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Chapter 1: Overview

About the ElectricAccelerator® Visual Studio Integration
The ElectricAccelerator® Visual Studio integration is composed of two distinct add-ins and the ecdevenv.exe
utility:

l Visual Studio IDE Add-In (VS IDE Add-In)

This add-in integrates with the Microsoft Visual Studio IDE and lets you build Visual Studio solutions and
projects using Electric Make® (eMake) from within the IDE. The add-in provides an Electric Cloud build
menu and toolbar. The existing build menu remains intact for local (non-eMake) builds.

l Visual Studio Converter Add-In (VS Converter Add-In)

This is a command line add-in used by eMake to convert Visual Studio projects into NMAKE makefiles.

l ecdevenv.exe Utility

ecdevenv is a drop-in replacement for devenv.exe that builds Visual Studio solutions and projects using
eMake. It provides a number of important features. See Using the ecdevenv Utility for information.

The ElectricAccelerator Visual Studio integration is installed automatically during the installation of
ElectricAccelerator or ElectricAccelerator Huddle™.
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Chapter 2: What's New

New Features and Functionality in Version 4.2.3
l When using ecdevenv /quick, add switch ECDEVENV_USE_SOLUTION_CONTEXT to use the solution

context for all projects and switch ECDEVENV_USE_SOLUTION_CONTEXT_FOR_PROJECTS to build specific
projects in the solution context. (VSP-869)

l Enable the basic annotation detail in the IDE add-in by default. (VSP-897)

l New solutions do not need to be closed and re-opened prior to building in the IDE add-in. (VSP-925)

l Allow ecdevenv /quick builds to skip duplicate projects by setting ECDEVENV_SKIP_DUPLICATE_
PROJECTS. (VSP-936)

l Improve the reliability of first-time builds by setting --emake-readdir-conflicts=1 by default in
ecdevenv builds. (VSP-937)

New Features and Functionality in Version 4.2.2
l A pop-up message is introduced that warns if a directory that you manually added to the eMake root does

not exist at build time. (VSP-901)

l (Visual Studio 2005) A message that appears at the Visual Studio prompt at build time is introduced to warn
if a critical Microsoft hotfix for Visual Studio 2005 Service Pack 1 is not installed. (Without the hotfix, the VS
Converter Add-In will not work correctly, which means that the build will not be accelerated.) For more
information and download instructions for the hotfix, see the “Visual Studio 2005 behaves as if the Visual
Studio Add-in is not installed” article on the Electric Cloud “Ask” website. (VSP-900)

New Features and Functionality in Version 4.2
Version 4.2 of the Visual Studio Integration fixes several issues and introduces a number of improvements. The
most important improvements are

l Functionality that adds locations of all project inputs and outputs (C++ only) as well as project and solution
locations (for all project types) to the eMake root automatically

l Changes to default settings in the IDE Add-In and the ecdevenv utility to increase speed and ensure
correctness of incremental builds

The following list provides details about the improvements that are included in version 4.2.

http://ask.electric-cloud.com/questions/439/visual-studio-2005-behaves-as-if-the-visual-studio-add-in-is-not-installed
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l In the IDE add-in, support is added for the 64-bit version of ElectricInsight, which is introduced in
ElectricInsight 5.0. On 64-bit systems, the Electric Cloud > Run ElectricInsight menu option invokes the 64-
bit version. (VSP-875)

l In the IDE add-in, the Add Emake Roots Automatically checkbox is added to the General > Basic tab of
the Electric Cloud Solution Settings dialog box. When checked, this checkbox adds the locations of all
inputs (such as .cpp and .h files) and outputs (such as .obj, .exe, and .dll files) in a project to the eMake root
automatically. For details and limitations, see the Basic Solution Settings section in the Using the VS IDE
Add-In Interface chapter. Project locations and each location for the solution(s) are now added automatically
to the eMake root. (VSP-834 and VSP-759)

l To ensure correct incremental builds, the eMake eDepend feature (also called Auto Depend) is now
enabled by default in ecdevenv when ecdevenv is invoked from the Visual Studio command prompt. (When
Auto Depend is enabled in the IDE Add-In GUI, this default is overridden when ecdevenv is called from
the GUI.) (VSP-818)

l In the IDE add-in, to increase the speed of incremental builds, the default values of the ECADDIN_ENABLE_
INCREMENTAL_LINK and ECADDIN_UP_TO_DATE_CHECK environment variables are changed from false to
true. The Enable Incremental Link checkbox and the Up To Date Check checkbox in the General >
Performance tab of the Electric Cloud Solution Settings dialog box are now checked by default. (VSP-815)

l (Available in Visual Studio 2005 and newer) You can now convert solutions to NMAKE more quickly by
parallelizing down to the project level only. To do so, you can use the /quick option in ecdevenv or the
Coarse Grain Parallelization checkbox in the General > Performance tab in the Electric Cloud Solution
Settings dialog box. This feature does not require Visual Studio to be installed. For details, see the Using
Fast Solution Conversion section in the Using the ecdevenv Utility chapter. (VSP-881 and VSP-820)

l In the converter add-in, the copying of project references now occurs in parallel to improve incremental build
performance. (VSP-816)

l When invoking ecdevenv from the Visual Studio command prompt, if you try to build a solution that was
created in another Visual Studio version, a warning appears at the prompt. (VSP-804)

l (Visual Studio 2010 and newer) In the converter add-in, to reduce the number of build failures because of
files locked by multiple MSBuild processes, the nodeReuse parameter is now automatically set to false in
all calls to invoke MSBuild. (VSP-801)

l The ECADDIN_MAKEFILE_CACHE environment variable is introduced. This lets you specify an alternate
folder for the cached (temporary) makefiles that the converter add-in generates. For details, see the Setting
VS Converter Add-In Environment Variables chapter. (VSP-791)

l The ECADDIN_BUILD_PROJECTS_IN_SOLUTION_CONTEXT environment variable and the
BuildProjectsInSolutionContext configuration file variable are introduced for the converter add-in. When set
to true, they let you use MSBuild to build projects directly, but in the solution context. The Use Solution in
MsBuild Projects checkbox, which also enables this behavior, is added to the General > Options tab of the
Electric Cloud Solution Settings dialog box.

Also, the ECADDIN_BUILD_SPECIFIC_PROJECTS_IN_SOLUTION_CONTEXT environment variable and the
BuildSpecificProjectsInSolutionContext configuration file variable are introduced for the converter add-in.
These variables let you enter a specific list of projects to build directly in MSBuild, but in the solution context.
The Use Solution For Specified MsBuild Projects checkbox, which also enables this behavior, is added to
the General > Options tab of the Electric Cloud Solution Settings dialog box. (VSP-872 and VSP-790)
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l (Visual Studio 2010 and newer) The default value of the ECADDIN_REMOVE_DEPENDENCIES environment
variable is changed from true to false. In the IDE add-in, the Remove Dependencies checkbox in the
General > Performance tab of the Electric Cloud Solution Settings dialog box is now unchecked by default.
(VSP-788)

l ecdevenv “diff” reporting in the Visual Studio console and in the Visual Studio Output window is improved. If
the makefile is regenerated, the reason for the regeneration is described more clearly. (VSP-676)

Resolved Issues in Version 4.2.3
l Fixed the fatal error U1071: cycle in dependency tree for target. (VSP-928)

l The ecdevenv /quick option should not check for Visual Studio to be in the PATH environment variable.
(VSP-934)

l Fixed issues building ecdevenv configuration files containing solutions with relative paths. (VSP-935)

Resolved Issues in Version 4.2.2
l (Visual Studio 2010 and newer) Fixed an issue where commas used in a definition in the Preprocessor

Definitions field in the Property Pages dialog box were incorrectly parsed. (VSP-910)

l Fixed the issue that produced build errors such as Invalid macro invocation '$'. This was caused by
an NMAKE limitation that treated the dollar sign ($) as a special character that preceded a macro name. You
can now use $ in a preprocessor definition with an odd number of $ symbols. (VSP-874)

Resolved Issues in Version 4.2
l (Visual Studio 2002 and 2003) Fixed an issue where the converter add-in attempted to invoke MSBuild

when used with Visual Studio 2002 and 2003. The add-in now invokes devenv when used on non-parsed
(non-C++) projects such as C# projects. (VSP-888)

l (Visual Studio 2013) Fixed the issue where MSBuild.exe was launched from the .NET directory (rather than
from C:\Program Files (x86)\MSBuild\12.0\Bin). This caused the following error message:

C:\Program Files (x86)
\MSBuild\Microsoft\VisualStudio\v12.0\CodeAnalysis\Microsoft.CodeAnalysis.targets
(214,5): error MSB4175: The task factory "CodeTaskFactory" could not be loaded from
the assembly
"C:\Windows\Microsoft.NET\Framework\v4.0.30319\Microsoft.Build.Tasks.v12.0.dll".
Could not load file or assembly
'file:///C:\Windows\Microsoft.NET\Framework\v4.0.30319\Microsoft.Build.Tasks.v12.0.
dll' or one of its dependencies. The system cannot find the file specified. (VSP-
847)

l Fixed an issue where the converter add-in tried to create a link command for an EXE project that had
additional dependencies but no objects. (VSP-846)

l (Visual Studio 2010) Removed the additional /AI and /clr:nostdlib eMake command lines that were
not present in the Visual Studio build. (The fix for VSP-474 added these command lines to the converter
add-in to work around a Visual Studio 2010 issue, which Microsoft has now fixed.) (VSP-845)
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l Fixed an issue where the converter add-in did not support the Streaming SIMD Extensions 2 instruction set
on 64-bit builds, which caused the following compiler error message when the Enable Enhanced
Instruction Set configuration property was set to anything other than Not Set for a 64-bit build: cl :
Command line warning D9002 : ignoring unknown option '/arch:SSE2'. (VSP-844)

l Fixed an issue where unchecking the Use Local Agents checkbox in the General > Cluster tab of the
Electric Cloud Solution Settings dialog box of the IDE add-in did not turn off usage of local agents. (VSP-
769)

l Fixed the issue where the Cluster Manager and Emulation/Platform debug logging level checkboxes were
missing from the Debug > Emake tab of the Electric Cloud Solution Settings dialog box of the IDE add-in.
(VSP-743)
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Chapter 3: Known Issues

l If the cluster upgrade option of the VS IDE Add-In installer fails, re-run the installer to ensure the VS
Converter Add-In is installed correctly.

l Because of an issue with previous versions’ uninstallers, an upgrade might cause the following error
message: Cannot find script file: C:\ECloud\i686_win32\bin\unregaddin.vbs. You can
ignore this message.

l Make sure you finish all Visual Studio installations before installing the VS IDE Add-In. Adding a new
language to an existing Visual Studio installation with the VS IDE Add-In already installed causes Visual
Studio to display an empty Electric Cloud menu. The workaround is to reinstall the add-in.

l For Visual Studio 2012 or later, the project build order under eMake might be different to Visual Studio if
project dependencies are not fully defined.

Workaround: If a build fails because a prerequisite project has not been built, add an explicit project
dependency in the solution.

l Visual Studio 2008 builds might break or might not be optimized after upgrading from an earlier version.

Workaround: See knowledge base article KBEA-00065, The build breaks after upgrading to Visual
Studio 2008.

l Microsoft Visual C++ 2010 projects that contain “custom build rules” will not be parallelized at the project
item level.

l Lightswitch projects are not supported.

l You might encounter a build error such as Invalid macro invocation '$'. This is caused by an
NMAKE limitation that treats the dollar sign ($) as a special character that precedes a macro name. You
cannot use ($) in a preprocessor definition unless there is an even number of ($) symbols.

Workaround: Either do not use the single dollar sign ($), or specify it by using a double dollar sign ($$).

l For Visual Studio 2010 and later, the MSBuild task batching syntax is not supported for C++ build events
(pre-build, pre-link, and post-build events).

Workaround: Substitute the variables with actual values.

https://electriccloud.zendesk.com/entries/105076-KBEA-00065-The-build-breaks-after-upgrading-to-Visual-Studio-2008
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Chapter 4: System Requirements

Supported Visual Studio Versions
The Visual Studio IDE Add-In (VS IDE Add-In) supports the following versions of Visual Studio:

l Visual Studio 2013

l Visual Studio 2012

l Visual Studio 2010

l Visual Studio 2008

l Visual Studio 2005

Note: The VS IDE Add-In for Visual Studio 2010 or later does not support Xbox builds, Windows Mobile
configurations, or custom build rules.

The VS Converter Add-In supports all .NET versions of Visual Studio:

l Visual Studio 2013

l Visual Studio 2012

l Visual Studio 2010

l Visual Studio 2008

l Visual Studio 2005

l Visual Studio .NET 2003

l Visual Studio .NET 2002

The ecdevenv utility supports all .NET versions of Visual Studio:

l Visual Studio 2013

l Visual Studio 2012

l Visual Studio 2010

l Visual Studio 2008

l Visual Studio 2005



ElectricAccelerator

4-2

l Visual Studio .NET 2003

l Visual Studio .NET 2002

Prerequisites
MSBuild Prerequisites

The IDE add-in cannot virtualize the MSBuild utility. If you are virtualizing your toolchain, you must install the
following packages for your version of Visual Studio on every agent host in your cluster.

Visual Studio Version Package(s)

2013 l .NET Framework 4.5

l Microsoft Build Tools 2013

2012 .NET Framework 4.0.30319

2010 .NET Framework 4.0.30319

2008 .NET Framework 3.5

2005 .NET Framework 2.0.50727

If you do not virtualize your toolchain, you must install Visual Studio on each agent host in your cluster.

VS IDE Add-In Prerequisites
The VS IDE Add-In requires:

l eMake installed on the build machine

l ElectricAccelerator v7.0.2 or later

l .NET Framework v2.0

VS Converter Add-In Prerequisites
The VS Converter Add-In requires:

l Microsoft Visual C++ 2005 SP1 Redistributable Package (all Visual Studio versions)

l .NET Framework v2.0

l (If using Visual Studio 2005 Service Pack 1) Microsoft hotfix that is described in Microsoft Knowledge
Base articles 933054 and 934517. Without the hotfix, the VS Converter Add-In will not function correctly,
which means that ecdevenv is not called, so builds will not be accelerated.

For download information, see the “Visual Studio 2005 behaves as if the Visual Studio Add-in is not
installed” article on the Electric Cloud “Ask” website.

ecdevenv Utility Prerequisites
The ecdevenv utility requires:

http://ask.electric-cloud.com/questions/439/visual-studio-2005-behaves-as-if-the-visual-studio-add-in-is-not-installed


Chapter 4: System Requirements

4-3

l VS Converter Add-In

l .NET Framework v2.0
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Upgrade Notes
l When you upgrade from VS Converter Add-In version 3.0, “debug” builds using PDB files will generate

many conflicts on the first build. This occurs because the build order might have changed since version
3.0. (Subsequent builds will be fine.)

l Electric Cloud recommends regenerating the history file after upgrading the VS Converter Add-In.
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Chapter 5: Installing the IDE Add-In

Installing the Add-In Using the GUI
To install the VS IDE Add-In locally, run the installer provided.

1. Right-click the VSAddIn-<version>-Install.exe file and choose Run as administrator.

2. When the Install ElectricAccelerator VS IDE Add-In popup appears, click Yes.

3. When the welcome screen appears, click Next.

4. When the Choose Destination Location screen appears, click Next to accept the default installation
location (C:\ECloud) or click Browse to change the location.

5. When Setup Type screen appears, click to choose a setup type:

o ElectricAccelerator VS IDE Add-in Local Install

o ElectricAccelerator VS Converter Add-in Local Install

o ElectricAccelerator VS Converter Add-in Cluster Upgrade—Upgrades the VS Converter Add-In
(Solution Support Add-In) on all Windows cluster agents that are registered to the Cluster Manager
that you specify.

Note: For the VS Converter Add-In cluster upgrade to proceed, the installation directory on all agents
must be C:\ECloud, and you must have installed eRunner on the Cluster Manager and agent
machines.

This setup type is not required when you are virtualizing the Visual Studio toolchain, because in this
case, the converter add-in is not actually installed on the agent machines.

o Custom—Lets you select multiple setup types (components) from this list.

Click Next.

5. When the Start Copying Files screen appears, review your settings before continuing the installation.
Click Next to continue or Back to make changes.

6. When the InstallJammer Wizard Complete screen appears (it displays “Install finished”), your
installation is complete. Click Finish to close the installer.

The installation log file is in the installation directory’s root, C:\ECloud by default.

Note: Installing just the Converter Add-In uninstalls the existing IDE Add-In if present.
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Installing the Add-In Silently
To perform a silent install, follow these steps:

1. Run an installation with the /save-response-file <filename> option and your desired settings.

This creates the response file in the directory where you ran the installer.

2. Use the resulting response file for silent identical installs by using the /response-file <filename>
and /mode silent options.

Choosing Installation Options
Use this structure for options: <Install filename> [options]

The following options are available to customize your installation:

Option Description

/help Displays help information.

/mode [ARG] Sets the installation mode.
Available values: standard or silent.

/prefix [ARG] Sets the installation directory.

/response-file [ARG] The file from which to read installer responses.

/save-response-file [ARG] The file to which installer responses are written when the
installer exits.

/temp [ARG] Sets the temporary directory used by the program.

/type [ARG] Performs the selected type of installation. Available values:
addin, uiaddin or cluster.

/version Displays installer version information.



6-1

Chapter 6: Using the VS IDE Add-In Interface

When the VS IDE Add-In starts, it checks if the following are present:

l eMake— If the add-in cannot find eMake, the add-in's Build/Rebuild/Clean functions are disabled.

When eMake is run from Visual Studio, it must be run through an intermediate application named
ecspawn.exe. This program ensures that eMake responds correctly to Ctrl-C and that child processes
are grouped together. This application is displayed in the Task Manager. Do not terminate the
application; it stops when the build finishes or when the build is canceled.

Do not run local (non-eMake) builds while running eMake builds and vice-versa.

l ElectricInsight®—If the add-in cannot find Insight, the add-in's Run ElectricInsight function is disabled.

Topics:

l Main Menu and Toolbar

l Solution Settings
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Main Menu and Toolbar
When you run Visual Studio, you are presented with the Electric Cloud main menu (displayed in the following
screenshot) and toolbar:

The menu has the following functions:

l Build Solution—Builds the current solution

l Build Solution Locally—Builds the current solution locally with eMake butwithout using remote agents
or local agents (this function is equivalent to turning off the Cluster Manager and local agents). This
function is hidden by default. See Build Solution Locally for additional information about this function.

l Rebuild Solution—Rebuilds the current solution

l Clean Solution—Cleans the current solution

l Build <project>—Builds the current project or selection

l Rebuild <project>—Rebuilds the current project or selection

l Clean <project>—Cleans the project or selection

l Cancel—Cancels a running eMake build. When a build is running, you can cancel it by selecting
Cancel. Cancel is available only during a running build, rebuild, or clean.
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l Run ElectricInsight—Runs Insight with the current annotation file (if it exists). At any time, you might run
ElectricInsight (Insight) to view the annotation file. Insight loads the specified annotation file or defaults to
emake.xml.

When you run Insight from Visual Studio, Visual Studio looks for the currently running instance of
einsight. If einsight is currently running, the annotation file is not loaded (or reloaded). Manually
open the annotation file from Insight, or close Insight and select Run ElectricInsight again.

On 64-bit systems, this menu option invokes the 64-bit version of ElectricInsight. For details about the
64-bit and 32-bit versions of ElectricInsight, see Chapter 1, Installing ElectricInsight in the ElectricInsight
User Guide at http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html.

l Settings—Opens the solution settings dialog

l About—Displays add-in information

When selecting one of the build commands, the add-in calls ecdevenv.exe to perform the build.

The project and configuration are taken from the current context. The command is dependent on the menu item.

Note: A new unsaved C++ solution cannot be built until the solution .ecd file has been named. Before building
with eMake, first close the solution and then reopen it.

The toolbar provides the same functionality as the Electric Cloud main menu and is customizable.

Build Solution Locally
You can choose to build a solution locally with eMake butwithout using remote agents or local agents. You
might want to use this function if a distributed incremental build is slow, or if a local Visual Studio incremental
build causes unnecessary rebuilding of objects.

To make this function visible in the menu, set the environment variable ECUIADDIN_LOCAL_BUILD=true.

The following screenshot illustrates the menu with the Build Solution Locally function.

http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html
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Advisories for Build Solution Locally
l The eMake local build does not support the eMake eDepend feature (also called Auto Depend). This

means changes in header files might not cause dependent source files to be recompiled.

l The eMake local build does not produce an annotation.

l Because history is not generated, unexpected conflicts might occur on subsequent eMake cluster builds.

Output Pane
Output from an eMake build is displayed in the EC Build output pane (displayed in the following screenshot).
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Context-Sensitive Menus
The add-in provides additional context-sensitive menus.

The following screenshot illustrates the Solution menu.

The following screenshot illustrates the Project menu.
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The following screenshot illustrates the Selection menu.
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Solution Settings
The add-in contains the following Solution Setting categories:

l General Solution Settings

l Options Solution Settings

l Debug Solution Settings

l Advanced Solution Settings

l Command Line Solution Settings

Notes:

l The add-in no longer supports global options. Consequently, solution settings do not inherit from global
settings. If you have been using an earlier version of the add-in, the previous global settings are
migrated to solution settings when you first open a solution.

l See Setting VS Converter Add-In Environment Variables for environment variable descriptions.

General Solution Settings
This category contains most frequently used settings:

l Basic Solution Settings

l Cluster Solution Settings

l History Solution Settings

l Performance Solution Settings

l Annotation Solution Settings

Basic Solution Settings

The following screenshot illustrates the Basic sub-category.



ElectricAccelerator

6-8

l Cluster Manager—Indicates the eMake Cluster Manager (--emake-cm). If this field is empty, an eMake
build is performed with local agents when Use Local Agents is selected. When Use Local Agents is not
selected, a local eMake build (without remote or local agents) is performed.

l Root—Specifies the eMake root (--emake-root). To add a path to the eMake root manually, enter a
path or click the folder button to browse and click the plus button to add it to the list. To delete a path from
the eMake root manually, select it in the list and click the x button.

l Add Emake Roots Automatically—Adds the locations of all inputs (such as .cpp and .h files) and outputs
(such as .obj, .exe, and .dll files) to the eMake root automatically.

This checkbox applies only to C++ projects. If you have a C# project or a project with inputs and outputs
not in the solution or project locations, you must add their locations to the eMake root manually.

This checkbox does not apply to third-party tools, because they cannot be virtualized. This checkbox
does not apply to project locations and each location for the solution(s), because they are always added
automatically.

Cluster Solution Settings

The following screenshot illustrates the Cluster sub-category.
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l Build Label—Specifies the build label (--emake-build-label).

l Build Class—Specifies the build class (--emake-class).

l Resource—Specifies the build resource (--emake-resource).

l Virtualize Toolchain—Determines whether to virtualize the Visual Studio toolchain. This checkbox is
checked by default.

l Use 64-bit eMake—Determines whether to use the 64-bit version of eMake. This checkbox is unchecked
by default.

l Use Local Agents—Determines whether to use local agents (--emake-localagents). This checkbox is
checked by default.

History Solution Settings

The following screenshot illustrates the History sub-category.
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l History File—Specifies the history file to use (--emake-historyfile). The default is eMake.data.

l History—Specifies the eMake history option (--emake-history). Available values: create, merge, or
read.

Performance Solution Settings

The following screenshot illustrates the Performance sub-category.
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l Maximum PDB Files—Sets the maximum number of PDB files used when splitting (sets ECADDIN_MAX_
PDB_FILES). Default is 16. If you have fewer than 16 agents, you can decrease this value to be equal to
or less than the number of agents.

l Use Order-Only Prerequisites—Determines whether to use order-only prerequisites (sets ECADDIN_
USE_ORDER_ONLY_PREREQS=true if enabled). Using order-only prerequisites can improve first-time
build speed.

l Always Rescan Solution—Determines whether to always recreate temporary makefiles even if the
solution has not changed.

l Enable Incremental Link—Enables/disables incremental linking (sets ECADDIN_ENABLE_
INCREMENTAL_LINK=true if enabled).

l Remove Dependencies—Determines whether to remove dependencies and references (sets ECADDIN_
REMOVE_DEPENDENCIES=true if enabled). Removing dependencies prevents Visual Studio from
building dependent projects.

l Set Debug Information to C7 Compatible—Determines whether to force compiler option /Z7 (sets
ECADDIN_FORCE_Z7).

l Up To Date Check—Determines whether to check if anything requires building (set ECADDIN_UP_TO_
DATE_CHECK=true if enabled).
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l Run Local Link—Links specified projects locally using #pragma runlocal (sets ECADDIN_RUN_
LOCAL_LINK). Use the projects button to select projects.

l Coarse Grain Parallelization—Converts the solution to NMAKE more quickly by parallelizing down to the
project level only. It does not require Visual Studio to be installed. Using this option is equivalent to
using the ecdevenv /quick option. This feature works only with Visual Studio 2005 and newer versions.

Annotation Solution Settings

The following screenshot illustrates the Annotation sub-category.

l Annotation Detail—Specifies the level of annotation detail (--emake-annodetail) from the following
selections:
o Basic—Collects information about every command run by the build. Detailed information about each

“job” in the build is recorded, including command arguments, output, exit code, timing, and source
location. In addition, the build structure is represented as a tree where each recursive make level is
represented in the XML output.

o Environment—Adds information about environment variable modifications.

o File—Adds information about files read or written by each job.

o History—Adds information about missing serializations discovered by eMake. This includes
information about which file caused two jobs to become serialized by the eMake history mechanism.

o Lookup—Adds information about files that were looked up by each job. Note:This mode can cause
the annotation file to become quite large.
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o Registry—Adds information about registry operations.

o Waiting—Adds information about the complete dependency graph for the build.

l Annotation File—Specifies the annotation file (--emake-annofile). Required if annotation detail is set.
Use folder button to select a file.

l Annotation Upload—Determines whether to upload the annotation file to the Cluster Manager (--
emake-annoupload).

Note: If your local eMake version is 8.1 or newer, and if you select no Annotation Detail checkboxes, the
add-in sets the --emake-annodetail eMake option to none. In this case, if the version of eMake is
older than 8.1 on the agentmachines, the following error appears at build time:

Starting build: <build number>
ERROR EC1007: Unknown annotation detail token: "none"
Valid tokens are: 'basic', 'env', 'file', 'history', 'lookup', 'md5', 'registr
y', 'waiting'

To avoid this error, you must upgrade the agents to EA 8.1 or newer or check at least one Annotation
Detail checkbox.

Options Solution Settings
This category contains most frequently used optional settings.
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l Do Not Parse Projects—Determines whether to prevent the VS Converter Add-In from breaking up C++
projects (sets ECADDIN_DONT_PARSE_PROJECTS=true if enabled).

l Run Deployment Locally—Determines whether to run deployment projects locally using #pragma
runlocal (sets ECADDIN_RUN_DEPLOYMENT_PROJECTS_LOCALLY=true if enabled).

l Continue On Error—Determines whether to ignore errors that occur during the build (adds /I to the call
to eMake).

l Keep Going—Determines whether to keep going when an error occurs during the build (adds /k to the
call to eMake).

l Use Devenv for All Projects—Determines whether to run all projects using devenv, not MSBuild (sets
ECADDIN_USE_DEVENV=true if enabled).

l Use Devenv for Unparsed Projects—Determines whether to use devenv for unparsed projects (sets
ECADDIN_USE_MSBUILD=true).

l Use Devenv for Specified Projects—Run specified projects using devenv, not MSBuild (sets ECADDIN_
USE_DEVENV_FOR_PROJECTS). You can either type in the project names (separated by semicolons and
without quotes or white spaces) or click the corresponding button to browse for projects.

l Serialize All Projects—Determines whether to serialize all projects using #serialize (sets ECADDIN_
SERIALIZE=true if enabled).

l Do Not Parse Specific Projects—Prevents the VS Converter Add-In from breaking up specified C++
projects (sets ECADDIN_DONT_PARSE_PROJECT). You can either type in the project names (separated by
semicolons and without quotes or white spaces) or click the corresponding button to browse for projects.

This variable is useful for deploying the add-in. If, for any reason, the add-in cannot build some of your
projects, this variable lets you work around the problem.

l Run Local Project—Runs specified projects locally using #pragma runlocal (sets ECADDIN_RUN_
LOCAL_PROJECT). You can either type in the project names (separated by semicolons and without
quotes or white spaces) or click the corresponding button to browse for projects.

Use this variable if your build uses a local resource (for example, a resource only on the eMake host (for
example, a database). You do not need to set this variable if your project build includes web
deployment; this is handled by the add-in. Each project name must be the unique Visual Studio identifier
for the project (for example, solution1/project1.vcproj).

l Expand Linker Objects—Determines whether to expand linker objects to full pathnames (sets ECADDIN_
EXPAND_LINKER_OBJECTS=true if enabled).

l Use Solution In MsBuild Projects—Modifies the call to MSBuild to build a project within the solution
context (sets ECADDIN_BUILD_PROJECTS_IN_SOLUTION_CONTEXT=true if enabled). This option
overrides the Use Solution For Specified MsBuild Projects option. This option is needed for unparsed
projects (such as C# projects or unparsed C++ projects).

l Use Solution For Specified MsBuild Projects—Modifies the call to MSBuild to build specific projects
within the solution context (sets ECADDIN_BUILD_SPECIFIC_PROJECTS_IN_SOLUTION_CONTEXT
accordingly). This option is needed for unparsed projects (such as C# projects or unparsed C++
projects). You can either type in the project names (separated by semicolons and without quotes or
white spaces) or click the corresponding button to browse for projects.

Debug Solution Settings
This category contains debug options for the Add-In Solution Settings and eMake Solution Settings.
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Add-In Solution Settings

l Enable Debug Log—Determines whether to enable debug logging (sets ECADDIN_DEBUG=true if
enabled).

l Debug Log Name—Specifies the name of the debug log (sets ECADDIN_DEBUG_LOG_FILENAME). The
default location is %TMP%\ecdebug<unique>.log (where %TMP% is usually
C:\Users\<username>\AppData\Local\Temp). Use the folder button to select a log file.

l Do Not Delete Temp Makefiles—Determines whether to delete temporary makefiles when the build
completes (sets ECADDIN_DONT_RM_TMP_MAKEFILES=true if enabled).

l Do Not Use Unique Names—Determines whether to use unique names for temporary files (sets
ECADDIN_DONT_USE_UNIQUE=true if enabled).

l Enable ECBreakpoint—Determines whether to invoke ecbreakpoint in failed jobs.

l Enable ECBreakpoint for Specific Projects—Invokes ecbreakpoint for specified projects. Use the folder
button to select projects and delimit projects with a semi-colon.

Using Macros in the Solution Settings String-Based Fields

In any string-based field (such as the path name you enter into the Debug Log Name field) in the Electric Cloud
solution settings, you can use a custom build command instead of a hardcoded string. For example, you can
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create a command that generates separate debug logs if you are running separate builds where each build has
a different configuration.

Following is an example of a dialog box for entering macros:

To edit a set of macros for a field, click in the field, then click the Macros button to invoke the macro editor for
that field, then click the Macros<< button to view the list of available macros.
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eMake Solution Settings

l Log Name—Specifies the name of the debug log (sets –-emake-logfile). Use the folder button to
select a log file.

l Debugging Options—Select the log levels for the eMake debug log file. For details about the eMake
debug log file and log levels, see the “Electric Make Debug Log Levels” section in the Troubleshooting
chapter of the ElectricAccelerator Electric Make User Guide at http://docs.electric-cloud.com/accelerator_
doc/AcceleratorIndex.html.

Advanced Solution Settings
This category contains advanced options.

http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html
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l Use Environment—Determines whether to add /useenv to the devenv call.

l Max Cluster Agents—Specifies the maximum number of agents to use during the build (--emake-
maxagents).

l Registry Root—Specifies the registry root (--emake-reg-roots). You can specify multiple roots
separated by ‘:’ (a colon).

l Monitor—Allows the build to be monitored by ElectricInsight (--emake-monitor).

l Max Local Agents—Sets the maximum number of local agents to use (--emake-localagents).

l Yield Local Agents—If using more than N local agents, then eMake releases the number agents over N
every T seconds so they can be used by another eMake that is looking for local agents (--emake-
yield-localagents=N,T). Two values are required in this format: release agents over this number,
every this number of seconds.
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l Auto Depend—Enables or disables allowing eMake to determine dependencies automatically. Default
is enabled.

Note that Auto Depend is now enabled by default in ecdevenv when ecdevenv is invoked from the
Visual Studio command prompt. (When Auto Depend is disabled in the IDE Add-In GUI, this default is
overridden when ecdevenv is called from the GUI.)

For details about Auto Depend (also called eDepend), see the Dependency Management chapter in the
ElectricAccelerator Electric Make User Guide at http://docs.electric-cloud.com/accelerator_
doc/AcceleratorIndex.html.

l Visual Studio Setup file—Specifies the Visual Studio setup file for command line builds. Default is
vsvars32.bat.

l Exclude Environment—Specifies a list of environment variables to exclude from eMake (--emake-
exclude-env), separated by ‘:’ [a colon].

Command Line Solution Settings
This category lets you add additional options not explicitly specified elsewhere.

http://docs.electric-cloud.com/accelerator_doc/AcceleratorIndex.html
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l Additional Options—Specifies a list of add-in options in this format: <Name=Value>. These are the same
options specified on Setting VS Converter Add-In Environment Variables

l Environmental Variables—Specifies a list of environment variables in this format:
<variable>=<value>, separated by a carriage return. Do not use “set”.

l EMake Options—Specifies a list of eMake options in this format: --emake-<option>=<value>,
separated by a carriage return.

l Command Line—A non-editable field that shows the ecdevenv command that is executed by the add-in.
VS Converter Add-In options are stored in the /options file.
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Chapter 7: Using the ecdevenv Utility

ecdevenv.exe is a command-line drop-in replacement for devenv.exe that builds Visual Studio solutions and
projects using eMake. Following are the key ecdevenv features:

l Skip generation of NMAKE makefiles

l No makefiles are required

l Visual Studio toolchain virtualization

l Ability to build multiple solutions and projects in one command

l Ability to specify global add-in options in an options file

l Forced regeneration of makefiles if required

l Ability to generate makefiles without running eMake

The pre-4.0 behavior of ecdevenv is still supported in versions 4.0 and later.

About ecdevenv
No Makefiles are Required

Without ecdevenv, you must create a makefile to build using eMake:

all:
devenv.exe solution.sln /build Debug

Then call this makefile with eMake:

emake.exe –-emake-cm=<your cm> --emake-emulation=nmake –f makefile

With ecdevenv, you can simply use the following command:

ecdevenv.exe solution.sln /build Debug –-emake-cm=<your cm>

ecdevenv converts the solution into NMAKE makefiles and runs eMake on them using the eMake parameters
specified. Devenv and eMake arguments can be in any order. ecdevenv automatically uses NMAKE emulation.

ecdevenv always converts the solution locally, so any differences between the eMake machine and agent
machines can be ignored.

Note:When invoking ecdevenv, if you build a solution that was created in another version of Visual Studio, a
warning appears at the command prompt. For example: Warning: 'MySolution.sln' version (2012)
does not match version in use (2005).
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Miscellaneous Files that ecdevenv Generates
ecdevenv creates several files in the build directory. You do not need to check these files in to your revision
control system, unless you want to skip regeneration of NMAKE makefiles.

l *.eccache

"*.eccache" files are created in the same directory as the solution files. One file is created for each
invocation of ecdevenv. ecdevenv uses this file to determine whether it needs to regenerate the
temporary makefiles. Delete these only if you want to force ecdevenv to regenerate makefiles.

l metrics.sln.Release_Win32.ecmak and metrics.vcxproj.Release_Win32.ecmak

These are temporary makefiles generated by ecdevenv. Do not delete them unless you are regenerating
the temporary makefiles.

l metrics_Release_Win32.sln

This is a copy of the original solution used to remove project dependencies. This was generated by
ecdevenv (note the configuration name in the file name) Do not delete it unless you are regenerating the
temporary makefiles.

l metrics.sln, metrics.vcxproj, metrics.vcxproj.filters, metrics.vcxproj.user

These are Visual Studio files. Do not delete them.

l ecdevenv.mak

This is the top-level makefile created by ecdevenv. Do not delete it.

l .roots

This contains the list of generated eMake roots. Do not delete it.

You can relocate these files by using the ECADDIN_MAKEFILE_CACHE environment variable. For details, see the
Relocating Makefiles Generated by the Add-In section in the Setting VS Converter Add-In Environment
Variables chapter.

Virtualizing the Visual Studio Toolchain
Use the /virtualize option to virtualize the Visual Studio toolchain. This virtualizes the Visual Studio
installation directory, SDK directory, and relevant registry entries. This negates the need to install Visual Studio
on the agent machines. Make sure that you have installed the following software before using this option:

l Relevant .NET version that you are using

l Relevant redistributable for your version of Visual Studio

Building Multiple Solutions and Projects
ecdevenv can build multiple solutions. To use this capability, create a makefile in the following format and
(optionally) specify the projects and project configurations:

<BuildSpecification>
<Solution>

<Name>Solution1.sln</Name>
<Platform>Mixed Platforms</Platform>
<Configuration>Debug</Configuration>

<Project>
<Name>Project1\Project1.vbproj</Name>
<Platform>Any CPU</Platform>



Chapter 7: Using the ecdevenv Utility

7-3

<Configuration>Debug</Configuration>
</Project>
<Project>

<Name>Project2\Project2.vcproj</Name>
<Platform>Win32</Platform>
<Configuration>Debug</Configuration>

</Project>
</Solution>
<Solution>

<Name>Solution2.sln</Name>
<Platform>Mixed Platforms</Platform>
<Configuration>Debug</Configuration>

</Solution>
</BuildSpecification>

Then pass the name of the file to ecdevenv using /configuration=<filename>.

Note: If you use the /configuration option, you cannot specify a solution, project, or project configuration on
the command line.

Enabling Debugging Output
l Set ECDEVENV_DEBUG=true to turn on debugging (output is sent to stdout by default).

l Set ECDEVENV_DEBUG_LOG=<filename> to redirect output to a file.

Using ecdevenv Command Options
Option Description

/configuration Specifies the configuration file that allows multiple
solutions and projects to be built. See the Building
Multiple Solutions and Projects section above.

/force Forces the regeneration of makefiles.

/generate Generates the NMAKE makefiles without running
eMake.

/help Displays a list of ecdevenv options and sample
options and configuration files.

/makefile Specifies an alternative default makefile (rather
than ecdevenv.mak).

/options=<file> Specifies the add-in options. The file uses the
format shown in the Setting VS Converter Add-In
Environment Variables chapter.
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Option Description

/quick Converts the solution to NMAKE more quickly by
parallelizing down to the project level only. For
details, see the Using Fast Solution Conversion
section below.

/skip Never regenerates makefiles. You use this when
you have cached makefiles. You must manually
regenerate makefiles using /force when
required.

/use64bit Specifies the 64-bit version of eMake.

/version Displays the ecdevenv version number.

/virtualize Virtualize the Visual Studio toolchain (off by
default). See the Virtualizing the Visual Studio
Toolchain section above.

Using ecdevenv Environmental Variables
Variable Description

ECDEVENV_DEBUG Turns on debugging to stdout.

ECDEVENV_DEBUG_LOG Redirects the debug output to a specified file.

ECDEVENV_NO_EXPLICIT_DEPS Does not use project-to-project dependencies.

ECDEVENV_RUN_LOCAL Specifies a list of projects to locally build #pragma
runlocal. All project lists are delimited with semi-
colons.

See the add-in option ECADDIN_RUN_LOCAL_
LINK.

ECDEVENV_SKIP_CHECKS Skips checking for devenv.com in the PATH
environment variable.

ECDEVENV_SKIP_DUPLICATE_PROJECTS Skips projects if they have been previously built in
a different solution.

ECDEVENV_USE_SOLUTION_CONTEXT Builds all projects in the solution context. See the
Debugging a Failed Build section.

ECDEVENV_USE_SOLUTION_CONTEXT_
FOR_PROJECTS

Specifies a list of projects to build in the solution
context. All project lists are delimited with semi-
colons.

See the Debugging a Failed Build section.



Chapter 7: Using the ecdevenv Utility

7-5

Using Fast Solution Conversion
Use /quick for fast solution conversion. This option converts the solution to NMAKE more quickly by
parallelizing down to the project level only. The option is best suited to solutions containing no C++ projects.

When using the /quick option, you must also specify the full platform and configuration. For example,
ecdevenv solution.sln /build "Release|Win32" /quick.

The option is available only with Visual Studio 2005 and newer versions. If you try to use the option when
building a solution in Visual Studio 2002 or Visual Studio 2003, the following error message appears: Error:
/quick can only be used with VS2005 and higher.

Note: You can also enable fast solution conversion in the IDE add-in by checking the Coarse Grain
Parallelization checkbox in the General > Performance tab of the Electric Cloud Solution Settings dialog box.

Visual Studio does not need to be installed for you to use fast solution conversion. However, MSBuild must be
installed.
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Chapter 8: Using the VS Converter Add-In

ElectricAccelerator can build Visual Studio solutions in two different modes:

l Use ecdevenv as a drop-in replacement for your command-line build (recommended)

l Create a makefile containing the devenv calls

Using ecdevenv
If you choose to use ecdevenv, replace:

devenv.com Solution.sln /build Debug

with:

ecdevenv Solution.sln /build Debug -–emake-cm=<yourcm> /virtualize

ecdevenv does the following:

1. Converts Solution.sln to NMAKE format.

2. Calls eMake on the generated files.

The /virtualize flag virtualizes the Visual Studio toolchain, negating the need to install Visual Studio on the
agents. You must, however, ensure the relevant versions of .NET and redistributables are installed.

devenvmust be in the PATH environment variable before executing ecdevenv.

Creating a Makefile
Before you can use Accelerator to build your Visual Studio project, make sure you have already installed and
run Visual Studio on each agent host for each user (all ECloudInternalUsers).

Note: Virtualization of the toolchain is not possible when using this method.

If you currently invoke Visual Studio from inside a makefile, you are ready. If you invoke Visual Studio directly
from the command line or through a batch file, you must create a makefile for eMake to run. For example:

all:
devenv /build Release foo.sln

-- or --

all:
devenv /build Release foo.sln /project bar.vcproj
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The makefile must invoke devenv with the options you currently use. Ensure the correct version of devenv is in
your path:

devenv /?

and ensure that the usual Visual Studio environment variables are set.

Setting the Path for 64-Bit or Xbox Builds
To run 64-bit or Xbox builds, you must set the path manually.
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Chapter 9: Setting VS Converter Add-In Environment
Variables

Setting the Converter Add-In Environment Variables
You can control the way the VS Converter Add-In works by setting these environment variables on the eMake
machine.

Alternatively, you can set the variables in a configuration file and set ECADDIN_CONFIGURATION_FILE to the full
or relative pathname.

all:
set ECADDIN_CONFIGURATION_FILE=addin.cfg
devenv.com Solution.sln /build Debug

Sample addin.cfg:

<SolutionSettings>
<DisableAddin>false</DisableAddin>
<DoNotParseProjects>false</DoNotParseProjects>
<ECBreakpoint>false</ECBreakpoint>
<DoNotParseSpecificProjects />
<ECBreakpointProjects />
<RunLocalLink />
<UseDevenvForProject />
<EnableDebugLog>false</EnableDebugLog>
<DebugLogName>ecdebug.log</DebugLogName>
<MaxPDBFiles>16</MaxPDBFiles>
<UseOrderOnlyPrereqs>true</UseOrderOnlyPrereqs>
<EnableIncrementalLink>false</EnableIncrementalLink>
<RemoveDependencies>true</RemoveDependencies>
<ForceZ7>true</ForceZ7>
<UpToDateCheck>false</UpToDateCheck>
<DoNotDeleteTempMakefiles>false</DoNotDeleteTempMakefiles>
<DoNotUseUniqueNames>false</DoNotUseUniqueNames>
<ExpandLinkerObjects>false</ExpandLinkerObjects>
<RunDeploymentLocally>false</RunDeploymentLocally>
<RunLocalProject />
<SerializeAllProjects>false</SerializeAllProjects>
<UseDevenv>false</UseDevenv>
<UseMSBuild>true</UseMSBuild>

</SolutionSettings>
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All environment variables override variables in the configuration file, so you can set them outside of the
configuration file as needed.

Note: Environment variables that take Boolean values can accept: “0”, “no”, “false”, “off”, “1”, “yes”, “true”, or
“on”. Case is not significant.

Environment Variable Configuration File Variable Description Default

- AddEmakeRootsAutomatically Adds the locations of all inputs
(such as .cpp and .h files) and
outputs (such as .obj, .exe,
and .dll files) to the eMake root
automatically.

This variable applies only to
C++ projects. For a C# project
or a project with inputs and
outputs not in the solution or
project locations, you must
add their locations to the
eMake root manually.

This variable does not apply to
third-party tools, because they
cannot be virtualized. It also
does not apply to project
locations and each location for
the solution(s), because they
are always added
automatically.

False
(convert
er add-
in)
True
(ecdeve
nv and
IDE
add-in)

ECADDIN_BUILD_ORDER BuildOrder Specifies projects' build order.
Use only if Accelerator is not
building projects in the correct
order.

-

ECADDIN_BUILD_
PROJECTS_IN_
SOLUTION_CONTEXT

BuildProjectsInSolutionContext Modifies the call to MSBuild to
build a project within the
solution context. This
overrides the ECADDIN_
BUILD_SPECIFIC_
PROJECTS_IN_SOLUTION_
CONTEXT variable and the
BuildSpecificProjectsInSolutio
nContext configuration file
variable. This option is needed
for unparsed projects (such as
C# projects or unparsed C++
projects).

False
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Environment Variable Configuration File Variable Description Default

ECADDIN_BUILD_
SPECIFIC_PROJECTS_
IN_SOLUTION_CONTEXT

BuildSpecificProjectsInSolution
Context

Allows a list of projects to be
built in the solution context in
MSBuild. Supply a list of
projects (separated by a
semicolon but no spaces).
This option is needed for
specific unparsed projects
(such as C# projects or
unparsed C++ projects).

-

ECADDIN_CHECK_
DLLEXPORT

CheckDLLExport Prevents the linker from
including libraries that do not
contain any exports. This
might be slow.

False

ECADDIN_
CONFIGURATION_FILE

- Sets the filename of the
configuration file. Environment
variables override the settings
in this file.

-

ECADDIN_CREATE_
MISSING_
DEPENDENCIES

CreateMissingDependencies Creates missing
dependencies to avoid
missing dependency
warnings.

False

ECADDIN_DEBUG EnableDebugLog Setting this variable to any
value causes debug log files
to remain in
%TMP%\ecdebug<ID>.log
on the agent host. These files
are used for troubleshooting
by Electric Cloud engineers.
Normally, you do not need to
set this value.

False

ECADDIN_DEBUG_LOG_
FILENAME

DebugLogName Specifies the debug log name.
Requires ECADDIN_DEBUG.
Use '$1' in the file specification
to insert a unique ID. For
example,
C:\Users\Bill\ecdebug_
$1.log. Use a file location
outside of eMake root. The log
file is stored on the agent.

-

ECADDIN_DISABLE_
MINIMAL_REBUILDS

DisableMinimalRebuilds Disables minimal rebuilds. False

ECADDIN_DISALLOW_
BSC

DisallowBSC Does not generate browse
information files.

False
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Environment Variable Configuration File Variable Description Default

ECADDIN_DISALLOW_
PCH

DisallowPCH Does not generate/use
precompiled header files
(implied by ECADDIN_MAX_
PDB_FILES)

False

ECADDIN_DISALLOW_
PDB

DisallowPDB Does not generate PDB files. False

ECADDIN_DISALLOW_
SBR

DisallowSBR Does not generate browse
information files from sources.

False

ECADDIN_DONT_ADD_
PCH_LOCATION

DoNotAddPCHLocation Prevents the add-in from
adding the location of the PCH
file in all cases. This variable
is relevant only if ECADDIN_
MAX_PDB_FILES or ECADDIN_
DISALLOW_PCH is switched on.

False

ECADDIN_DONT_ALLOW_
PCH_AND_PDB

DoNotAllowPCHAndPDB Switches off PDB and PCH
generation.

False

ECADDIN_DONT_PARSE_P
ROJECT

DoNotParseSpecificProjects Prevents the VS Converter
Add-In from breaking up
specified C++ projects. This
variable takes a list of project
names separated by semi-
colons and without white
spaces. This variable is useful
for deploying the add-in. If, for
any reason, the add-in cannot
build some of your projects,
this variable lets you work
around the problem.

When using this variable, you
might experience an the
warning MSB4098. You can
ignore this warning, because
any project references are
now converted into additional
dependencies. MSBuild,
however, does not provide a
mechanism to turn off this
warning.

-
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Environment Variable Configuration File Variable Description Default

ECADDIN_DONT_PARSE_P
ROJECTS

DoNotParseProjects This variable takes any non-
blank value and its behavior is
similar to ECADDIN_
SERIALIZE. It calls devenv on
each project (the add-in does
not convert each project into
individual compile/link steps).

-

ECADDIN_DONT_RM_
TMP_MAKEFILES

DoNotDeleteTempMakefiles Retains makefiles created
during the build but normally
deleted when the build
finishes. This environment
variable can have any value; it
just needs to be set.

False

ECADDIN_DONT_RUN DoNotRun TEST only. Convert makefiles
without running eMake.

False

ECADDIN_DONT_USE DisableAddin Disables the add-in. This
environment variable can
have any value, it just needs to
be set. Also, you can disable
the add-in on each host by
using the Visual Studio Add-In
Manager (on the Tools menu).
Note: This is a “light-weight”
uninstall program that disables
one individual machine at a
time.

False

ECADDIN_DONT_USE_
UNIQUE

DoNotUseUniqueNames Does not use unique names
for temporary makefiles. Use
with ECADDIN_DONT_RM_TMP_
MAKEFILES.

False

ECADDIN_
ECBREAKPOINT

ECBreakpoint Determines whether to invoke
ecbreakpoint on failed jobs.

False

ECADDIN_
ECBREAKPOINT_
PROJECTS

ECBreakpointProjects Determines whether to invoke
ecbreakpoint for specified
projects. Use a semi-colon to
delimit projects.

-

ECADDIN_ENABLE_
INCREMENTAL_LINK

EnableIncrementalLink Inserts a call to
ectouch.exe. See Tuning
Performance.

True
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Environment Variable Configuration File Variable Description Default

ECADDIN_EXPAND_
LINKER_OBJECTS

ExpandLinkerObjects Expands linker objects to one
line per object. Prevents errors
when link line length is
exceeded.

False

ECADDIN_FORCE_Z7 ForceZ7 Enables /Z7 compiler options
for all C++ files.

False

ECADDIN_INCLUDE_
CMAKELISTS

IncludeCMakeLists Excludes any source file with
the name CMakeLists.txt. Set
this variable to True to execute
the file.

False

ECADDIN_INJECT_PCH_R
EFERENCE

InjectPCHReference Adds /Yl<projectname> to the
PCH creator (/Yc). Set it to
false only if linker tools error
LNK2005 (multiply-defined
symbol error) appears.

True

ECADDIN_MAKEFILE_CAC
HE

MakefileCache Path to an alternate location
for the cached (temporary)
makefiles that are generated
by the add-in. For details, see
the Relocating Makefiles
Generated by the Add-In
section below.

-

ECADDIN_MAX_PDB_
FILES

MaxPDBFiles Specifies the maximum
number of PDB files produced.
See Optimizing Parallelization
Using PDB Splitting.

16

ECADDIN_MSBUILD_DIR MSBuildDir Path to the location of
msbuild.exe if different from
the default.

-

ECADDIN_MSBUILD_
PARAMETERS

MSBuildParameters Adds extra parameters to
msbuild command line.

-

ECADDIN_NORMALIZE_
PATHS

NormalizePaths Normalizes all paths in the
makefile.

True

ECADDIN_REMOVE_
DEPENDENCIES

RemoveDependencies Removes project-to-project
dependencies to improve
parallelization.

False

ECADDIN_RUN_
DEPLOYMENT_
PROJECTS_LOCALLY

RunDeploymentLocally Runs deployment projects
locally using #pragma
runlocal.

False
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Environment Variable Configuration File Variable Description Default

ECADDIN_RUN_LOCAL_
LINK

RunLocalLink A list of projects where the
linker will be run locally (using
#pragma runlocal).

-

ECADDIN_RUN_LOCAL_
PROJECT

RunLocalProject Use this variable if your build
uses a local resource (for
example, a resource only on
the eMake host (for example, a
database). You do not need to
set this variable if your project
build includes web
deployment; this is handled by
the add-in. The value of this
variable is a list of project
names separated by semi-
colons. Each project name
must be the unique Visual
Studio identifier for the project
(for example,
solution1/project1.vcpr
oj). Do not add quotation
marks or white spaces.

-

ECADDIN_SERIALIZE SerializeAllProjects Causes each project to be
built serially. It inserts
‘#pragma allserial’ into
each makefile. This variable is
equivalent to setting
ECADDIN_DONT_PARSE_
PROJECTS.

False

ECADDIN_UP_TO_DATE_C
HECK

UpToDatecheck Pre-parses the projects to
determine whether there is
anything to build. Prevents
unnecessary rebuilding of
static build steps.

True

ECADDIN_USE_DEVENV UseDevenv Uses devenv (rather than
msbuild) for all unparsed
projects.

False

ECADDIN_USE_DEVENV_F
OR_PROJECT

UseDevenvForProject Uses devenv (rather than
msbuild) to build specific
projects. Supply a list of
projects (separated by a
semicolon) to be built with
devenv.

-
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Environment Variable Configuration File Variable Description Default

ECADDIN_USE_LEGACY_
CODE

UseLegacyCode Use this variable to
workaround a Visual Studio
bug where
AdditionalLibraryDirectories
does not give the correct
value.

False

ECADDIN_USE_MSBUILD UseMSBuild Lets you use msbuild
internally for projects that the
add-in cannot parse.

True

ECADDIN_USE_ORDER_
ONLY_PREREQS

UseOrderOnlyPreReqs Uses order-only prerequisites
(available in Accelerator v7.0
and later). This allows for
quicker first time (no history)
builds.

True

ECADDIN_USE_
RELATIVE_PATHS

UseRelativePaths Uses relative paths in the
makefile to reduce line
lengths.

False

ECADDIN_USE_WCE_
MACROS

UseWCEMacros Loads platform macros. False

ECADDIN_XBOX_
INSTALL_DIR

XBoxInstallDir Path to the location of Xbox
SDK if different from the
default.

-

ECADDIN_XBOX_VERSION XBoxVersion Xbox SDK version if different
from the default.

-

Relocating Makefiles Generated by the Add-In
Generated (temporary) makefiles include .ecmak files, solutions and projects, RC files, and up-to-date check
files. By default, these files are in the same location as their corresponding solution or project. For example:

l C:\Test\solution_001\solution_001.sln generates C:\Test\solution_001\solution_
001.sln.ecmak

l C:\Test\solution_001\project1\project1.vcxproj generates C:\Test\solution_
001\project1\project1.vcxproj.ecmak

You can specify a path to an alternate location for these files by setting the ECADDIN_MAKEFILE_CACHE
environment variable. For example, if you enter set ECADDIN_MAKEFILE_CACHE=C:\temp, then

l C:\Test\solution_001\solution_001.sln generates C:\temp\c\Test\solution_001\solution_
001.sln.ecmak

l C:\Test\solution_001\project1\project1.vcxproj generates C:\temp\c\Test\solution_
001\project1\project1.vcxproj.ecmak

(Note that the drive colon is replaced with a directory separator in the cache.) This variable is useful when you
want to keep eMake-generated files out of the source tree or when the source tree is read-only.
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Note: If you use this environment variable, keep in mind that the paths for the generated files must not exceed
the Windows character limit.

Setting the Environment Variable to Enable Local Solution
Builds

You can build a solution locally with eMake but without using remote agents or local agents. You might want to
use this function if a distributed incremental build is slow, or if a local Visual Studio incremental build causes
unnecessary rebuilding of objects. To make this function visible in the Electric Cloudmenu, set the
environment variable ECUIADDIN_LOCAL_BUILD=true. For more information about this menu, see the Main
Menu and Toolbar section.

Setting the Environment Variable for ecdevenv Startup
Checks

By default, the ecdevenv utility perform several checks (such as the existence and proper version number of the
converter add-in) when it starts. To disable the checks, set the environment variable ECDEVENV_SKIP_
CHECKS=true.
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Chapter 10: Tuning Performance

The add-in has several methods for improving performance. To determine which is best for your situation,
generate an annotation file and open it in ElectricInsight.

To generate an annotation file, pass --emake-annodetail=basic,file,lookup,env to your eMake call. By
default, the annotation file is named emake.xml.

Available methods:

l Improving Build Time for /Zi + PCH Builds

l Improving Build Time for Solutions with Many Projects

l Improving Final Link Time

l Improving Incremental Build Time

l Improving Incremental Linking Time

l Optimizing Parallelization Using PDB Splitting

Improving Build Time for /Zi + PCH Builds
The default configuration for VC++ projects is /Zi and using PCH. To parallelize this combination, the add-in
splits PDB and duplicates PCH. However PCH files are usually very large and might negate any improvement
parallelization offers.

To improve build time in these circumstances:

1. Set ECADDIN_FORCE_Z7=true

This is the single most effective way to improve build speed.

2. Set ECADDIN_DISALLOW_PCH

This turns off PCH but might result in build failures that can be fixed in code only.

3. Reduce ECADDIN_MAX_PDB_FILES

Reducing this setting reduces parallelism but decreases the time spent copying PCH files.

Improving Build Time for Solutions with Many Projects
Some very large solutions with few inter-project dependencies might benefit from not parsing the project down
to the project item level. Follow these steps:
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1. Set ECADDIN_DONT_PARSE_PROJECTS=true

2. Clear history.

3. Rebuild.

Although you lose find-grain parallelism, the reduced overhead might reduce the overall build time.

Improving Final Link Time
Many typical solutions have a final link (or lib) that is very large and slow on the cluster. To perform this link
locally, set ECADDIN_RUN_LOCAL_LINK=<project>.

IMPORTANT: Running projects locally with #pragma runlocalmight cause other issues. When running
with #pragma runlocal, only changes in the current working directory are recognized by EFS, so it is not
advised if there are subsequent jobs that use files outside of the CWD.

Improving Incremental Build Time
By default, the add-in does not rebuild prebuild events. Instead, the add-in first checks whether there is anything
out of date. If not, nothing will be built, including the prebuild event.

To always rebuild prebuild events, set ECADDIN_UP_TO_DATE_CHECK=false. Note that when you set this
environment variable to false, if you have a prebuild event that touches files, it could potentially rebuild far
more than Visual Studio would.

Improving Incremental Linking Time
Improving Incremental Linking Time with the Add-In

Visual Studio supports incremental linking with the /INCREMENTAL linker option. This does not function in
eMake, because eMake updates the time stamp of the exe/dll when it copies it back to the build machine (from
the agent) to prevent any problems because of clock skew.

To work around this problem, the add-in “touches” the exe after the link with its current time stamp. This explicit
modification of the time stamp instructs eMake to preserve the time stamp, which keeps the validity of its
incremental status. The add-in inserts a call to ectouch.exe, which performs the action stated above.
ectouch.exemust be in %PATH%.

To disable this feature with the add-in, set ECADDIN_ENABLE_INCREMENTAL_LINK=false.

Improving Incremental Linking Time without the Add-In
If you are not using the add-in, you can still use this feature. You can rename ectouch.exe to eclink.exe and
replace occurrences of link.exe with eclink.exe. eclink.exe should be in %PATH%. Alternatively, you can
rename link.exe to link_ec.exe and copy eclink.exe to link.exe. (If you want something other than
link_ec.exe, set EC_ORIGINAL_LINK_PATH to the location of the “real” link.exe.)

Optimizing Parallelization Using PDB Splitting
Optimizing Parallelization with the Add-In

By default, Visual Studio puts all debugging information in a centralized database (PDB) called vc80.pdb (this is
Visual Studio version-specific). Because each compilation modifies this file, everything in the project is
serialized. A workaround is to group debug information into multiple PDB files. You can accomplish this
automatically if you use the add-in.

ECADDIN_MAX_PDB_FILES is set to 16 by default. You can change this value to be equal to or less than the
number of agents, but you might need to increase or decrease this for optimal efficiency. ECADDIN_MAX_PDB_
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FILES specifies the maximum number of PDB files produced. Each file is placed into a PDB determined by a
hash of its filename. This method ensures that a particular file is always placed in the same PDB. This is
necessary to ensure eMake's history file remains valid.

For example, if a project contains 4 files, File1.cpp, File2.cpp, and so on, and they are all serialized on PDB
file vc80.pdb. Set ECADDIN_MAX_PDB_FILES=2 will create (at most) 2 PDB files:

File1.cpp --' <ProjectName>_0.pdb
File2.cpp --' <ProjectName>_1.pdb
File3.cpp --' <ProjectName>_0.pdb
File4.cpp --' <ProjectName>_1.pdb

In this example, File1 and File3 will be serialized against each other but will build in parallel from File2 and
File4 (which will be serialized against each other).

You can change this variable in the Visual Studio IDE Add-In solution settings. Go to the Performance section of
the Add-in pane.

The history file must be deleted when adding or changing the value of ECADDIN_MAX_PDB_FILES. You can also
set --emake-history=create.

Optimizing Parallelization without the Add-In
This technique can be used without using the add-in. This distribution contains the application hashstr.exe,
which hashes the filename and returns the bucket number. You can use this in your makefile to set the PDB
filename (using /fd) in the same manner as above. Precompiled headers must be switched off for this to work.

Usage: hashstr "mystring" [modulus]

Where mystring is the string from which to generate the hash value, and modulus is the number of hash bins
you want to use.

You can add this to a pattern rule for builds that suffer from performance degradation due to PDB serialization,
with something similar to the following:

%.o: %.c

$(CC) /c $(cflags) $(PCH_USE_FLAGS) $(cvars) $(cplus_flags) $(LOCAL_INCLUDE) $(P
CB_INCLUDE) $< /Fo$@ /Fd$(shell ${path-to-hashstr}/hashstr.exe "$@" ${hashstr-mo
dulus}).pdb
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Chapter 11: Using MSBuild

Building MSBuild Projects in Parallel
ElectricAccelerator cannot parallelize MSBuild project files. If you have multiple MSBuild projects, however, you
can create a makefile to build them in parallel.

For example:

all: project1 project2

project1
msbuild myproject.csproj /t:build

project2:
msbuild myproject.csproj /t:build

Then run:

emake –f makefile –-emake-emulation=nmake –-emake-cm<your cm>

For C++ projects, call devenv (or ecdevenv) to parallelize those projects down to the project item level.

If you use a top-level MSBuild script that builds separate projects, convert that to NMAKE in the format above to
achieve parallelization under eMake.

Using MSBuild to Build a Project Directly in Its Solution
Context

When set to true, the ECADDIN_USE_SOLUTION_IN_MSBUILD environment variable lets you use MSBuild to
build a project directly, but in the context of its solution, by generating an appropriate call to be sent to MSBuild.
For example, when you build a C# project named WindowsApplication2 with project configuration
Debug|AnyCPU, the generated makefile contains the following call to MSBuild:

"msbuild.exe" "WindowsApplication2.csproj" /t:build /p:Configuration="Debug",Platfo
rm="AnyCPU"

(Note that MSBuild expects there to be no space between Any and CPU.)

When you set the environment variable to true, the command is changed to build the WindowsApplication2
project in solution configuration Debug|Mixed Platforms:

"msbuild.exe" "solution_0012.sln" /t:WindowsApplication2 /p:Configuration="Debug",P
latform="Mixed Platforms"
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Chapter 12: Debugging a Failed Build

Perform the following tasks first when debugging a failed build:

l Double-check that the build works under Visual Studio.

l See the Troubleshooting Problems chapter or ask.electric-cloud.com.

If the previous tasks do not help you debug your build, do the following steps:

1. Set ECADDIN_DEBUG=true and ECADDIN_DEBUG_LOG_FILENAME=<filename>.

2. Rerun the build.

The <filename> will exist on the machine that performed the conversion. When using ecdevenv, this will
be the local machine. When running devenv or ecdevenv remotely, the file will exist on the remote
machine.

http://ask.electric-cloud.com/
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Chapter 13: Troubleshooting Problems

Initializing Visual Studio
If you don't virtualize the toolchain, you must initialize Visual Studio on every agent host for each
ECloudInternalUser. Each Accelerator agent runs as user ECloudInternalUser1, ECloudInternalUser2, and so
on.

Log in to each user account and run Visual Studio and do the following:

1. Choose Tools > Options and browse to Project and Solutions > Build and Run.

2. Set the maximum number of parallel project builds to 1.

3. Choose Help > Customer Feedback Options.

4. Initialize the Customer Experience Improvement Program to either Yes or No.

If you still encounter issues, go to the Electric Cloud ElectricAccelerator Knowledge Base and search for “Visual
Studio”. Also refer to ask.electric-cloud.com for answers to common issues with eMake and the Visual Studio
Integration.

Common Issues
Check this list of common issues after you verify that Visual Studio initialized properly:

l Visual Studio is missing the Electric Cloud menu

l Application Data folder could not be created. make: *** [all]

l For VS2005 SP1 builds, the build is not broken up and runs as one large job

l Build terminated with “not making progress” error

l Visual Studio quits immediately at the start of the build

l Error “’devenv’ not found” is displayed

l Error “Unable to build specified project” or missing file errors

l Error “msbuild not found”

l Missing DLL errors or Visual Studio installation is corrupt

l Error “command line too long”

l The build is slow (not parallelized) and/or each line of the build output is prefixed with 1>, 2>, etc

https://electriccloud.zendesk.com/forums/70688-Accelerator-KB
http://ask.electric-cloud.com/
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l Error: ‘|’ not recognized

l When virtualizing the Visual Studio toolchain, regsvr32 fails trying to register a DLL that uses debug
CRT DLLs

l Particular projects do not build under eMake

l Electric Cloud menu in Visual Studio is grayed out (disabled)

l Invalid macro invocation '$' build error

l Using Visual Studio 2010, a project fails at link when using the add-in but succeeds when using Visual
Studio alone

l Upgrading only cluster agents to Accelerator v7.0 might cause an error

Visual Studio is missing the Electric Cloud menu
Description

The VS IDE Add-In is installed, but the Electric Cloud menu is missing and the Tools menu item is corrupted
(shows "Electric Cloud").

The add-in might throw an exception similar to the following:

3:Error: Adding Build menu item: Could not load file or assembly 'stdole, Version=7.0.3300.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a' or one of its dependencies. The system cannot find
the file specified.

Cause

This occurs because the add-in requires stdole.dll to be installed and registered.

Solution

1. Close all instances of Visual Studio.

2. Uninstall the add-in from Control Panel.

3. Open a command prompt and register the DLL manually (Adjust the path to gacutil.exe accordingly.):

"%PROGRAM_FILES%\Microsoft SDKs\Windows\v7.0A\Bin\gacutil.exe" -i ""%PROGRAM_
FILES%\Common Files\Microsoft Shared\MSEnv\PublicAssemblies\stdole.dll"

Run Visual Studio and check if the Electric Cloud menu is present.

4. If Step 3 doesn't work, install the Office 2003 Update: Redistributable Primary Interop Assemblies from
http://www.microsoft.com/download/en/details.aspx?DisplayLang=en&id=20923.

5. Run:

devenv.exe /ResetSettings

This resets the menus.

6. Re-install the add-in and run Visual Studio.

Application Data folder could not be created. make: *** [all]
Cause

The current user does not have an account on the agent that is running devenv.exe.

http://www.microsoft.com/download/en/details.aspx?DisplayLang=en&amp;id=20923
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Solution

Virtualize the Visual Studio toolchain or set --emake-exclude-env=USERPROFILE.

See http://ask.electric-cloud.com/questions/299/what-does-it-mean-when-visual-studio-reports-the-application-
data-folder-for-visual-studio-could-not-be-created.

For VS2005 SP1 builds, the build is not broken up and runs as one large
job

Cause

The hotfix for VS2005 SP1 is not installed.

Solution

See http://ask.electric-cloud.com/questions/439/visual-studio-2005-behaves-as-if-the-visual-studio-add-in-is-
not-installed.

Build terminated with “not making progress” error
Cause

There are many reasons for this error. It usually occurs when a build has shown a modal dialog (that is not
visible to the build user) and is waiting for input.

Solution

See http://ask.electric-cloud.com/questions/427/why-does-visual-studio-stall-and-display-a-modal-dialog.

Visual Studio quits immediately at the start of the build
Cause

You are running the wrong version of Visual Studio for your build.

Solution

Ensure the environment is setup for the version of Visual Studio you are using.

Error “’devenv’ not found” is displayed
Cause

Visual Studio is not installed on the agent or is not in the same location as the build machine.

Solution

Install Visual Studio on the agent or set the PATH environment variable to reflect the installation directory on the
agent.

http://ask.electric-cloud.com/questions/299/what-does-it-mean-when-visual-studio-reports-the-application-data-folder-for-visual-studio-could-not-be-created
http://ask.electric-cloud.com/questions/439/visual-studio-2005-behaves-as-if-the-visual-studio-add-in-is-not-installed
http://ask.electric-cloud.com/questions/427/why-does-visual-studio-stall-and-display-a-modal-dialog
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Error “Unable to build specified project” or missing file errors
Cause

The missing project or files are not in the eMake root.

Solution

Make sure all files are either present on the agent, or in the emake root.

Error “msbuild not found”
Cause

.NET is not installed on the agent.

Solution

Install the relevant version of .NET on all agents.

Missing DLL errors or Visual Studio installation is corrupt
Cause

C++ redistributable is not installed on the agent.

Solution

Install the relevant redistributable for the version of Visual Studio you’re using on the agents.

Error “command line too long”
Cause

The add-in has generated a command line that is too long.

Solution

If the error occurs during linking, set ECADDIN_EXPAND_LINKER_OBJECTS=true, otherwise set ECADDIN_USE_
RELATIVE_PATHS=true in your environment.

The build is slow (not parallelized) and/or each line of the build output is
prefixed with 1>, 2>, etc

Cause

The build is not using the add-in. The 1>, 2> is an indication that devenv is being used.

Solution

Check that the VS Converter Add-In is installed on the agents or build machine. (Go to Tools > Add In
Manager.)

For VS2005 SP1, check if the hotfix is installed (see above).
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Check for other third-party add-ins on the agents. The VS Converter Add-In might not be compatible with other
build-related add-ins.

Error: ‘|’ not recognized
Cause

You are using an older Accelerator version (pre 7.0) that doesn't recognize order-only prerequisites.

Solution

Turn off ECADDIN_USE_ORDER_ONLY_PREREQS.

When virtualizing the Visual Studio toolchain, regsvr32 fails trying to
register a DLL that uses debug CRT DLLs

Cause

These SxS DLLs cannot be virtualized and are not part of the Visual Studio redistribution.

Solution

Do one of the following:

l See http://msdn.microsoft.com/en-us/library/aa985618(v=VS.90).aspx

l Copy debug DLLs from <VSINSTALLDIR>\VC\redist\Debug_NonRedist to the target directory (the
location of the DLL that is being registered)

l Copy Microsoft.VC90.DebugCRT.manifest and msvcr90d.dll from
<VSINSTALLDIR>\VC\redist\Debug_NonRedist\x86\Microsoft.VC90.DebugCRT

Particular projects do not build under eMake
Solution

Use ECADDIN_DONT_PARSE_PROJECT to specify the offending projects. Use either the project name or the
project path as shown in the solution file.

Electric Cloud menu in Visual Studio is grayed out (disabled)
Cause

This might occur if you install Visual Studio after installing the add-in. Visual Studio’s setup routine has not
initialized the add-in.

Also, the debug log will contain: AddCommandControls failed for Build: The parameter is
incorrect. (Exception from HRESULT: 0x80070057 (E_INVALIDARG))

Solution

Open a Visual Studio 2010 or later command prompt as administrator and type:

devenv /setup

http://msdn.microsoft.com/en-us/library/aa985618(v=VS.90).aspx
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Invalid macro invocation '$' build error
Cause

An NMAKE limitation treats the dollar sign ($) as a special character that precedes a macro name. It is not
possible to use '$' in a preprocessor definition unless the number of '$' is even.

Solution

Either avoid having to use the single dollar sign ($), or specify it by using a double dollar sign ($$).

Using Visual Studio 2010, a project fails at link when using the add-in but
succeeds when using Visual Studio alone

Description

You encounter this error: LINK : fatal error LNK1123: failure during conversion to COFF: file invalid or corrupt

Solution

Upgrade Visual Studio to 2010 SP1.

Upgrading only cluster agents to Accelerator v7.0 might cause an error
Cause

When upgrading the cluster agents only to Accelerator v7.0, be advised that an older eMake client will run the
same version of eMake on the agent (if it is available). This might result in the following error:

NMAKE : fatal error U1073: don't know how to make '|'

Solution

Do one of the following:

l Upgrade the local eMake client to 7.0 or later (recommended).

l Set ECADDIN_USE_ORDER_ONLY_PREREQS=false in your environment.
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