectouch.exe should be installed in the PATH.

Not using the add-in
If you are not using the add-in, you can still use this feature. You can rename ectouch.exe to eclink.exe and
replace occurrences of link.exe with eclink.exe. eclink.exe should be in the PATH. Alternatively, you
can rename link.exe to link_ec.exe and copy eclink.exe to link.exe. (If you want something other
than link_ec.exe, set EC_ORIGINAL_LINK_PATH to the location of the “real” link.exe.)

PDB Splitting
Using the add-in
By default, Visual Studio puts all debugging information in a centralized database (PDB) called vc80.pdb (this is
Visual Studio version-specific). Because each compilation modifies this file, everything in the project is
serialized. A workaround is to group debug information into multiple PDB files. You can accomplish this
automatically if you use the add-in.

ECADDIN_MAX_PDB_FILES is set to 16 by default. You can change this value to be equal to or less than the
number of agents, but you may need to increase or decrease this for optimal efficiency. ECADDIN_MAX_PDB_
FILES specifies the maximum number of PDB files produced. Each file is placed into a PDB determined by a
hash of its filename. This method ensures that a particular file is always placed in the same PDB. This is
necessary to ensure eMake's history file remains valid.

For example, if a project contains 4 files, File1.cpp, File2.cpp, and so on, and they are all serialized on PDB
file vc80.pdb. Set ECADDIN_MAX_PDB_FILES=2 will create (at most) 2 PDB files:

File1.cpp --' <ProjectName>_0.pdb
File2.cpp --' <ProjectName>_1.pdb
File3.cpp --' <ProjectName>_0.pdb
File4.cpp --' <ProjectName>_1.pdb

In this example, File1 and File3 will be serialized against each other but will build in parallel from File2 and
File4 (which will be serialized against each other).

You can change this variable in the Visual Studio IDE Add-in solution or global settings. Go to the Performance
section of the Add-in pane.

The history file must be deleted when adding or changing the value of ECADDIN_MAX_PDB_FILES. You can also
set --emake-history=create.

Not using the add-in
This technique can be used without using the add-in. This distribution contains the application hashstr.exe,
which hashes the filename and returns the bucket number. You can use this in your makefile to set the PDB
filename (using /fd) in the same manner as above. Precompiled headers must be switched off for this to work.

Usage: hashstr "mystring" [modulus]

Where mystring is the string from which to generate the hash value, and modulus is the number of hash bins
you want to use.

You can add this to a pattern rule for builds that suffer from performance degradation due to PDB serialization,
with something similar to the following:

%.o: %.c

Removing Project Referencesand Dependencies

6

$(CC) /c $(cflags) $(PCH_USE_FLAGS) $(cvars) $(cplus_flags) $(LOCAL_INCLUDE) $(P
CB_INCLUDE) $< /Fo$@ /Fd$(shell ${path-to-hashstr}/hashstr.exe "$@" ${hashstr-mo
dulus}).pdb

Removing Project References and Dependencies
Visual Studio will always attempt to build project references and dependent projects before building the target
project. This behavior causes problems for eMake because it attempts to build projects on different agents
simultaneously. It can result in a particular project being built multiple times and a longer build time with eMake
than with Visual Studio alone.

To resolve this, the add-in removes project references and dependencies. To keep project references and
dependencies, set the following environment variable:

ECADDIN_REMOVE_DEPENDENCIES=false

You can change this variable in the Visual Studio IDE Add-in solution or global settings. Go to the Performance
section of the Add-in pane.

Setting Environment Variables for Visual Studio
You can control the way the Solution Support add-in works by setting these environment variables on the
Electric Make machine.

Note: Environment variables can be true or false. Valid boolean values are “0”, “no”, “false”, “off” and “1”, “yes”,
“true”, “on”. Case is not significant.

Environment Variable Description Usage

ECADDIN_DEBUG Setting this variable to any value causes debug log
files to remain in C:\ecdebug<ID>.log on the
agent host. These files are used for troubleshooting
by Electric Cloud engineers. Normally, you do not
need to set this value.

debugging

ECADDIN_DEBUG_LOG_FILENAME Specifies the debug log name. Requires ECADDIN_
DEBUG. Use '$1' in the file specification to insert a
unique ID. For example, C:\ecdebug_$1.log. Use
a file location outside of emake root. The log file is
stored on the agent.

debugging

ECADDIN_DONT_RM_TMP_
MAKEFILES

Retains makefiles created during the build but
normally deleted when the build finishes. This
environment variable can have any value; it just
needs to be set.

debugging

ECADDIN_DONT_USE_UNIQUE Does not use unique names for temporary makefiles.
Use with ECADDIN_DONT_RM_TMP_MAKEFILES.

debugging

ECADDIN_ECBREAKPOINT Determines whether to invoke ecbreakpoint on failed
jobs.

debugging

Setting Environment Variables for VisualStudio

7

Environment Variable Description Usage

ECADDIN_ECBREAKPOINT_
PROJECTS

Determines whether to invoke ecbreakpoint for
specified projects. Use a semi-colon to delimit
projects.

debugging

ECADDIN_ADD_IMPLICIT_PDB_
DEPENDENCIES

Adds dependencies to improve first-time build speed. performance

ECADDIN_MAX_PDB_FILES Specifies the maximum number of PDB files
produced (set to 16 by default). See "Overview" on
page 2.

performance

ECADDIN_REMOVE_DEPENDENCIES Removes project dependencies (on by default). See
"Removing Project References and Dependencies"
on page 6.

performance

ECADDIN_USE_DEVENV_FOR_
PROJECT

Uses devenv (instead of MSBuild) to build specific
projects. Supply a list of projects (separated by a
semicolon) to be built with devenv.

ECADDIN_CONTINUE_ON_ERROR Allows the build to continue after an error has
occurred. Off by default for the Solution Support Add-
in. On by default for the Visual Studio IDE Add-in.

switch

ECADDIN_CREATE_MISSING_
DEPENDENCIES

Creates missing dependencies to avoid missing
dependency warnings.

switch

ECADDIN_DISALLOW_BSC Does not generate browse information files. switch

ECADDIN_DISALLOW_PCH Does not generate/use precompiled header files
(implied by ECADDIN_MAX_PDB_FILES)

switch

ECADDIN_DISALLOW_PDB Does not generate PDB files. switch

ECADDIN_DISALLOW_SBR Does not generate browse information files from
sources.

switch

ECADDIN_DONT_ADD_PCH_
LOCATION

Prevents the add-in from adding the location of the
PCH file in all cases. This variable is relevant only if
ECADDIN_MAX_PDB_FILES or ECADDIN_DISALLOW_
PCH is switched on.

switch

Setting Environment Variables for VisualStudio

8

Environment Variable Description Usage

ECADDIN_DONT_PARSE_PROJECT This variable takes a list of project names separated
by semi-colons and without white spaces. This
variable is useful for deploying the add-in. If for any
reason the add-in cannot build some of your projects,
this variable allows you to work around the problem.

When using this variable, you may experience an the
warning MSB4098. You can ignore this warning
because any project references are now converted
into additional dependencies. MSBuild, however,
does not provide a mechanism to turn off this
warning.

switch

ECADDIN_DONT_PARSE_PROJECTS This variable takes any non-blank value and its
behavior is similar to ECADDIN_SERIALIZE. It calls
devenv on each project (the add-in does not convert
each project into individual compile/link steps).

switch

ECADDIN_DONT_USE Disables the add-in. This environment variable can
have any value, it just needs to be set. Also, you can
disable the add-in on each host by using the Visual
Studio Add-in Manager (on the Tools menu). Note:
This is a “light-weight” uninstall program that
disables one individual machine at a time.

switch

ECADDIN_DISABLE_MINIMAL_
REBUILDS

Disables minimal rebuilds (off by default). switch

ECADDIN_ENABLE_INCREMENTAL_
LINK

Inserts a call to ectouch.exe. See "Incremental
Linking" on page 4.

switch

ECADDIN_EXPAND_LINKER_
OBJECTS

Expand linker objects to one line per object. Prevents
errors when link line length is exceeded.

switch

ECADDIN_FORCE_Z7 Enables /Z7 compiler options for all C++ files. switch

ECADDIN_INCLUDE_CMAKELISTS Excludes any source file with the name
CMakeLists.txt (false is default). Set ECADDIN_
INCLUDE_CMAKELISTS=true to execute the file.

switch

ECADDIN_MSBUILD_PARAMETERS Add extra parameters to msbuild command line. switch

ECADDIN_NORMALIZE_PATHS Normalizes all paths in the makefile. The default
value is false.

switch

ECADDIN_RUN_DEPLOYMENT_
PROJECTS_LOCALLY

Runs deployment projects locally using #pragma
runlocal.

switch

ECADDIN_RUN_LOCAL_LIB A list of projects where the librarian tool should be
run locally (using #pragma runlocal).

switch

Using the ecdevenv.exe Utility

9

Environment Variable Description Usage

ECADDIN_RUN_LOCAL_LINK A list of projects where the linker should be run
locally (using #pragma runlocal).

switch

ECADDIN_RUN_LOCAL_PROJECT Use this variable if your build uses a local resource
(for example, a resource only on the Electric Make
host (for example, a database). You do not need to
set this variable if your project build includes web
deployment; this is handled by the add-in. The value
of this variable is a list of project names separated by
semi-colons. Each project name must be the unique
Visual Studio identifier for the project (for example,
solution1/project1.vcproj). Do not add
quotation marks or white spaces.

switch

ECADDIN_SERIALIZE Causes each project to be built serially. It inserts
‘#pragma allserial’ into each makefile. This
variable is equivalent to setting ECADDIN_DONT_
PARSE_PROJECTS.

switch

ECADDIN_UP_TO_DATE_CHECK Pre-parses the projects to determine whether there is
anything to build. Prevents unnecessary rebuilding of
static build steps.

switch

ECADDIN_USE_DEVENV Use devenv for all unparsed projects (the default is
msbuild).

switch

ECADDIN_USE_MSBUILD Allows you to use MSBuild internally for projects that
the add-in cannot parse (on by default).

switch

ECADDIN_USE_RELATIVE_PATHS Use relative paths in the makefile to reduce line
lengths.

switch

Using the ecdevenv.exe Utility
Incremental Visual Studio builds under ElectricAccelerator can have a long parse time before the build
commences. This process can take several minutes for large solutions.

You can use the ecdevenv.exe utility to bypass parsing the solution if the NMAKE makefiles have already
been created. If the solution, projects, environment, or command-line have changed since the last parse,
devenv is called to regenerate the makefiles. If nothing has changed, eMake is called on the previously
generated makefiles.

ecdevenv.exe creates a file, <solution>.last_build, which contains details about the solution, projects,
environment, and command-line at the time of the last build. Deleting this file forces ecdevenv to call devenv to
regenerate the makefiles.

ecdevenv.exe is in the Electric Cloud bin directory (C:\ECloud\i686_win32\bin).

To use ecdevenv, simply replace existing devenv.exe / devenv.com calls with ecdevenv.

To debug ecdevenv, set ECDEVENV_DEBUG to turn debugging on and send debug to stdout, or set
ECDEVENV_DEBUG_LOG to send debug to a file.

Troubleshooting andGetting Help

10

Troubleshooting and Getting Help
Contacting Technical Support:

Before you contact our technical support staff, please have the following information available.

l Your name, title, company name, phone number, fax number, and email address

l Operating system and version number

l Product name and release version

l Problem description

Hours: 8AM - 5PM PST (Monday-Friday, except Holidays)

Phone: 408-419-4300, Option #2

Email: support@electric-cloud.com

Copyright © 2002 - 2013 Electric Cloud, Inc. All rights reserved.

Electric Cloud® believes the information in this publication is accurate as of its publication date. The information
is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” ELECTRIC CLOUD, INC. MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION IN THIS
PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any Electric Cloud software described in this publication requires an
applicable software license.

Trademarks

Electric Cloud, ElectricAccelerator, ElectricCommander, ElectricInsight, and Electric Make are registered
trademarks or trademarks of Electric Cloud, Incorporated.

Electric Cloud products—ElectricAccelerator, ElectricCommander, ElectricInsight, and Electric Make—are
commonly referred to by their “short names”—Accelerator, Commander, Insight, and eMake—throughout
various types of Electric Cloud product-specific documentation.

All other trademarks used herein are the property of their respective owners.

	Overview
	New Features and Improvements
	Known Issues
	Prerequisites
	Getting Started
	Important Notes
	Incremental Linking
	PDB Splitting
	Removing Project References and Dependencies
	Setting Environment Variables for Visual Studio
	Using the ecdevenv.exe Utility
	Troubleshooting and Getting Help

